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A Theory for Sleep ?

‣observed in all species, from fruitflies to mammals
‣about one third of lifetime is spent asleep
‣„from the brain, for the brain“
‣role unknown



... observations suggest that sleep may play an important role in 
organizing or reorganizing neuronal networks in the brain 
toward states where information processing is optimized

A Theory for Sleep ?

‣reduced responsiveness to stimuli
‣impaired information processing
‣reduced learning ...

Mignot, PLoS Biol, 2008 
Banks, J Clin Sleep Med, 2007 

without sleep:



 Two-process model of sleep

‣sleep propensity increases during wake and decreases during sleep 
- sleep homeostasis       (Achermann, Brain Res Bul,1992)
‣related to theta and slow-wave activity in the EEG
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Specifically, the curve in Fig. 1 can be interpreted
as reflecting how the total amount of synaptic
strength in the cerebral cortex (and possibly other
brain structures) changes as a function of wakeful-
ness and sleep. Thus, the hypothesis claims that,
under normal conditions, total synaptic strength
increases during wakefulness and reaches a maxi-
mum just before going to sleep. Then, as soon as
sleep ensues, total synaptic strength begins to
decrease, and reaches a baseline level by the time

sleep ends. In addition to claiming a correspon-
dence between the homeostatic Process S and total
synaptic strength, the hypothesis proposes specific
mechanisms, whereby synaptic strength would
increase during wakefulness and decrease during
sleep, and suggests why the tight regulation of
synaptic strength would be of great importance for
the brain.

Synaptic homeostasis: a schematic
diagram

The diagram in Fig. 2 presents a simplified version
of the main points of the hypothesis. During
wakefulness (yellow background), we interact
with the environment and acquire information
about it. The EEG is activated, and the neuromodu-
latory milieu (for example, high levels of nor-
adrenaline, NA) favors the storage of information,
which occurs largely through long-term poten-
tiation of synaptic strength. This potentiation
occurs when the firing of a presynaptic neuron is
followed by the depolarization or firing of a
postsynaptic neuron, and the neuromodulatory
milieu signals the occurrence of salient events.
Strengthened synapses are indicated in red, with

Fig. 1 The two-process model involving the circadian
component (process C) and the homeostatic component
(process S).

Fig. 2 The synaptic homeostasis hypothesis.

G. Tononi, C. Cirelli50

 Two-process model of sleep

‣sleep propensity increases during wake and decreases during sleep 
- sleep homeostasis       (Achermann, Brain Res Bul,1992)
‣related to theta and slow-wave activity in the EEG
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Specifically, the curve in Fig. 1 can be interpreted
as reflecting how the total amount of synaptic
strength in the cerebral cortex (and possibly other
brain structures) changes as a function of wakeful-
ness and sleep. Thus, the hypothesis claims that,
under normal conditions, total synaptic strength
increases during wakefulness and reaches a maxi-
mum just before going to sleep. Then, as soon as
sleep ensues, total synaptic strength begins to
decrease, and reaches a baseline level by the time

sleep ends. In addition to claiming a correspon-
dence between the homeostatic Process S and total
synaptic strength, the hypothesis proposes specific
mechanisms, whereby synaptic strength would
increase during wakefulness and decrease during
sleep, and suggests why the tight regulation of
synaptic strength would be of great importance for
the brain.

Synaptic homeostasis: a schematic
diagram

The diagram in Fig. 2 presents a simplified version
of the main points of the hypothesis. During
wakefulness (yellow background), we interact
with the environment and acquire information
about it. The EEG is activated, and the neuromodu-
latory milieu (for example, high levels of nor-
adrenaline, NA) favors the storage of information,
which occurs largely through long-term poten-
tiation of synaptic strength. This potentiation
occurs when the firing of a presynaptic neuron is
followed by the depolarization or firing of a
postsynaptic neuron, and the neuromodulatory
milieu signals the occurrence of salient events.
Strengthened synapses are indicated in red, with

Fig. 1 The two-process model involving the circadian
component (process C) and the homeostatic component
(process S).

