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Problem, relevance, and our approach

• What is the problem?  

• Why is it relevant?

• Why is it challenging?

• What is our approach?  …applications…

(…and, linking dynamical systems theory to information theory via 

symbolic dynamics)

3



Part 1: Problem, relevance, challenges
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The problem in a cartoon

Cause-effect relationships in a soccer game 5

Problem: Infer the coupling structure (cause-effect relationships) of 
complex systems from time-series data

Causality is the relation 

between two events (the 

cause and the effect), 

where the second event is

understood as a 

consequence of the first.

What is causality?
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Causality

Quiz

• Mario and Pascal 

are causally

disconnected

• Mario and Pascal 

are negatively

correlated
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Example:

Remark: CORRELATION ≠ CAUSATION

Summer
causal
⇒ Drowning

Summer
causal
⇒ Ice-cream consumption

Ice-cream consumption
correlated

↔ Drowning

Ice-cream consumption
causal?
 Drowning

correlation does not imply causality



Relevance of the problem
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Major goals in theoretical physics (science, in general):

• Describe natural phenomena

• Understand, to a certain extent, natural phenomena

…predict the future…
…reconstruct the past…
…control phenomena….

…understand what causes what is naturally important…
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Heart

dynamics
Brain 

dynamics

chaoticity & 

cardiac rhythm
global synchronization

& brain activity

…inspired by D. 

Chialvo (June19, 

cidnet14)

Angelo 

Mosso



Challenge: a good solution

• Gather a sufficient amount of relevant data (experimental work)

• Uncover a good causal inference measure (theoretical work)

• Provide an accurate (and, possibly, fast) estimate of such a 
measure (numerical and computational work)
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…quoting K. Lehnertz (June 16, cidnet14): …this is
a challenge for the next decades to come…



A good causal network inference measure

1. …general applicability and neat interpretation...

2. …immune to false positives and false negatives…

3. …accurate and fast numerical estimation…

Condition (1) →…linear and nonlinear interactions…

Condition (2) →…correct identification of direct couplings in complex
systems with more than two components…

Condition (3) →…appropriate statistical estimation techniques…
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A. Kraskov, H. Stogbauer, and P. Grassberger, Phys. Rev. E69, 066138 (2004)

J. Runge, J. Heitzig, V. Petoukhov, and J. Kurths, Phys. Rev. Lett. 108, 2587701 (2012)



Some preliminaries
(information-theoretic approach to cauality inference)
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X is a discrete random variable with probability distribution p(x)

HX
def
= −∑

x

px logpx ≥ 0 Shannon Entropy

Interpretation: H(X) is a measure of uncertainty associated with X
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H(p)

X
def
=

1, with probability p

0, with probability 1 − p

Hp = −p log
2
p − 1 − p log

2
1 − p

Example

Hp = bits



13

H X, Y
def
= −∑

x, y

p x, y logp x, y

HX|Y
def
= −∑

x, y

p x, y logpx|y

M X, Y
def
= HX − HX|Y = M Y, X

joint entropy

conditional entropy

mutual information

Interpretation: M(X, Y) is the reduction in uncertainty of X due to the knowledge of Y

M X, Y|Z
def
= HX|Z  − H X Y, Z

Interpretation: M(X, Y|Z) is the reduction in uncertainty of X due to the knowledge of 

Y when Z is given

conditional mutual information
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Transfer Entropy (TE)

TXj→Xi = H X t+1
i

Xt
i − H X t+1

i
Xt

i
, Xt

j

= M X t+1
i

, Xt
j

Xt
i

= ∑ p x t+1
i

, xt
i

, xt
j

log
p x t+1

i
x t
i

, x t
j

p x t+1
i

xt
i

TE:

H= Shannon entropy

M= mutual information

Question:  Is there a measure of the magnitude and direction of 

information flow between jointly distributed stochastic processes?

T. Schreiber, Phys. Rev. Lett. 85, 461 (2000)

M. Palus, V. Komarek, Z. Hrncir, K. Sterbova, Phys. Rev. E63, 046211 (2001)

Xt
i

= X t
i

, X t−τi

i
,..., X t−m i−1τi

i τi = time delay parameter

mi = embedding dimension
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Xi
Xj

Transfer Entropy is a pairwise (asymmetric) measure of information flow
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T1→2 ≠ T2→1

T1→2 measures the degree of dependence of 2 on 1 (and NOT viceversa)...

