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Epidemiology

Epidemiology – patterns, causes, and effects of health and
disease conditions in a population

literally meaning “the study of what is upon the people”
epi “upon, among”
demos “people, district”
logos “study, word, discourse”

The distinction between “epidemic” and “endemic” was first
drawn by Hippocrates
– Diseases that are “visited upon” a population (epidemic)
– Diseases that are “reside within” a population (endemic)
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Epidemic models

Mathematical models: study how infectious diseases
progress and show the likely outcome of an epidemic in
order to help inform public health interventions.
The earliest account of mathematical modeling of spread
of disease was carried out in 1766 by Daniel Bernoulli.
A. G. McKendrick and W. O. Kermack: A Contribution to
the Mathematical Theory of Epidemics (1927)
Reed-Frost epidemic model (1928) – one of the simplest
stochastic epidemic models
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Spreading processes on networks

Several approaches to study processes on networks:
Mathematics (stochastic, deterministic, dynamical systems
approach)
Physics (statistical physics, the theory of phase transitions
and critical phenomena)
Computer science (optimal solutions, computational
complexity theory)

The problem of modeling how diseases spread among
individuals has been intensively studied for many years.
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SIS model

Population of N individuals, connected in a network
structure represented by a graph G = (V ,E) with node set
V and edge set E
Each node can be in one of two possible states:
susceptible (S) and infective (I)
si(t) = [sS

i (t) sI
i (t)]T – status vector, an indicator vector

containing a single 1 in the position corresponding to the
present state, and 0 everywhere else
pi(t) = [pS

i (t) pI
i (t)]T – probability mass-function (PMF) of

node i at time t : pS
i (t) + pI

i (t) = 1
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SIS model

The evolution of SIS is described by the following equations:

pI
i (t + 1) = sS

i (t)fi(t) + (1− δ)sI
i (t),

si(t + 1) = MultiRealize[pi(t + 1)].

MultiRealize[·] – performs a random realization for the
PMF given with pi(t + 1)

The first term on the right hand side is the probability that a
susceptible node i is infected fi(t) by at least a neighbor
The second term stands for the probability that infected
node i at time t does not recover
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SIS model

fi(t) = 1−
N∏

j=1

[
1− βaijsI

j (t)
]
.

In the SIS model individuals can exist in either of two
possible states: “healthy” or “infected”.
Healthy individuals are infected when they come into
contact with an infected individual with probability β.
Infected individuals become once again susceptible with a
recovery probability δ.
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Deterministic model

Deterministic model (pi ≡ pI
i ):

pi(t + 1) = [1− pi(t)] fi(t) + (1− δ)pi(t)

fi(t) = 1−
N∏

j=1

[
1− βaijpj(t)

]
.

pi(t) is the expected probability that node i will be infected
at time t
fi(t) is the probability that node i receives the infection from
at least one of its infected neighbors at time t
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Stability analysis

pi(t + 1) = [1− pi(t)] fi(t) + (1− δ)pi(t)

fi(t) = 1−
N∏

j=1

[
1− βaijpj(t)

]
.

The origin pi = 0 (∀i) is a fixed point of the system
The origin is stable when 1− δ + βλ1,A < 1, where λ1,A is
the largest eigenvalue of the adjacency matrix

β

δ
λ1,A > 1

– the disease will reach an endemic state
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First problem

What is the influence of the graph topology on virus
(disease) spreading, more precisely, on the probability that
given note is infective?
How local properties constrain the interval of possible
values of the probability that given note is infective?
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p-hop subgraph

Let i be arbitrary node of the graph G = (V ,E), i ∈ V , and
let ni = maxx l(i , x). Let V 0

i = {i}.
We define a subgraph Gp

i = (V p
i ,E

p
i ) of G = (V ,E) as

follows:

V p
i = {x |x ∈ V ,0 ≤ l(i , x) ≤ p}

Ep
i = {xy |xy ∈ E , x ∈ V p

i , y ∈ V p−1
i },

where p = 1, . . . ,ni + 1.
We say that Gp

i is a p-hop subgraph of G extracted by
starting at node i .
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p-hop subgraph

a) b) c)

Figure: b) and c) 1-hop and 2-hop subgraph of the graph shown in a)
extracted by starting at the gray node.
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Upper and lower bounds

l1i < l2i < . . . < lpi . . . ≤ x∗i < . . .up
i < . . . < u2

1 < u1
i

The bounds l1i and u1
i are obtained by considering only

(first) neighbors of i .
The bound u1

i depends on the degree of the node i , that is,
the information contained in the 1-hop subgraph of G
extracted by starting at node i , while for the bound l1i one
computes the SIS model on the subgraph G1

i , which is the
subgraph of neighbors of i .