Fig. 2 The synaptic homeostasis hypothesis.
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Figure 3. Evidence Supporting SHY
(A) Experiments in rats andmice show that the number and
phosphorylation levels of GluA1-AMPARs increase after
wake (data from rats are from Vyazovskiy et al., 2008).
(B, B0, and B00) Electrophysiological analysis of cortical
evoked responses using electrical stimulation (in rats, from
Vyazovskiy et al., 2008) and TMS (in humans, from Huber
et al., 2013) shows increased slope after wake and
decreased slope after sleep. In (B), W0 and W1 indicate
onset and end of !4 hr of wake; S0 and S1 indicate onset
and end of !4 hr of sleep, including at least 2 hr of NREM
sleep. In (B0 ), pink and blue bars indicate a night of sleep
deprivation and a night of recovery sleep, respectively. (B00)
In vitro analysis of mEPSCs in rats and mice shows
increased frequency and amplitude of mEPSCs after wake
and sleep deprivation (SD) relative to sleep (control). Data
from rats are from Liu et al. (2010).
(C and C0) In flies, the number of spines and dendritic
branches in the visual neuron VS1 increase after enriched
wake (ew) and decrease only if flies are allowed to sleep
(from Bushey et al., 2011). (C0) Structural studies in
adolescent mice show a net increase in cortical spine
density after wake and sleep deprivation (SD) and a net
decrease after sleep (from Maret et al., 2011).
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Fig. 2. Power law organization of neuronal avalanches identifies interactions between lo-
cally synchronized neuronal groups. (A) Dorsal view of a macaque brain (left hemisphere)
showing the position of the microelectrode array (square) in pre-motor cortex (PM; not to
scale). (B) Example period of the continuous local field potential (LFP) at a single micro-
electrode. Peak negative deflections in the LFP (nLFPs) that cross threshold thr (broken
line; −2.5SD) are indicative of local synchronized groups (red circles). (C) Raster plot of
nLFP occurrence times for the 91-microelectrode array in A during ∼ 4 s of resting activity
in an awake macaque monkey. nLFPs at different electrodes tend to cluster in time. Elec:
single microelectrode on the array. Red box : region enlarged in D. (D) Definition of spa-
tiotemporal cascade: nLPFs in the same time bin or consecutive bins (∆t = 2ms) define a
cascade, whose size can be measured by its number of nLFPs (three cascades of size 2, 4 and
5 shown; gray areas). ∆t: discrete time window to detect simultaneous or successive nLFPs
on the array. (E) Neuronal avalanche dynamics are identified when the sizes of all cascades
distribute according to a power law with exponent of −3/2. Calculated from ∼ 30min of
ongoing LFP activity in the awake macaque monkey (cf. A,C). The cut-off of the power
law reflects the finite size of the microelectrode array and changes with the area of the ar-
ray used for analysis. Four distributions from the same original data set (solid lines) are
over-plotted using different areas (inset), i.e. number of electrodes (N). Gray squares: defect
electrodes. The power law reflects interactions between neuronal groups at different sites on
the array and is not found for shuffled data (broken lines). L: Spatial length of sub-array.
∆d: inter-electrode distance between array electrodes modified from [18].

‣cortical activity in superficial layers is 
composed of cascades of activity 
following a precise scaling relationship

‣first observed in organotypic cultures
Beggs and Plenz, J. Neurosci, 2003 

‣in awake monkeys
Peterman et al., PNAS, 2009 

‣in human MEG, ECoG, fMRI

Palva et al., PNAS, 2013 
Shriki et al., J. Neurosci, 2013 
Priesemann et al., PLoS CB, 2013 

‣at the level of individual neurons
Bellay et al., in submission 

processing in cortical networks, with peak
performance found under balanced con-
ditions that generate neuronal avalanche
activity.

Materials and Methods
Organotypic cultures on microelectrode arrays.
Coronal slices from rat somatosensory cortex
(350 !m thick, postnatal day 0 –2; Sprague
Dawley) and the midbrain (VTA; 500 !m
thick) were cut and cultured on a poly-D-
lysine-coated 8 ! 8 microelectrode array
(MEA) (Multi Channel Systems; 30 !m elec-
trode diameter; 200 !m interelectrode dis-
tance). In this organotypic slice coculture, the
development of deep and superficial cortical
layers (Götz and Bolz, 1992; Plenz and Kitai,
1996) as well as neuronal avalanche activity
parallels that observed in vivo (Gireesh and
Plenz, 2008). In short, a sterile chamber at-
tached to the MEA allowed for repeated re-
cording from cultures for weeks. After plasma/
thrombin-based adhesion of the tissue to the
MEA, standard culture medium was added
(600 !l, 50% basal medium, 25% HBSS, 25%
horse serum; Sigma-Aldrich). MEAs were then
affixed to a slowly rocking tray inside a custom-
built incubator ("65° angle, 0.005 Hz fre-
quency, 35.5 " 0.5°C) (Stewart and Plenz,
2008).

