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Problem 1: Can catastrophic events in
dynamical systems be predicted in advance?
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A related problem: Can future behaviors of time-varying
dynamical systems be forecasted?
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complex networks
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Assumption: all nodes are

externally accessible Full network topology?
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Problem 3: Detecting hidden nodes

No information is available from the black node. How can we
ascertain its existence and its location in the network?
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Basic idea (1)
Dynamical system: dx/dt = F(x), x € R”

Goal: to determine F(x) from measured time series x(t)!

Power-series expansion of jth component of vector field F(x)

[F(x)], —22 2<a Dy, X1 X5 o X

1,=0 1,=0

— kth component of x; Highest-order power: n
@ Do

- (14+n)" coefficients altogether

- coefficients to be estimated from time series

l2 m

If F(x) contains only a few power-series terms, most of the

coefficients will be zero.

W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi,
Physical Review Letters 106, 154101 (2011).
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Concrete example: m = 3 (phase-space dimension): (x,y,z)
n = 3 (highest order in power-series expansion)

total (1 +n)" =(1+3)’ = 64 unknown coefficients

[F(x)], = (al)o’o’oxoyozo+ (a1)1,0’0X1y0z0+ .ot (311)3’3,3)(3 y’z’
( )
(al )0,0,0
Coefficient vector a,= @ oo -64x1
\ (@))s55 )

Measurement vector g(t) = [x(t) y(t)°z(t)", x(0)'y(1)°z(t)’, ... , x(1)’y(t)’z(t)’]
1 x 64

So [F(x(t)], =g(t)*a,
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Basic idea (3)

Suppose x(t) is available at times t t,.t,,....t,, (11 vector data points)

dx
E(tl) =[F(x(t,))], = g(t,

)*a,

dx
(1) =[F(x(t,), = g(t,)*a,

%(tm) = [Fx(t,))], =g(t,)*a,

Derivative vector dX =

We finally have dX =Gea,

[ (dx/dyt,)
(dx/de)(t, )

| (@vdnt,) |

10x1

or

: Measurement matrix G =

XmOxl = G10x64 ¢ (31)64x1

"

( g(t,) \
g(t,)

\ g(ty,) )
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10x64
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dX =Gea, or dX oxi = Gioxes ® (@)

Reminder: a, is the coefficient vector for the first dynamical variable x.

To obtain [F(x)],, we expand

[F(x)], = (az)o’o,oxoyozo+ (az)l’o’oxlyozo+ o (612)3’3,37(3}/%3
with a,, the coefficient vector for the second dynamical variable y. We have
dY =G-ea, or dY 0 = Gioxes ® (2264

where
[ (dy/di)t,) )

ay - | @/doa)

| (@y/do,)

Note: the measurement matrix G is the same.

10x1

Similar expressions can be obtained for all components of the velocity field.
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LLook at
dX =G a Or XmOxl = G10x64 ° (31)64x1

Note that a, 1s sparse - Compressive sensing!

b T \

y
Data/Image compression: M x 1 .'.'r:-_ N x 1
® : Random projection (not full rank) messurements ! :..a :: o signel
X - sparse vector to be recovered M x N K
| K<M<N £y

Goal of compressive sensing: Find a vector X with minimum number of

entries subject to the constraint y = dex
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Find a vector x with minimum number of entries

Compressive Sensing (2) of ABERDEEN

subject to the constraint y =®de®x: [/ —norm

Why [ —norm? - Simple example in three dimensions

H

H

§
S

(a) (b) (c)

E. Candes, J. Romberg, and T. Tao, /EEE Trans. Information Theory 52, 489 (2006),
Comm. Pure. Appl. Math. 59, 1207 (2006);

D. Donoho, /IEEE Trans. Information Theory 52, 1289 (2006));

Special review: IEEE Signal Process. Mag. 24, 2008
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% Predicting catastrophe (1)

Henon map: (X_,,,y.,,)=(1-ax_+y_,bx )
Say the system operates at parameter values: a=1.2 and b =0.3.

There 1s a chaotic attractor.

Can we assess if a catastrophic bifurcation (e.g., crisis) 1S imminent

based on a limited set of measurements?

Step 1: Predicting system equations

1.0 T T T T T T T T T T T T T 1.0 T T T T T T T T T T T
- (a) x dimension " (b) y dimension
0.8 - - 0.8 - -
_5 0.6 - - _5 0.6 - -
5 5
2 e}
= 04+ - = 04+ -
L L
(= =
0.2 + - 0.2 + -
00 1 || 1 " 1 " " 1 " " 1 00 1 " " 1 " 1 " " 1
-15 -10 -05 00 05 1.0 15 -0.1 0.0 0.1 0.2 0.3 0.4
Coefficient value Coefficient value

Distribution of predicted values of ten power-series coefficients:

constant, y, y>, y, x, xy, xy>, x’, X%y, X° # of data points used: 8
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Predicting catastrophe (2)