Example



Indirect and direct influences

Fact: If a causal interaction is given by 1→2→3, a bivariate analysis

would give a significant link between 1 and 3 that is detected as

being only indirect in a multivariate analysis including 2. 

17

true coupling structure

wrong coupling structure

Example



bivariate analysis: M12 ≠0, M13≠0, M23≠0

multivariate analysis: M12|3≠0, M13|2=0, M23|1≠0

• Both coupling structures are consistent with the bivariate
analysis (WITHOUT proper conditioning);

• Only the true coupling structure is consistent with the 
multivariate analysis (WITH proper conditioning).

18S. Frenzel and B. Pompe, Phys. Rev. Lett. 99, 204101 (2007)

spurious coupling between 1 and 3

…quoting M. Eichler ( June 25, cidnet14):…the 

more…the better…



Some (incomplete) history
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• …quantifying information transfer…

T. Schreiber, Phys. Rev. Lett. 85, 461 (2000)                          (MPI, Dresden)

M. Palus et al., Phys. Rev. E63, 046211 (2001)

• …bivariate Gaussian processes and TE…

A. Kaiser and T. Schreiber, Physica D166, 43 (2002)              (MPI, Dresden)

• …multivariate Gaussian processes and conditional TE…

L. Barnett et al., Phys. Rev. Lett. 103, 238701 (2009)

• …existence and strength of causal relationsips…  

J. Runge et al., Phys. Rev. E86, 061121 (2012)



Summary: Part 1 (problem, relevance, challenges)
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Interplay among: 

• Experimentalists (…experimental design…)

• Computational Scientists

(…numerical/computational estimation methods…)

• Theorists (…universal causal inference measure…) 

Question: …in the meantime, inspired also by TE, what are we actually
doing…?



Part 2: Our approach

(the oCSE approach = the optimal Causation Entropy approach)

21



The goal
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Identify the coupling structure in complex systems

described by dynamical networks

• causal network topology (existence)

• link weights (strength)

• functional dependence between nodes

(…hard problem…)



Some notations
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complex systems ↔ networks

networks ↔ nodes, links

nodes ↔ dynamical systems

links ↔ interactions

Remark: 

Probabilistic approach: dynamical systems modeled in terms
of stationary stochastic processes

n = total number of nodes

X t = X t
1

,..., X t
n

|K | = cardinality of a subset of nodes

X t
K

= X t
1

,..., X t
|K | , with |K | ≤ n



Markovian causal inference framework
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i : pX t |X t−1, X t−2,... = pX t |X t−1 = pX t ′ |X t ′−1, ∀t, t′;

ii : pX t
j

|X t−1 = pX t
j

|X t−1

N j, ∀j;

iii : pX t
j

|X t−1
K ≠ pX t

j
|X t−1

L, whenever K ∩ N j ≠ L ∩ N j.

Working hypotheses: (stationary) stochastic processes
satisfying the following (Markov) conditions

Main point: for each component j there is a unique (and minimal) set of 
components Nj that renders the rest of the system irrelevant in making
inferences about X(j)



Causation Entropy (CSE)

J. Sun and E. M. Bollt, Physica D267, 49 (2014) 25

CXJ→XI XK = H X t+1
I

Xt
K − H X t+1

I
Xt

K
, Xt

J

= M X t+1
I

, Xt
J

Xt
K

= ∑ p x t+1
I

, xt
J

, x t
K

log
p x t+1

I
xt
J

, xt
K

p x t+1
I

xt
K

CSE:

τk r = time delay parameter

mk r = embedding dimension

Xt
K

= Xt
k 1 ,..., Xt

k |K |

1 ≤ r ≤ |K| : Xt
k r  = X t

k r , X t−1
k r ,..., X

t−τkr−1mkr

k r 
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For J = j and K = I = i : CXj→Xi Xi = TXj→Xi

Interpretation: Uncertainty reduction of the future states of 

X(I) as a result of knowing the past states of X(J) given that

the past of X(K) is already known.

