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NEURONAL CULTURES AS MODEL SYSTEMS

rat hippocampus neuron dissociation ' mature culture
(19 days embryo) (day 14)
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NEURONAL CULTURES AS MODEL SYSTEMS
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EMERGENCE OF COHERENT BEHAVIOUR

The phenomenon:
Noisy incoherent firing turns into a global highly periodic bursting
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EMERGENCE OF COHERENT BEHAVIOUR

The phenomenon:
Noisy incoherent firing turns into a global highly periodic bursting
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A FIRST BASIC QUESTION

What is the nature of this periodic pulsation!?
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A FIRST BASIC QUESTION

What is the nature of this periodic pulsation!?

Synchronization!  VWave propagation!?
Are there pacemakers!?
Are there leader neurons?

Is it self-organized? WWhat mechanism!?
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RESOLVING A WAVE

200frames/s | yioh_speed Calcium imaging allows to resolve waves
4 pm/pixel
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RESOLVING A WAVE

200 f"a',“eS/ > High-speed Calcium imaging allows to resolve waves
4 pm/pixel
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WAVE INITIATION AND PROPAGATION
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LOCALIZATION OF WAVE NUCLEATION PROBABILITY
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The distribution of wave-initiation points is very sharply peaked, defining specific ‘nucleation sites’.

The time sequence of nucleation events is completely random: the phenomenon is noise-driven !
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THE PUZZLE

Why are the nucleation sites so sharply selected out of a fairly
homogeneous network!?

How can it be periodic but initiated randomly from a set of spots!?
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THE PUZZLE

Why are the nucleation sites so sharply selected out of a fairly
homogeneous network!?

How can it be periodic but initiated randomly from a set of spots!?

The nucleation must be extremely fast, comparable to the
spontaneous firing rate of an isolated neuron (0.1 - | Hz) !!
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THE PUZZLE

Why are the nucleation sites so sharply selected out of a fairly
homogeneous network!?

How can it be periodic but initiated randomly from a set of spots!?

The nucleation must be extremely fast, comparable to the
spontaneous firing rate of an isolated neuron (0.1 - | Hz) !!

We need to explain highly inhomogeneous effective noise
and fast nucleation, i.e. strong spatio-temporal localization:
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THE PUZZLE

Why are the nucleation sites so sharply selected out of a fairly
homogeneous network!?

How can it be periodic but initiated randomly from a set of spots!?

The nucleation must be extremely fast, comparable to the
spontaneous firing rate of an isolated neuron (0.1 - | Hz) !!

We need to explain highly inhomogeneous effective noise
and fast nucleation, i.e. strong spatio-temporal localization:

NOISE FOCUSING '
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THE MODEL IN SILICO

Constructing the network:

We place identical nheurons randomly and mimic the axon growth to
establish connections

The degree distribution is Gaussian

There are metric correlations (high clustering)
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THE MODEL IN SILICO

Constructing the network:

We place identical neurons randomly and mimic the axon growth to
establish connections

The degree distribution is Gaussian

There are metric correlations (high clustering)

Modeling the dynamics: integrate-and-fire with internal shot noise

Canonical Model
k(v—v.)(v—v) —u+1
a(b(v —v,) — u)

ifv>v, =
v=c,u=u—+d

Soma: 2 equations + reset Synapse: 2 equations + reset
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NOISY INTEGRATE-AND-FIRE DYNAMICS: SUB-QUORUM FIRING
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NOISY INTEGRATE-AND-FIRE DYNAMICS: SUB-QUORUM FIRING

Shot noise

m inputs to fire
Other neurons
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NOISY INTEGRATE-AND-FIRE DYNAMICS: SUB-QUORUM FIRING

Shot noise
Other neurons

@

m inputs to fire {
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NOISY INTEGRATE-AND-FIRE DYNAMICS: SUB-QUORUM FIRING

Shot noise

m inputs to fire {

Other neurons

@

Spontaneous firing

Induced firing
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BACKGROUND ACTIVITY

Simulation of identical neurons reproduces all results
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BACKGROUND ACTIVITY

Burst: 1 - Time: 0.000 s
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Simulation of neurons reproduces all results
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MECHANISMS OF NOISE AMPLIFICATION
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These mechanisms are strongly enhanced by metric connectivity correlations
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MECHANISMS OF NOISE AMPLIFICATION
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These mechanisms are strongly enhanced by metric connectivity correlations

Noise amplification and propagation introduces strong dynamical correlations: AVALANCHES
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CAUSAL LINKS BETWEEN FIRINGS: BACKGROUND AVALANCHES

We can extract all causal relationships between firings (reconstruct individual avalanches)
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CAUSAL LINKS BETWEEN FIRINGS: BACKGROUND AVALANCHES

We can extract all causal relationships between firings (reconstruct individual avalanches)
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POWER-LAW SCALING OF BACKGROUND AVALANCHES
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POWER-LAW SCALING OF BACKGROUND AVALANCHES
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Avalanche duration T (s)