Step 2: Performing numerical bifurcation analysis
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Current operation point Crisis
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Examples of predicting continuous-time dynamical systems

Predicting catastrophe (3)

140 — 1T 1 - 1 171 20 1
120 L (@) i 181 (b)
I ] 16 |-
100 - 14 [
80 __ e %3 & ~/_ 12
i i 14 ) - | 10 £
> 60| s 1 > 4t
40 B T \f_,/_- 6 :—
20 _ i - ‘: ; /
0 pat PEEY 1 ol .
0O 50 100 150 200 250 300 1 2
a a
Classical Lorenz system Classical Rossler system
dx/dt = 10y - 10x dx/dt = -y - z
dy/dt=x(a-z)-y dy/dt = x + 0.2y
dz/dt = xy - (2/3)z dz/dt = 0.2 + z(x - a)

# of data points used: 18
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Standard map Lorenz system

1.2 12 ——
1.0 % T — _ 1_0:_ ” —
o8 < o pf - o8l | Sy
L 06 I ® i 0.6 _i C) S
" o4l L Pl threshold TR I A threshold
0.2 EJ,[J:Qa (a) - 0.2 . o) (b) i
0.0 T éaaaaaaaeeaae oof [ m ém geRalalaRaRalagaRala,
0.2 OFl] / (r(%G N )0.8 1.0 0.2 r%)_4 / (n 0_6+n ) 0.8 1.0
m \ nz _ z” ' ~m _* nz z” .
1.0F [e)
0.4} ] ]
3 % 0.8 o
N o3l [l Y [ o
F _ R ¥ oo C}@
<l (ol fere i
< orr cl=R= ©1° o & &8 (d) ]
0.01 011 0.01 Oi1
nnz / (nnz+nz) nnz / (nnz+nz)
n, — # of measurements
n, — # of non-zero coefficients; n_— # of zero coefficients

(n,, +n,)— total # of coefficients to be determined

n, — minimum # of measurements required for accurate prediction
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Henon map Standard map
0.15 — e e
() —1 | .l ® ]
O Y @] P |
0.10 |-
g B _ UJE
- L q 0.02 |- | 4
0.05 |- [ d
D T
! % m | % % P
0.00}—BEBEBHBEF@Qﬁmééé L= o.oowaaaaeaggéaﬁf?é T
10*  10° 10 10 107 10
noise noise
n =8 n =10
(n,,+n,)=16 (n,,+n,)=20

W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi,
Physical Review Letters 106, 154101 (2011).
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time-varying dynamical systems (1)

Dynamical system: dx/dt = F[x,p(t)], x € R”
p(t) - parameters varying slowly with time

T,, — measurement time period;

X(t) - available in time interval: t,,-T,, <t<t,,

Goal: to determine both F[x,p(t)] and p(t) from available time series x(t)

so that the nature of the attractor for t>t,, can be assessed.

Power-series expansion

[F(x)], -22 2<a Vs, X X5 .x@(ﬁj)wtw

,=01,=0 1,=0

2 E(C )it X1 X3 .. Xy t" <> CS framework

[,,=0 w=0
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time-varying dynamical systems (2)

Formulated as a CS problem:

(a)  Assumption . }(}b) Observation

£ x y . /\/M W\

{f: xt yt sz & T é i ...... i .

(c) ‘ f L e Ly 1

X0 YO) o 2t)t A Y 2t | a ] | R

x(1,) y(tz)tQ" 2(1,)" : X, y(tz)tzt 2(1,)’t, 0:2 _ JZ7(.12)

_x(tM)y(tM): Z(tM) & (tM)tM J"(IM)I Z(IM)ZIM_ ;x(tM)_
N
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time-varying dynamical systems (3)

(@) . | | | |
s0f R s 1 "k,©=0"
| e e e . O =0
k,(t)=0
k,()=0
\§ J
k(@) =-t
k,(t) = 0.5t
ky(t) =t
\EAO=-O§5

Time-varying Lorenz system
dx/dt =-10(x -y) + k,(t) 'y R. Yang, Y.-C. Lai, and C. Grebogi,

“Forecasting the future: is it possible
dy/dt =28x -y - Xz + k,(t)-z for time-varying nonlinear dynamical

dz/dt = xy - (8/3)z + [k;(t) + k, ()] y systems,” Chaos 22, 033119 (2012).
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oscillator networks (1)

A class of commonly studied oscillator -network models:

dx;, N . -
— =F (xi)+2j=1’j¢icij (x,-x;) (i=1,..,N)

- dynamical equation of node 1

N - size of network, x, &€ R", C,; is the local coupling matrix

( 11 1,2 1,m )
S N
coco... |
C,= / C’f . C’{ - determines full topology
m,1 m,2 m,m
\ crtocrto G /

If there 1s at least one nonzero element in C.

ij°

nodes 1 and j are coupled.