CSE as a generalization of TE: TXj→Xi → CXJ→XI XK



CSE, uncoditional TE, conditional TE
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TY−→X+ ≡ CY−→X+|X−

def
= HX+ |X−  − H X+ Y−, X−

if Y− = X− : TX−→X+ = 0

CY−→X+|Z−

def
= HX+|Z−  − H X+ Y−, Z−

if Z− = , and Y− = X− : CX−→X+ = HX+ − HX+|X− 

CSE and unconditional TE

self-causality cannot be investigated with TE

self-causality can be investigated with CSE

N. J. Cowan et al., PlosOne 7, 1 (2012) networks control & self-causality
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CSE and conditional TE

X t
k  def

= X t, X t−1,..., X t−k+1

TY→X|Z

def
= H X t+1 X t

k 
, Z t

m − H X t+1 X t
k 

, Z t
m

, Yt
l

CY→X|W

def
= HX t+1|W t  − H X t+1 W t, Yt

l

if W t = X t
k 

, Z t
m, CY→X|W = TY→X|Z if W t ≠ X t

k 
, Z t

m, CY→X|W ≠ TY→X|Z

conditional TE

CSE

conditional TE is a special case of CSERemark:

Notation:



The optimal Causation Entropy approach

Goal: For any node-i, find Ni (maximization of CSE)

29

i = node of the graph

Ni = set of nodes that are directly causally connected to node-i

Algorithm 1: Aggregative Discovery

For any node-i, it finds the set of nodes that are 

causally connected to node-i (including indirect

and spurious causal connections)

Algorithm 2: Progressive Removal
For any node-i, it removes indirect and 

spurious causal connections

J. Sun, D. Taylor, and E. M. Bollt, arXiv:cs.IT/1401.7574 (2014)



Algorithm 1: Aggregative Discovery
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Output: For any node-i, it finds Mi
def
= k1,..., k j

Mi contains all types of causal links: direct, indirect, spurious

k1 : 0 < Ck 1→i is max

k2 : 0 < Ck 2→i|k 1 is max

⋮
kj : 0 < C

k j→i k 1,..., k j−1
is max

kj+1 : C
k j+1→i k 1,..., k j

equals zero ⇒ stop!

Example:



Algorithm 2: Progressive Removal
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Output: For any node-i, it finds Ni
def
= direct causal links to node-i

kr with 1 ≤ r ≤ j is removed from Mi when Ck r→i|Mi\k r = 0

Example: 

k1 :

Ck 1→i|Mi\k 1 > 0 ⇒ keep k1

Ck1→i|Mi\k 1 = 0 ⇒ remove k1

Suppose we remove k1. Then, Mi → M i
′ def
= Mi\k1

k2 :

Ck 2→i Mi
′\k 2 > 0 ⇒ keep k2

Ck2→i Mi
′\k 2 = 0 ⇒ remove k2

⋮
Finally, after considering all kr with 1 ≤ r ≤ j, the set Mi becomes Ni



Estimation of CSE

• Gaussian estimator…

• k-nearest neighbor estimator…

• symbolic CSE…

32

CJ→I|K → ĈJ→I|K

1)…parametric statistics…

2) non-parametric statistics, multi-dimensional random variables…

3) computational speed, robustness against observational noise, limited
data demand…

A. Kraskov, H. Stogbauer, and P. Grassberger, Phys. Rev. E69, 066138 (2004)

M. Vejmelka and M. Palus, Phys. Rev. E77, 026214 (2008)

…quoting J. Runge (June 18, cidnet14):…knn is good but some bias

appears in the presence of short samples and large dimensions….
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Question:

ĈJ→I|K > 0  FĈJ→I|K  > θ

r-estimates: ĈJ→I|K

1
,..., ĈJ→I|K

r
, with 103 ≲ r ≲ 104

CJ→I|K → ĈJ→I|K :

ĈJ→I|K = 0 ?

ĈJ→I|K > 0 ?

