THE IMPACT OF NETWORK STRUCTURE ON CRITICALITY IN CORTICAL CIRCUITS

John M. Beggs Indiana University Physics

ACKNOWLEDGEMENTS

Alan Litke Karin Dahmen Shinya Ito Nir Friedman Braden Brinkman Frances Yeh Ben Nicholson Tom Butler Masanori Shimono Lee DeVille Andrew Lumsdaine

ACKNOWLEDGEMENTS

NETWORK STRUCTURE AND CRITICALITY

• Information transfer

• Criticality

• Relating the two

NETWORK STRUCTURE AND CRITICALITY

• Information transfer

• Criticality

• Relating the two

Ramon y Cajal

In collaboration with Alan Litke, UC Santa Cruz

channel number

... for up to 8 hours

GOOD RECORDINGS

Movie

Electrophysiological image of activity propagation along axon: we are probably not undersampling

HOW TO MEASURE INFORMATION TRANSFER?

How well does i_n predict i_{n+1} ?

$$Info_{i_n \to i_{n+1}} = S(i_{n+1}) - S(i_{n+1} | i_n)$$

How well do i_n and j_n predict i_{n+1} ?

 $Info_{i_n, j_n \to i_{n+1}} = S(i_{n+1}) - S(i_{n+1} | i_n, j_n)$

If including j_n improves the prediction, then there is effective connectivity

 $Info_{j_n \to i_{n+1}} = Info_{i_n, j_n \to i_{n+1}} - Info_{i_n \to i_{n+1}}$

"TRANSFER ENTROPY"

VOLUME 85, NUMBER 2

PHYSICAL REVIEW LETTERS

10 JULY 2000

Measuring Information Transfer

Thomas Schreiber

Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany (Received 19 January 2000)

An information theoretic measure is derived that quantifies the statistical coherence between systems evolving in time. The standard time delayed mutual information fails to distinguish information that is actually exchanged from shared information due to common history and input signals. In our new approach, these influences are excluded by appropriate conditioning of transition probabilities. The resulting *transfer entropy* is able to distinguish effectively driving and responding elements and to detect asymmetry in the interaction of subsystems.

$$T_{J \to I} = \sum p(i_{n+1}, i_n^{(k)}, j_n^{(l)}) \log \frac{p(i_{n+1} | i_n^{(k)}, j_n^{(l)})}{p(i_{n+1} | i_n^{(k)})}$$

Variations of TE – delay

Variations of TE – word length

HOW WELL CAN WE DO?

Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical Network Model

Shinya Ito¹*, Michael E. Hansen², Randy Heiland², Andrew Lumsdaine², Alan M. Litke³, John M. Beggs^{1,4}

HOW WELL CAN WE DO?

HOW WELL CAN WE DO?

How well can we do?

Table 1: Fraction of synaptic weights and TPR at FPR = 0.01

Measure	Fraction synaptic weights	TPR
HOTEPk	0.791 ± 0.102	0.662 ± 0.130
HOTECI	0.851 ± 0.060	0.734 ± 0.084
TEPk	0.730 ± 0.090	0.008 ± 0.108
TECI	0.821 ± 0.055	0.692 ± 0.076
NCCPk	0.763 ± 0.049	0.606 ± 0.062
NCCCI	0.791 ± 0.050	0.649 ± 0.064
D1TE	0.457 ± 0.133	0.355 ± 0.103

