
• Quantum billiards and microwave resonators as a model of 
the compound nucleus

• Induced time-reversal symmetry breaking in billiards -
isolated resonances

• Fluctuation properties of S-matrix elements - overlapping 
resonances

• Test of models based on RMT for GOE and GUE systems
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The Quantum Billiard and its Simulation
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2D microwave cavity: hz < λmin/2
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Helmholtz equation and Schrödinger equation are equivalent in 
2D. The motion of the quantum particle in its potential can be
simulated by electromagnetic waves inside a two-dimensional

microwave resonator.

Schrödinger ↔ Helmholtz
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• Microwave power is emitted into the resonator by antenna
and the output signal is received by antenna
→ Open scattering system

• The antennas act as single scattering channels

• Absorption into the walls is modelled by additive channels

Compound
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Microwave Resonator as a Model for the Compound Nucleus



• Scattering matrix for both scattering processes

• RMT description: replace Ĥ by a matrix for               systems

Microwave billiardCompound-nucleus
reactions

resonator Hamiltonian

coupling of resonator
states to antenna states
and to the walls

nuclear Hamiltonian

coupling of quasi-bound
states to channel states

← Ĥ →

← Ŵ →

Ŝ(E) = - 2πi ŴT (E - Ĥ + iπ ŴŴT)-1 Ŵ
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Scattering Matrix Description

GOE T-inv
GUE T-noninv



overlapping resonances
 for Γ/D>1 
 Ericson fluctuations

isolated resonances
for Γ/D<<1

atomic nucleus

ρ ~ exp(E1/2)

M
microwave cavity

ρ ~ f

M
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Excitation Spectra



Search for Time-Reversal Symmetry Breaking in Nuclei
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Induced Time-Reversal Symmetry Breaking (TRSB) in Billiards

• T-symmetry breaking caused by a magnetized ferrite

• Coupling of microwaves to the ferrite depends on the direction a b

Sab

Sba

ab

• Principle of detailed balance:

• Principle of reciprocity:

a b
• •
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Isolated Resonances - Setup
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Isolated Resonances - Singlets
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• Reciprocity holds TRSB cannot be detected this way

• Sab
• Sba
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Isolated Doublets of Resonances

• Violation of reciprocity due to interference of two resonances
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• Scattering matrix element

• Decomposition of effective Hamiltonian

• Ansatz for TRSB incorporating the FMR and its selective 
coupling to the microwaves

Scattering Matrix and TRSB
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•

TRSB Matrix Element
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• Fit parameters:  andλ ω
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T-Violating Matrix Element
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• T-violating matrix element shows resonance like structure
• Successful description of dependence on magnetic field
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Relative Strength of T-Violation
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• Compare: TRSB matrix element       to the energy difference 
of two eigenvalues of the T-invariant system
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• Regime of isolated resonances

• Г/D small

• Resonances: eigenvalues 

• Overlapping resonances

• Г/D ~ 1

• Fluctuations: Гcoh

Correlation function: )()()()()( εεε +−+= ∗∗ fSfSfSfSC
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Spectra and Autocorrelation Function



• Ericson fluctuations (1960):
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• Correlation function is Lorentzian

• Measured 1964 for overlapping   
compound nuclear resonances

• Now observed in lots of different systems: 
molecules, quantum dots, laser cavities…

• Applicable for Г/D >> 1 and for many open channels only

P. v. Brentano et al., Phys. Lett. 9, 48 (1964)
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Ericson’s Prediction



• Verbaarschot, Weidenmüller and Zirnbauer (VWZ) 1984 for 
arbitrary Г/D :

• VWZ-integral:

• Rigorous test of VWZ: isolated resonances, i.e. Г << D

• Our goal: test VWZ in the intermediate regime, i.e. Г/D  1

C = C(Ti, D ; ε)

Transmission coefficients Average level distance
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Exact RMT Result for GOE systems

≈



• Height of cavity 15 mm

• Becomes 3D at 10.1 GHz

• Tilted stadium (Primack + Smilansky, 1994) 

• GOE behaviour checked

• Measure full complex S-matrix for two antennas: S11, S22, S12
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Experimental Realisation in a Fully Chaotic Cavity



Example: 8-9 GHz
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Excitation Functions of S-Matrix Elements
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Road to Analysis

• Problem: adjacent points in C(ε) are correlated

• Solution: FT of C(ε) uncorrelated Fourier coefficients C(t)
Ericson (1965)

• Development: Non Gaussian fit and test procedure

~



Time domain Frequency domain

S12

S11

S22
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Comparison: Experiment - VWZ

Example 8-9 GHz
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What Happens in the Region of 3D Modes?

• VWZ curve in C(t) progresses through the cloud of points 
but it passes too high GOF test rejects VWZ

• This behaviour is clearly visible in C(ε)

• Behaviour can be modelled through ⎟⎟
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TRSB in the Region of Overlapping Resonances

• Antenna 1 and 2

• Place a magnetized ferrite F into tilted stadium billiard

• Place an additional Fe - scatterer into the stadium and move it  
into different positions in order to improve the statistical 
significance of the data sample

distinction between GOE and GUE becomes possible

1
2

F



Violation of Detailed Balance for Overlapping Resonances

S12 
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S21



Quantification of Reciprocity Violation

• The violation of reciprocity reflects degree of TRSB

• Definition of a contrast function

• Quantification of reciprocity violation via Δ
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Magnitude and Phase of Δ Fluctuate
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B 200 mT

B 0 
mT:
no TRSB



Crosscorrelation between S12 and S21 at ε = 0
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• C(S12, S21*) =

• Data: TRSB is incomplete

{1 for GOE
0 for GUE



S-Matrix Fluctuations and RMT
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• Pure GOE VWZ description 1984

• Pure GUE V    description 2007

• Partial TRSB no analytical model

• RMT as HiHH ˆˆˆ α+=

1
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=
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α GOE

GUE



Test of VWZ and V Models
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VWZ VWZ VWZ VWZV



First approach towards RMT-description of experimental results
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as HiHH ˆˆˆ α+=
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maximal T-breaking
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Summary
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• Open microwave resonators are excellent model systems 
to test fluctuation properties of the compound nucleus

• RMT based models (VWZ, V) for GOE and GUE can be 
tested with high precision

T inv

T non-inv

Γ/D << 1 Γ/D 1 Γ/D > 2

non exp decay

reciprocity 
det balance

violated

non exp decay exp decay

non exp decay
reciprocity

det balance
violated