FĈJ→I|K
def
=

# ĈJ→I|K

s
:ĈJ→I|K

s ≤ĈJ→I|K

r
with 1 ≤ s ≤ r

permutation π : 1,..., T → 1,..., T

For j = 1, . . . , |J | : x t
j

t=1

T
→ y t

j

t=1

T def
= xπt

j

t=1

T

Statistical (permutation) test

1 − θ : significance level, 0 < 1 − θ < 1 θ ≈ 99%
F : empirical cumulative distribution



Example: The oCSE approach & the repressilator

dynamical variables: 

pi= concentration of the protein

mi= concentration of mRNA

parameters:

β=ratio of the protein decay rate to the mRNA decay rate

n=Hill coefficient

α0=leakiness of the promotor

α+α0=additional rate of transcription of the mRNA in the absence of inhibitor

34

dm i

dt
= −mi +

α
1+pj

n + α0

dpi

dt
= −βp i − mi

i = lacl, tetR, cl, and j = cl, lacl, tetR

J. Sun, C. Cafaro, and E. M. Bollt, Entropy 16, 3416 (2014)

synthetic biological

oscillator network
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1 → 1, 2 → 2, 3 → 3, 4 → 4, 5 → 5, 6 → 6

1 → 4, 2 → 5, 3 → 6, 4 → 2, 5 → 3, 6 → 1

1 ≡ mlacl, 2 ≡ mtetR, 3 ≡ mcl

4 ≡ placl, 5 ≡ ptetR, 6 ≡ pcl

Theoretical Jacobian matrix at equilibrium: J ij

theor. def
=

∗ 0 0 0 0 ∗

0 ∗ 0 ∗ 0 0

0 0 ∗ 0 ∗ 0

∗ 0 0 ∗ 0 0

0 ∗ 0 0 ∗ 0

0 0 ∗ 0 0 ∗

hypothesis: n = 2, α0 = 0, α = 10, β = 102 ⇒equilibrium: x⃗eq. = 2, 2, 2, 2, 2, 2

J ij
def
= ∂ jf i

ẋ = fx



Problem statement: The objective of coupling inference is to

identify the location of the nonzero entries of the Jacobian

matrix through time series generated by the system near

equlibrium

36

Given I6
×2 ≡ I6 × I6

def
= 1,..., 6 × 1,..., 6 :

● False negative: infer nothing when there is something...

● False positive: infer something when there is nothing...

−
def
=

card i, j ∈ I6
×2 : J ij

theor.
≠ 0 ∧ J ij

numer.
= 0

card i, j ∈ I6
×2 : J ij

theor.
≠ 0

+
def
=

card i, j ∈ I6
×2 : J ij

theor.
= 0 ∧ J ij

numer.
≠ 0

card i, j ∈ I6
×2 : J ij

theor.
= 0

• Aggregative 

discovery

• Progressive 

removal
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Some details

● Preliminary steps:

i) The system starts at equilibrium x∗ = xeq.: ẋ
x=x

eq.

= 0;

ii) At time t, apply perturbation ξ to the system: x∗ → xt = x∗ + ξt;

iii) At time t + Δt, measure the rate of response η: η =
xt+Δt−xt

Δt
=

xt+Δt−x∗−ξt
Δt

;

Repeat these steps L-times⇒ ξ l l=1
L and η l l=1

L ;

● Parameters:

i) L = number of times the perturbation is applied;

ii) Δt−1 = sample frequency;

iii) σ2 = variance of the Gaussian-distributed variable ξ.
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● Hypotheses:

i) Δt−1 ≫ 1;

ii) σ ≪ 1;

● Linearized dynamical system:

For x = x∗ + δx with δx ≪ x∗, we have:

ẋ = fx →
dδx

dt
= Dfx∗δx

For Δt ≪ 1, we finally have a drive-response type of linear Gaussian process:

dηl

dt
= Dfx∗ξl

To write the linear Gaussian process in a more convenient manner, we introduce the following definitions:

X t
i

=

ξt
i

, if 1 ≤ i ≤ 6

ηt−1
i−6

, if 7 ≤ i ≤ 12

.
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Given this definition, the linear Gaussian process can be finally written as,

X t+1
I

= AX t
J

where A
def
= Dfx∗, I

def
= 7,..., 12 , and J

def
= 1,..., 6 .