TEMPORAL RESOLUTION

http://code.google.com/p/transfer-entropy-toolbox/

Firefox 🔪 君 NCAA College F	ootball Teams, Score × 🍺 transfer-entropy-toolbox - Tools for c × 🕂		
+> http://code.google.	om/p/transfer-entropy-toolbox/	🚖 👻 🥙 🛂 🗉 USTA ten and under tennis 🛛 🔎 🍙	
Most Visited W Getting Started	J Latest Headlines	🖪 Bookmarks	
		<u>My favorites</u> ▼ <u>Sign in</u>	
	-entropy-toolbox	Search projects	
Project Home Downloads	<u>Wiki</u> <u>Issues</u> <u>Source</u>		
Summary Updates People			
Project Information	Transfer Entropy Toolbox	E	
Activity II Medium Project feeds Code license New BSD License	A suite of MATLAB/C and C++ tools for computing standard and extended versions of <u>Thomas Schreiber's transfer entropy</u> on sparse, binary time series. What is Transfer Entropy (TE)?		
Labels Academic, Mathematics, Bioinformatics, Matlab, Statistics, C, CPlusPlus Members hansen.m@gmail.com, shix@gmail.com, randw.ba@gmail.com	From Schreiber, 2000: An information theoretic measure is derived that quantifies the statistical coherence between systems evolving in time. The standard time delayed mutual information fails to distinguish information that is actually exchanged from shared information due to common history and input signals. In our new approach, these influences are excluded by appropriate conditioning of transition probabilities. The resulting <i>transfer entropy</i> is able to distinguish effectively driving and responding elements and to detect asymmetry in the interaction of subsystems.		
randy.ne@gmail.com	What Versions of TE are Available in the Toolbox?		
Featured Downloads te_matlab_0.4.zip Show all »	 Delay 1 Transfer Entropy (D1TE) Standard TE where both the message length and sender delay are a single time bin Delayed Transfer Entropy (TE) TE with a message length of one time bin and a variable sender delay. 		
✓ Wiki pages Documentation Examples Show all »	 TE with a message length of one time bin and a variable sender delay Higher-order Transfer Entropy (HOTE) TE with a variable message length and sender delay How Fast is It? 		
📀 <i>(</i>) 🚞 (▲ 『愛 詳 .atl 电》 10/9/2011	

INFORMATION TRANSFER MAP

NETWORK STRUCTURE AND CRITICALITY

• Information transfer

Criticality

• Relating the two

Related work

- Per Bak
- Bill Bialek
- Ed Bullmore
- Dante Chialvo
- Mauro Copelli
- Jack Cowan
- Lucia de Arcangelis
- Theo Geisel
- Stuart Kauffman
- J. Scott Kelso

- Chris Langton
- Anna Levina
- Klaus Linkenkaer–Hansen
- Marcelo Magnasco
- Christian Meisel
- Deitmar Plenz
- Viola Priesemann
- Woodrow Shew
- Ralf Wessel
- Greg Worrall

SPONTANEOUS ACTIVITY

A SEQUENCE

Sequence size = 11

NEURONAL AVALANCHES IN HUMANS

OPEN a ACCESS Freely available online

Neuronal Avalanches Differ from Wakefulness to Deep Sleep – Evidence from Intracranial Depth Recordings in Humans

Viola Priesemann¹*, Mario Valderrama², Michael Wibral³, Michel Le Van Quyen⁴

1 Max Planck Institute for Brain Research, Department of Neural Systems and Coding, Frankfurt, Germany, 2 University of Los Andes, Bogotá, Colombia, 3 Johann Wolfgang Goethe University, Magnetoencephalography Unit, Brain Imaging Center, Frankfurt am Main, Germany, 4 Hôpital de la Pitié-Salpêtrière, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM), INSERM UMRS 975 - CNRS UMR 7225-UPMC, Paris, France

NEURONAL AVALANCHES IN HUMANS

WHAT IS CRITICALITY GOOD FOR?

BRANCHING MODEL

BRANCHING MODEL

BRANCHING MODEL

OPTIMALITY AT CRITICALITY

Dante Chialvo, Nature Physics, 2006

OPTIMALITY AT CRITICALITY

Dynamic range: Kinouchi and Copelli, Nature Physics 2006; demonstrated by Shew et al, J Neurosci 2009.

POWER LAWS MEAN CRITICALITY, RIGHT?

NEAR THE CRITICAL POINT, ONLY ONE VARIABLE CONTROLS THE SYSTEM:

$$\varepsilon \equiv \frac{\sigma - \sigma_c}{\sigma_c}$$

When ε is small, all other terms drop out, leaving a scaling relationship [Stanley 1971; Goldenfeld 2008].