Goal: to determine all Fi(x;) and C;; from time series.
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oscillator networks (2)

X = = — Network equation is d—X = G(X), where

dt

\ N / Nmx1

N

[GX)), =F, (x,)+ )

* A very high-dimensional (Nm-dimensional) dynamical system;

C,*(x; -x)

j=1,j#

* For complex networks (e.g, random, small-world, scale-free),
node-to-node connections are typically sparse;
* In power-series expansion of [G(X)]., most coefficients will be

zero - guaranteeing sparsity condition for compressive sensing.

W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, M. A. F. Harrison,
“Time-series based prediction of complex oscillator networks via compressive
sensing”, Europhysics Letters 94, 48006 (2011).
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Cooperate Defect

Example: Cooperate WIn-win lose much-win much
Prisoner’s dilemma game

Defect win much-lose much loge-lose

Strategies: cooperation S(C)=( (1) ); defection S(D)=( (1) )

1 0
b 0
Payoff of agent x from playing PDG with agent y: [ M, = SzPSy ]
For example, M._.=1
M, ,=0
M. ;=0
M, _.=b

Payoff matrix: P(PD)= b - parameter
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(social and economical networks)

A network of agents playing games with one another:
( )

r

. . a, =1 1f x connects with y
Adjacency matrix =| ... a_ .. [ 1

a, = 0 1f no connection

-

\ soo cos cos /
Payoff of agent x from agenty: M,_ =a, S/ PS,

(" )

Compressive sensing

Time series of (1) payoffs _
agents { (2) strategies — Full social network structure

QDetectabIe) )
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%‘ Prediction as a CS Problem
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Payoff of x at time : M (1) =a_S. (t)PS,(t)+a,,S. (1)PS,(t)+---+a S, (1)PS, (?)
[ M.(1) ) (a )
M
Y= x.(tz) X = af‘z X : connection vector of agent x (to be predicted)
| M) | 4w
( S (t)PS (1)) S (t)PS,(1)) - S, (t,)PS,(1) W.-X. Wang, Y.-C. Lai, C. Grebogi,
Sz (t,)PS, (t,) Sz (t,)PS,(t,) - Si‘ (t,)PS, (t,) and J.-P. Ye, “Network reconstruction
D= ) ) ) ) based on evolutionary-game data,”
: : : : Physical Review X 1, 021021 (2011).
K St PS,(t,) S.(t,)PS,(,) --- St )PS,(,) )
[Y = ¢ X Y,®: obtainable from time series ]
l Compressive sensing
ay
Xxo| % | & 1 matching
: + mmmmmm)  Fyll network structure
axN

Neighbors of x
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Success rate for model networks
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small-world scale-free
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a real social network

22 students play PDG together and
write down their payoffs and strategies Experimental record of two players

Friendship network

1.0

@' T v IOO'O %mm T T T T T .' T T T T T T T
| 000000 @,8 0.8} © | Winner -
0-8'_ %'%l _' E Observation:
= 06) 4 o SREL|] 8971 o 1 .
| % © SRNL|| 3 o o . Large-degree nodes
n N .
8 oaf %, { = oef © o © o1  arenot necessarily
o .
2 | %. £ © 5 S g - winners
02 = %' — Z 05 | |
[ O (@) - _ 8 (b)
0.0 M. ] \ ] \ ] \ ] \ [ T SR SR R R |
0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 7

data number of neighbors
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Detecting hidden nodes Evomsmaw

(a)
0.4
0.3 20 (©)
@)
0.2 8l o
0.1 o
16 ©
0 - O
—0.1 14p ©
@)
-0.2 12} ©
t‘; o
© 10 ©
2 o
8r O
Idea 0.4 ©
: : 6f ©
* Two green nodes: immediate 0.3 o
neighbors of hidden node 0.2 4r © .
* Information from green nodes 0.1 l ol o
is not complete 0 0 - .
* Anomalies in the prediction of 04 107 . 10°
connections of green nodes = =N P N
5 10 15 I
Node #

Variance of predicted

Directed/weighted network: adjacency matrix not symmetric .
welg W L y x y coefficients
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1. Key requirement of compressive sensing — the vector to be
determined must be sparse.

Dynamical systems - three cases:
* Vector field/map contains a few Fourier-series terms - Yes
* Vector field/map contains a few power-series terms - Yes

Vector field /map contains many terms — not known

qkeda Map: F(x,y=[A+B(xcos¢—-ysing),B(xsing+ ycosg)] h

where ¢=p- I; ~ - describes dynamics in an optical cavity
\_ l+x + y )

Mathematical question: given an arbitrary function, can one find
a suitable base of expansion so that the function can be
represented by a limited number of terms?
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2. Networked systems described by evolutionary games — Yes

3. Measurements of ALL dynamical variables are needed.

Outstanding issue

If this 1s not the case, say, 1f only one dynamical variable can
be measured, the CS-based method would not work.
Delay-coordinate embedding method?

- gives only a topological equivalent of the underlying
dynamical system (e.g., Takens’ embedding theorem
guarantees only a one-to-one correspondence between
the true system and the reconstructed system).

4. In Conclusion, much work 1s needed!