To be explicit, observe that

X t+1
I

= X t+1
7

,..., X t+1
12

= η t+1
7

,..., ηt+1
12

,

and,

X t
J

= X t
1

,..., X t
6

= ξt
1

,..., ξt
6

,

with A
def
= Dfx∗ → Aij

def
= ∂jfix∗,

A =

A11 ⋅ ⋅ ⋅ ⋅ A16

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

A61 ⋅ ⋅ ⋅ ⋅ A66

.
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…after some numerical work, we get…

Therefore, the equation X t+1
I

= AX t
J

becomes

ηt+1
7

= A11ξt
1

+. . .+A16ξt
6

⋅

⋅

η t+1
12

= A61ξt
1

+. . .+A66ξt
6

.
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± = ±L, Δt, σ
σ2 = variance of perturbation = 10−4

L = number of samples

Δt−1 = sample frequency
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Example: The oCSE principle & large scale 
networks

Comparisons

• oCSE vs. conditional Granger: ԑ±(N) vs. N

• oCSE vs. TE: ԑ±(ρ(A)) vs. ρ(A)

Network model
signed Erdos-Renyi random network with N≈200 nodes and 

Gaussian processes

Numerical experiments parameters
1. p= connection probability
2. N=n=network size
3. T=sample size
4. ρ(A)= spectral radius (A= adjecency matrix) 

X t = AX t−1 + ξ t
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• oCSE vs. Conditional Granger: ԑ±(N) vs. N

Np=10 (average degree, density of links)

ρ(A)=0.8 (spectral radius, information diffusion rate on networks)

T=200

• oCSE vs. TE: ԑ±(ρ(A)) vs. ρ(A)

N=200

Np=10

T=2000
Working hypotheses

1. permutation test with r=100 and θ=99% 

2. Each data point is the average over 20 

independent simulations of the network 

dynamics
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np, ρA, T : fixed

np, ρA, T : fixed
n, np, T : fixed

n, np, T : fixed



On comparing causality inference measures…
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Fair comparison: 

• Compare measures estimated by means of the same estimation
technique…

• Compare measures equally normalized…

• Compare measures that are constructed to capture the same
features…

…(also) inspired by Xiaogeng Wan’s Talk, June 23, 

cidnet14…



Summary: Part 2 (our approach)

• CSE and the oCSE principle seem to be good tools for causal
network inference

• Causal network inference based on the the oCSE principle seem
to be especially immune to false positives

• The oCSE principle can be extended to arbitrary finite-order
Markov processes

46

• loss of Markovianity (infinite memory)
• loss of stationarity
• accurate numerical estimates of CSE in large-scale dynamical systems

(non-parametric methods, k-nearest neighbor estimator)
• distinguish anticipatory elements from causal ones (anticipatory dynamics

in complex networks)

…selected challenges…

…good news…



Part 3: Causal network inference and 
symbolic dynamics

47

…on-going research…
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Conceptual and computational
motivations

1. High computational speed

2. Robustness against observational noise

3. Limited data demands

Concepts: Can we describe and understand the link between

dynamical systems theory and information theory?

Computations/Numerics: What are desirable features of a 

good estimation method?

…apply symbolic computational methods to the theory of 

dynamical systems on complex networks…



49

Why symbolic dynamics?

• This approximate representation can be characterized in terms

of a sequence of symbols, where each symbol is the output of a 

measuring intrument at discrete times…

• The range of possible symbols is finite since any measuring

instrument has limited resolution…

Intuition: the symbolic framework is not as demanding on 

precision and amount of data

Fact: the time-evolution of a physical system obtained by means of a 

classical measurement can be only approximately represented …
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Dynamical trajectories, partitioning, symbol
sequences

Main idea: …represent trajectories of dynamical systems by 

infinite length sequences using a finite number of symbols

after partitioning the phase space in a convenient manner…

dynamical trajectory→phase-space partition→symbol sequence

E. M. Bollt, T. Stanford, Y.-C. Lai, and K. Zyczkowski, Phys. Rev. Lett. 85, 3524 (2000)

E. M. Bollt, T. Stanford, Y.-C. Lai, and K. Zyczkowski, Physica D154, 259 (2001)

…the phase-space partition is a key-point…
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Partitioning the phase space of a 
dynamical system: some facts

• A generating partition is necessary for a faithful symbolic

representation of a dynamical system

• The partition is generating if every infinitely long symbol

sequence created by the partition corresponds to a single 

point in phase-space (dynamical trajecteries uniquely defined

by symbolic itineraries)

Remark: Any Markov partition is generating but the converse is

generally false (generating partitions can be non-Markovian)

E. M. Bollt and N. Santitissadeekorn, Applied and Computational Measurable 

Dynamics, SIAM (2013)
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What is a Markov partition?