NEAR THE CRITICAL POINT, ONLY ONE VARIABLE CONTROLS THE SYSTEM:

$$\varepsilon \equiv \frac{\sigma - \sigma_c}{\sigma_c}$$
$$f(\varepsilon) = A\varepsilon^x (1 + B\varepsilon^y + ...) \longrightarrow f(\varepsilon) \approx A\varepsilon^x$$

When ε is small, all other terms drop out, leaving a scaling relationship [Stanley 1971; Goldenfeld 2008].

OPEN O ACCESS Freely available online

Can Power-Law Scaling and Neuronal Avalanches Arise from Stochastic Dynamics?

Jonathan Touboul^{1,2}*, Alain Destexhe³

1 Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America, 2 Laboratory of Mathematical Physics, The Rockefeller University, New York, New York, United States of America, 3 Unité de Neurosciences Intégratives et Computationnelles (UNIC), UPR CNRS 2191, Gif-sur-Yvette, France

CRITICISM

MEJ Newman, 2005

• Multiple power laws

• Multiple power laws

• Scaling function

• Multiple power laws

• Scaling function

• Exponent relationship

MULTIPLE POWER LAWS

 $f(S) \sim S^{-\tau}$

 $f(T) \sim T^{-\alpha}$

 $\langle S \rangle(T) \sim T^{1/\sigma \nu z}$

MULTIPLE POWER LAWS

Average Size vs Duration

$\langle S \rangle(T) = \int_0^T s(t, T) dt$

$\langle S \rangle(T) = \int_0^T s(t, T) dt$ $\langle S \rangle(T) \sim T^{1/\sigma \nu z}$

$\langle S \rangle(T) = \int_0^T s(t, T) dt$ $\langle S \rangle(T) \sim T^{1/\sigma \nu z}$

 $s(t, T) \sim T^{1/\sigma \nu z - 1} \mathcal{F}(t/T)$

Universal Critical Dynamics in High Resolution Neuronal Avalanche Data

Nir Friedman,¹ Shinya Ito,² Braden A. W. Brinkman,¹ Masanori Shimono,^{2,5} R. E. Lee DeVille,³ Karin A. Dahmen,¹ John M. Beggs,² and Thomas C. Butler^{4,*}

Average Size vs Duration

Average Size vs Duration

Avalanche lifetime distribution

Avalanche lifetime distribution

NETWORK STRUCTURE AND CRITICALITY

• Information transfer

• Criticality

• Relating the two

TRANSFER PROBABILITIES...

...AFFECT DATA COLLAPSE

PUTTING CONNECTIONS INTO MODEL

Synchrony and asynchrony in a fully stochastic neural network^{*}

R. E. Lee DeVille[†] Charles S. Peskin[‡]

February 14, 2008

MODEL, WITH CONNECTIONS FROM DATA, GIVES CORRECT EXPONENTS

But *all-to-all* connectivity does not give the correct exponents in the spiking model.

Are there any data that suggest all-to-all connectivity?

LOCAL FIELD POTENTIAL ACTIVITY

Local field potentials from one channel

POWER LAW DISTRIBUTION FOR LOCAL FIELD POTENTIALS

POWER LAW DISTRIBUTION FOR LOCAL FIELD POTENTIALS

EXPONENT RELATIONSHIP

Avalanche lifetime distribution

EXPONENT RELATIONSHIP

Avalanche lifetime distribution

SUGGESTS ALL-TO-ALL CONNECTIVITY

 $\frac{1}{\sigma v z} = 2$

EXPONENTS INDICATE STRUCTURE

spike data

---=2.0 $\sigma v z$

all-to-all connections, LFP data

NETWORK STRUCTURE AND CRITICALITY

• Information transfer

• Criticality

• Relating the two

NETWORK STRUCTURE AND CRITICALITY

• Information transfer

• Criticality

• Relating the two

• How to maintain old memories, learn new things, and stay critical?

Thanks!