Ljupco Kocarev Epidemic spreading on complex networks



Upper and lower bounds

The bounds l2i and u2
i are obtained by considering second

neighbors of i (neighbors of the first neighbors).
l2i and u2

i reflect the topology of 2-hop subgraph of G
extracted by starting at node i .

dp
i = up

i − lpi ∆ρp =
N∑

i=1

dp
i

N
,
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Example: real-world e-mail network

Figure: 1-hop neighborhood for a node extracted from a real-world
e-mail network with 33696 nodes. The node (largest in size) has 10
direct neighbors (medium sized). The probability of infection for the
given node obtained after simulating a particular configuration of the
SIS model was 0.373. The probability of infection for the node given
the 1-hop neighborhood (node’s degree) is calculated to be between
0.006 and 0.503.
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Example: real-world e-mail network

Figure: The 2-hop neighborhood contains 62 nodes and 92 edges.
Peripheral nodes are smallest in size and are two hops away from the
central node. The probability of infection for the node given the 2-hop
neighborhood topology is calculated to be between 0.297 and 0.416.
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SIS process

Theorem
Let Φ be the family of all possible simple and connected graphs
G = (V ,E) with |V | ≥ 2. Let x(G)∗ = [x∗1 x∗2 . . . x

∗
N ] be the

stationary solution different from the origin and let i be arbitrary
node of the graph G = (V ,E), i ∈ V. Let

un
i =

1−
∏N

j=1(1− βaijun−1
j )

1−
∏N

j=1(1− βaijun−1
j ) + δ

where u0
i = 1/(1 + δ). Then for all i , x∗i is bounded by

x∗i < . . . < un
i < . . . < u1

i < u0
i
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SIS process

Theorem

Consider arbitrary node i of the graph G = (V ,E) and let
Gp

i = (V p
i ,E

p
i ) be the p-hop subgraph of G extracted by starting

at node i. Write n =
∣∣V p

i

∣∣. Let x(G)∗ = [x∗1 x∗2 . . . x
∗
N ] and

x(Gp
i )∗ = [lp1 lp2 . . . l

p
n ] be the stationary solution different from the

origin for the graphs G = (V ,E) and Gp
i = (V p

i ,E
p
i ),

respectively. Then x∗i is bounded by

l1i < l2i < . . . < lni
i < lni+1

i = x∗i

for all i ∈ V.
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Average size of p-hop neighborhood

Table: Average size of p-hop neighborhood for the Enron e-mail
network. |Ep| is an average of

∣∣Ep
i

∣∣ over all nodes i and |E | is the total
number of edges in the network.

p |Ep| |Ep| / |E |
1 10 0.0003
2 1538 0.004
3 45067 0.125
4 207496 0.574
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SIS process
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Figure: The density of infective nodes in the Enron e-mail network as
the transmission parameter β is varied, and δ = 0.5, along with the
upper and lower bounds, ρ̂p and ρ̆p, on ρ using 1-hop and 2-hop
topology information.
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SIS process
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Second problem

pi(t + 1) = [1− pi(t)] fi(t) + (1− δi)pi(t)

fi(t) = 1−
N∏

j=1

[
1− βiaijpj(t)

]
.

What is the role of heterogeneity in the susceptibility of
individuals?
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Basic reproduction number

R0 – the basic reproduction number: average number of
other individuals each infected individual will infect in a
population that has no immunity to the disease
R0 is the quintessential epidemiological parameter; a
central question in epidemiology is under what conditions
R0 becomes greater than 1, (R0 > 1).
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The basic reproductive number R0 in the SIS model

Homogenous network (each individual is in contact with k
others):

Rh
0 =

kβ
δ

Degree heterogenous networks with no degree-degree
correlations and a degree distribution given by P(k)
[Pastor-Satorras and Vespignani, PRL 2001]:

Runc
0 =

β

δ

〈
k2〉
〈k〉

= Rh
0

(
1 +

[
σk

〈k〉

]2
)

Correlated degree heterogenous networks [Boguna and
Pastor-Satorras, PRE 2002]:

Rcorr
0 =

β

δ
λ1,C

λ1,C – the largest eigenvalue of the degree mixing matrix
Ckk ′ = kP(k ′|k).
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The basic reproductive number R0 in the SIS model

A significant improvement over the heterogenous
mean-field theory; it has been shown that the basic
reproductive number takes the form:

R0 =
β

δ
λ1,A

λ1,A – the largest eigenvalue of the adjacency matrix A.
Wang, Chakrabarti, Wang, and Faloutsos, SRDS 2003
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Differential susceptibility

SIS model:

pi(t + 1) = (1− pi(t))fi(t) + (1− δ)pi(t)

The probability fi(t) has the form:

fi(t) = 1−
N∏

j=1

(1− βiaijpj(t)).

What is the role of heterogeneity in the susceptibility of
individuals, that is, under what conditions R0 > 1
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Differential susceptibility

We linearize the system around p = 0:

pi(t + 1) = (1− δ)pi(t) +
N∑

j=1

βiaijpj(t) =
N∑

j=1

mijpj(t).