τ is a Markov transformation if τi is a homeomorphism from Ii onto
a union of intervals of P

P is said to be a Markov partition with respect to the function τ

τ : I
def
= a, b ⊂ ℝ1 → I

P = partition of I given by points a ≡ a0 <. . .< ap ≡ b, with p ∈ ℕ

τ i = τ |Ii
→ union of intervals of P

Ii = a i−1, a i with i = 1,..., p

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

I

I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

I

I

…good… …bad…I
def
= 0, 0.5 ∪ 0.5, 1
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Symbolic description of a dynamical system

Consider a one-humped interval dynamical map with single critical point xc

and two-symbol partition {0,1}

(initial condition) a,b ∋ x0 → x0, fx0 = x1, f 2x0 = x2,... (orbit)

(initial condition) x0 → σ0x0.σ1x0σ2x0... (symbol sequence)

σix0
def
=

0, if f ix0 < xc

1, if f ix0 > xc

(Fullshift) Σ2
def
= σ|σ = σ0.σ1σ2..., with σi = 0 or 1

(dynamical map) f : a,b → a, b
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(dynamical map) f : a,b → a,b

(subshift) Σ2
′ ⊂ Σ2

(Bernoulli shift map) sB : Σ2
′ → Σ2

′ , with sBΣ2
′  = Σ2

′

sBσi

def
= σi+1

(homeomorphism) h : a,b −⋃
i=0

∞

f−ix0 → Σ2
′

(conjugacy) h ∘ f = sB ∘ h

Fact: The correspondence between the orbit of each initial

condition x0 of the map f and the infinite itinerary of 0s and 1s in 

the shift space Σ2 can be regarded as a homemomorphic

change of coordinates.

Remark: conjugacy is the gold standard of equivalence used in 

dynamical systems theory when comparing two dynamical systems



Example: the tent map
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f : 0, 1 ∋ x ↦
21 − x, if x ≥ 0. 5

2x, if x < 0. 5
∈ 0, 1

xn+1

def
=

21 − xn , if xn ≥ 0. 5

2xn , if xn < 0. 5

The symbolic dynamics indicated by the generating partition at xc = 0. 5 and by the equation,

σix0
def
=

0, if fix0 < xc

1, if fix0 > xc

,

gives the full 2-shift Σ2 on symbols 0, 1 .
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xc = 0. 5

x0 = 0. 2, x1 = fx0 = 0. 4, x2 = f2x0 = 0. 8, x3 = f3x0 = 0. 4,...

σ0 = 0, σ1 = 0, σ2 = 1, σ3 = 0,...

x0 ↦ x0, fx0, f2x0,... (dynamical trajectory)

x0 ↦ σ = σ0.σ1σ2... (sequence of symbols)
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From dynamical systems to stochastic 
processes via symbolic dynamics

• Consider a dynamical system, f:M→M

• Construct a symbolic description of such a system

• Introduce a sequence of random varibales defined on the 

symbol space for any randomly chosen initial condition x in M

• Define a discrete-time stochastic process in terms of the 

introduced sequence of random variables

Formal steps
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More explicit steps

symbolic description: xtx t∈M
↦ st, with st = i ∈ A if xt ∈ Ai ⊂ M

s : M ∋ x ↦ sx = ∑
i=0

n

χA i
x ∈ A

χA i
x

def
=

i, if x ∈ Ai

0, if x ∉ Ai

(indicator function)

dynamical system: f : M → M

measure space: M, Σ, μ

partition: M = ⋃
i=0

n

Āi, with Aj ∩ Ak = 

symbol space (alphabet): A = 0, 1,..., n − 1, n
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random variable: X : A → ℝ

measurable function: A, F, μ = measure space
measurable function

 ℝ, Bℝ = measurable space

∀A ⊂ Bℝ : X−1A
def
= ω ∈ A : Xω ∈ A

If μ : F →0, 1 with μA = 1, then A, F, μ = probability spaceRemark:

XsTkx = Xkω, with k = 0,..., ∞

μAσ = PXk = σ, with σ ∈ A

• A dynamical system describes a 

discrete-time stochastic process defined

by the sequence of random variables

• The support of a stochastic process is

represented by a shift space regarded as

the set of possible measurement

outcomes of the process itself
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ẋ = Tx

xt =

x0

⋮

TNx0

≡

x0

⋮

xN

partition
→

σ0

⋮

σN

→

X0

⋮

XN

→ X
def
= Xk k=0

N

dynamics

sequence of 
symbols

sequence of 
random 

variables

stochastic
process

XsTkx = Xkω, with k = 0,..., ∞

μAσ = PXk = σ, with σ ∈ A

SUMMARY
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Symbolic Construction of Causation Entropy 

Time-series of a dynamical system: sequence of observations

Preliminary notations

graph: G = GV,E

nodes: |V | = n̄-nodes

observable of single-node dynamics: Xi ∈ ℝN, with 1 ≤ i ≤ n̄

set of observables: XI = Xi1 ,..., Xi|I |

time-series: x t
ir 

t=1

T
, with 1 ≤ r ≤ |I|
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CXJ→XI XK
def
= ∑ p x t+1

I
, x t

J
, xt

K
log

p x t+1
I

xt
J

, xt
K

p x t+1
I

xt
K

x t+1
I def

= x t+1
i1 ,..., x t+1

i|I| : set of (scalar) time-series

xt
K def

= xt
k 1 , x t

k 2 ,..., xt

k |K | : set of reconstructed (vector) points

x t
k l def

= x t
k l, x t−τl

k l,..., x t−m l−1τl

k l : reconstructed points

τl ≡ τ
x k l

: time delay parameters

ml ≡ m
x k l

: embedding dimension parameters

Explanatory notations

CAUSATION 

ENTROPY
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nodes: |V | = n̄-nodes

N-dimensional stochastic components: Xi ∈ ℝN, with 1 ≤ i ≤ n̄

Xi = X1
i

,..., XN
i

, with X l

i ∈ ℝ, and 1 ≤ l ≤ N

1-dimensional stochastic components X l

i
with values inAm

def
= 1,..., m

N-dimensional stochastic components X i with values inAm
N

N|I|-dimensional stochastic components XI with values inAm
N|I|

An element of Am
N|I| is a word of length N|I| made of symbols in Am

ω ∈ Am
N|I| ⇒ ω

def
= s1, s2,...., sN|I|−1, sN|I| ≡ s1s2...sN|I|−1sN|I|

YL
i def

= X1
i

,..., XL
i

= L-dimensional stochastic process, L ≤ N

Time-series of a stochastic process: sequence of symbols

Preliminary notations
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ĈXJ→XI XK 
def
= ∑ p x̂t+1

I
, x̂t

J
, x̂t

K
log

p x̂t+1
I

x̂t
J

, x̂t
K

p x̂t+1
I

x̂t
K

CAUSATION 

ENTROPY

x̂t
i

, sequence of symbols → xt
i

, sequence of observations

x̂t+1
I

= sequence of symbols formed by the set of scalar time-series xt+1
I

x̂t
K

= sequence of symbols formed by the set of reconstructed vector points xt
K

Explanatory notations



Summary: Part 3 (causal network inference
and symbolic dynamics)
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What did we do?

What is next?

Initial step: Formal construction of the symbolic Causation Entropy

Next steps: Practical estimation of symbolic Causation Entropy for both
synthetic and real-world data

Relevance: Understand the link between dynamical
systems and information-theoretic concepts

∑ ∑symbolization

(Expected) Relevance:
• Less-demanding computational

cost for numerical estimations
• Decrease of the negative effect

of observational noise in masking
the details of the data-structure



Summary of summaries (parts 1, 2, 3)
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• Increase the interaction among theorists, computational

scientists, and experimentalists

(from synthetic data to real-world data)

• Propose good information-theoretic causality measures

(universality and computability)

• Propose reliable estimation techniques

(speed and accuracy)

How? Hard work…no escape…
Causal network inference

is important and 

challenging…



…On-going real-world applications of the 
CSE approach…
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1. Swarm-data: information flow in a swarm of bugs…

2. Neuroimaging data (fMRI-functional magnetic resonance imaging): 
coupling structure between cerebral blood flow and neural
activation…
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