/

Avalanche frequency per neuron (Hz)

10° 10 10° 10" 10

Avalanche size Avalanche size

‘Universal’ exponent -5/2:
avalanches can be mapped to percolation clusters of a Cayley tree
near criticality
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“FUNCTIONAL” NETWORK

1A
— BA .
— Random |
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Time-averaging unveils a hidden functional network: hierarchically structured
and inhomogeneous. A dynamically generated scale-free network !
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IGNITION AVALANCHES AND NUCLEATION RATE

Nucleation condition: simultaneous activation of the
critical percolation fraction in a region of critical size ( /N, neurons )

This defines an ‘Ignition Avalanche’ (1A)
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IGNITION AVALANCHES AND NUCLEATION RATE

Nucleation condition: simultaneous activation of the
critical percolation fraction in a region of critical size ( [V, neurons )

This defines an ‘Ignition Avalanche’ (1A)

Region contributing to an IA: N > N,

Spontaneous firing rate of a single neuron: Wy

Probability that a spontaneous firing generates an IA: P14
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IGNITION AVALANCHES AND NUCLEATION RATE

Nucleation condition: simultaneous activation of the
critical percolation fraction in a region of critical size ( [V, neurons )

This defines an ‘Ignition Avalanche’ (1A)

Region contributing to an IA: N > N,

Spontaneous firing rate of a single neuron: Wy

Probability that a spontaneous firing generates an IA: P14

Nucleation rate: /NwgPrAa

NPra~01-1

‘The nucleation time scale is explained by the statistics of avalanches '

June 2014
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STATISTICS AND STRUCTURE OF IGNITION AVALANCHES

Nucleation PDF (mm'z)

The Ignition functional network does not quite overlap with the
nucleation map (yet)
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STATISTICS AND STRUCTURE OF IGNITION AVALANCHES

Nucleation PDF (mm'z)

The Ignition functional network does not quite overlap with the
nucleation map (yet)

Spatio-temporal correlations still missing !
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NOISE FOCUSING
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AVERAGED NOISE FLOW AND SELECTION OF NUCLEATION SITES

Average noise flow of |As What makes one region a
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AVERAGED NOISE FLOW AND SELECTION OF NUCLEATION SITES

Average noise flow of |As
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AVERAGED NOISE FLOW AND SELECTION OF NUCLEATION SITES

Average noise flow of |As
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AVERAGED NOISE FLOW AND SELECTION OF NUCLEATION SITES
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AVERAGED NOISE FLOW AND SELECTION OF NUCLEATION SITES
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AVERAGED NOISE FLOW AND SELECTION OF NUCLEATION SITES

Average noise flow of |As What makes one region a
N WL lQ\\\\& nucleation site?
\ : : Not a local statistical
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1 1
1 J
\
) \
l \ \
| \
|
1 ( \
I A \R\|!
\ i
[ [ I
I

Not a local dynamical
property of the network

A non-local, collective
phenomenon:

being at the confluence of
paths of high amplification

Nucleation sites are ‘sinks’
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EXPERIMENTAL TEST OF NON-LOCALITY

before cut after cut

nucleation PDF
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A PHENOMENOLOGICAL MODEL FOR NOISE FOCUSING

4= f(w) —kv+ (1 —w)(DAu—V - (uV)+ou) +£

0 =y(u+g— hv)

w:—%uﬂrﬁu”(l—w) with f(u) = au® + bu? + cu + d

nullclines

—u=0,w=0
—u=0,w=1
B8t —v=0
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A PHENOMENOLOGICAL MODEL FOR NOISE FOCUSING

u = flu)— kv + (1 w)(DAu{ﬁ-(uV)%—au)—kf J

0 =y(u+g— hv)

w:—%uﬂrﬁu”(l—w) with f(u) = au® + bu? + cu + d

—

V', & new (space-dependent) transport and kinetic parameters

nullclines

—u=0,w=0
—u=0,w=1
B8t —v=0
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A PHENOMENOLOGICAL MODEL FOR NOISE FOCUSING

==l —mv—l—(l—w)(DAu[—ﬁ-(u‘?)—l—ozu)—l—f J

v =7(u+g—hv)

w:—%uﬂrﬁu”(l—w) with f(u) = au® + bu? + cu + d

—

V', & new (space-dependent) transport and kinetic parameters
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CONCLUSIONS

Coherent spontaneous activity in cultures is explained in terms of
wave nucleation (no ‘leaders’ required).

Noise is structured in avalanches with self-similar statistics and
endows the network with a non-trivial hierarchical structure.

Integrate-and-fire dynamics plus metric correlations leads to strong

spatio-temporal localization of noise activity: noise focusing.

The strong sensitivity of noise amplification to network details defines
a nontrivial pattern of noise flow, an inherently collective and non-
local (emergent) phenomenon.

Implications in ‘network reconstruction’ and other ‘integrate-and-fire
networks’ (rumor propagation in social networks)
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