M = [mij ]
mij = βiaij + ∆ij(1− δ), ∆ij – Kronecker delta
When λ1,M < 1, the infection will die out exponentially fast
with a rate determined by λ1,M .
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Solutions with incomplete information

M = R + (1− δ)I,
R = [rij ], rij = βiaij , I – identity matrix
We can define the threshold at which epidemics begin to
spread through the largest eigenvalue of R and generalize
R0 to:

R0 = λ1,R + 1− δ.
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Correlated networks

Constant β (βi = β):

β

δ
λ1,A > 1

Differential susceptibility:

1
δ
λ1,R > 1
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Solutions with incomplete information

Assume that rij is a random variable following an arbitrary
distribution and use a mean-field approximation rij ≈

〈
rij
〉

where
〈
rij
〉

is the expected value of rij over all possible
network realizations.
In a network where the susceptibility βi is assigned
independently of the topology:

〈
rij |aij

〉
=
〈
β|aij

〉
aij = 〈β〉aij

where 〈x |y〉 is the expected value of x given y .

R ind
0 = 〈β〉λ1,A + 1− δ 〈β〉

δ
λ1,A > 1
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Solutions with incomplete information

For uncorrelated networks with heterogenous degrees,〈
rij
〉

can be relaxed to the expected number of links
between nodes i and j

Runc
0 =

〈
βk2〉
〈k〉

+ 1− δ =
〈β〉
〈
k2〉
〈k〉

+
ρσβσk2

〈k〉
+ 1− δ.

−1 ≤ ρ ≤ 1 – Pearson correlation coefficient
Small correlations between the susceptibility and the
degree can lead to significant over- or underestimation of
R0 when the variation in connectivity, as measured by σk2 ,
is large compared to the average connectivity 〈k〉.
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Uncorrelated networks

Constant β (βi = β):

β

δ

〈
k2〉
〈k〉

> 1

Differential susceptibility:

〈β〉
δ

〈
k2〉
〈k〉

+
ρσβσk2

δ 〈k〉
> 1
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Networks with non-trivial mixing patterns

Link level correlations – tendency of individuals to connect
to other individuals with similar characteristics leads to
non-trivial mixing patterns
We approximate rij with

〈
rij
〉
, by using the expected

number of links from node with degree ki and susceptibility
βi to node with degree kj and susceptibility βj .
The expected number of links are proportional to the
two-point conditional probability P(k ′, β′|k , β):

rij ≈
〈
rij
〉

=
kiβiP(kj , βj |ki , βi)

NP(kj , βj)
.
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Networks with non-trivial mixing patterns

Let d=|{k , β}| be the number of different combinations of
degree (k ) and susceptibility (β) that a node can have in
the network.
The entire information about the system (network topology
and the susceptibilities of nodes) is compressed into a
coarsened d × d matrix D:

R0 = λ1,R + 1− δ ≈ λ1,D + 1− δ.

Example: each individual can be assiged to one of 5
degree classes, k = 1,2,4,8,16 and to one of 3
susceptibility classes, β = βlow , βavg , βhigh corresponding to
low, average and high susceptibility respectively.
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Networks with non-trivial mixing patterns

Assume independence between the degree of a node and
its susceptibility, i.e. P(k ′, β′|k , β) = P(k ′|k)P(β′|β)

Let λ1,C and λ1,B be the largest eigenvalues of the
matrices Ckk ′ = kP(k ′|k) and Bββ′ = βP(β′|β) respectively
λ1,R = λ1,Cλ1,B

Note that when there is no degree mixing,
λ1,C =

〈
k2〉 / 〈k〉. On the other hand, when there are no

mixing patterns in susceptibility, λ1,B = 〈β〉.
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Segregation

The contact networks that underlie the spread of a disease
are not only heterogeneous in terms of degree and
susceptibility, but also segregated.
Strong effects of segregation dynamics on R0 are
illustrated by running a variant of Schelling’s segregation
process on a real-world contact network obtained from
face-to-face proximity between students and teachers.
Mild level of segregation can drastically increase the
critical reproductive number in a network where individuals
differ in their susceptibility
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Segregation

〈k〉
[

1− s
Nβ

+ s
]
βmax +1−δ ≤ R0 ≤ 〈k〉 [(1− s) 〈β〉+ sβmax ]+1−δ

s ∈ [0,1] models the segregation in the network
s = 0 – segregation is minimal (the probability that a node
will connect to others is independent of the susceptibility)
s = 1 – segregation is maximal (nodes share links only
with others that have the same susceptibility)
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Summary

One can estimate the probability of being infective using
only local information (considering only n−hop local
topology, for small n), without knowing the whole network.
From this local information one can also estimate the
density of being infective on the whole network, as well as
assess the extend to which the topology affects the
outcome of the infection on macroscopic level.
The results are extendable to other ergodic models (such
as SIRS, for example) and are related to all types of
spreading (idea, failure, rumor).
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Summary

Basic reproductive numbers estimated from compartmental
models will be systematically over or underestimated if the
mathematical models of epidemic spreading do not include
the effects of heterogenous susceptibility.
Mild level of segregation can drastically increase the
critical reproductive number in a network where individuals
differ in their susceptibility
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