Spontaneous activity. Using a recording head
stage inside the incubator (MEA1060 w/blank-
ing circuit; !1200 gain; bandwidth 1–3000 Hz;
12 bit A/D; range 0 – 4096 mV; Multi Channel
Systems), local field potential (LFP; 4 kHz sam-
pling rate; reference electrode in bath) was ob-
tained from 1 h of continuous recordings of
extracellular activity (low-pass, 100 Hz, phase-
neutral). To establish a correlation between
LFP and neuronal spiking activity, in n # 5
cultures, extracellular activity was recorded for
15 min at 25 kHz. In addition to extracting
LFP, the extracellular signal was filtered in the
frequency band 300 –3000 Hz and $78 single
units were identified per culture using thresh-
old detection and PCA-based spike sorting
(Offline Sorter; Plexon).

Stimulus-evoked activity. Immediately fol-
lowing each 1 h recording of spontaneous ac-
tivity, stimulus-evoked activity was measured.
Stimuli were applied at 5 s intervals at one elec-
trode located approximately at the center of the
culture, in superficial cortical layers. Stimuli were
current-controlled, single shocks with bipolar
square waveform: 50 !s with amplitude %S fol-
lowed by 100 !s with amplitude &S/2, where
6 $ S $ 200 !A. We tested one set of stimulus
amplitudes with fine resolution (S # 10 –200
!A in steps of 10 !A), and another with coarser
resolution (S # 6, 12, 24, 50, 65, 80, 100, 150,
200 !A). Results were similar for the two pro-
tocols. Each stimulus level was repeated 40
times in pseudorandomized order resulting
in a total recording duration of 2000 (coarse)
or 4000 (fine) s. Each stimulus-evoked re-
sponse was recorded using all electrodes ex-
cept for the stimulation electrode during 500
ms following stimulation. A blanking circuit

Figure 1. Measuring spontaneous and stimulus-evoked activity from cortical networks. A, Light-microscopic image of a
somatosensory cortex and dopaminergic midbrain region (VTA) coronal slice cultured on a 60-channel microelectrode
array. Yellow dot, Stimulation site. Black dots, Recording sites. B, Number of extracellular spikes correlates with the size of
simultaneously recorded nLFP burst (R # 0.84 " 0.13; n # 1). Each point represents total number of spikes versus the
corresponding spontaneous nLFP burst size. C, Example recordings of spontaneous LFP fluctuations (left) and nLFP rasters
(right) for three drug conditions (top, AP5/DNQX; middle, no drug; bottom, PTX). D, Examples of LFP evoked by 70 !A
stimulus (left) and rasters recorded during the application of four stimuli of amplitudes 50, 40, 90, 150 !A (yellow line,
stimulus time) (right) for three drug conditions. For both spontaneous (C) and stimulus-evoked (D) activity AP5/DNQX
(PTX) typically results in reduced (increased) amplitude LFP events with lesser (greater) spatial extent. In C and D, black
dots on the LFP traces indicate nLFP events, raster point color indicates nLFP amplitude, and all calibration bars (left)
represent 50 !V, 100 ms.
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at each electrode within 10 ms) [Fig. 1C; monkey A: F (3, 73) ! 26,
P " 10#11 M1left; monkey B: F (3, 53) ! 4.0, P ! 0.01 M1left; F (3,
26) ! 6.0, P ! 0.003 M1right; F (3, 38) ! 10.0 PMdleft, P ! 5!10#5;
F (3, 37) ! 23, P ! 10#8 PMdright; one-way ANOVA; $0.27 SD for
monkey A; $0.16 % 0.05 SD for monkey B per 100 Hz; R !
0.55#0.7; P " 0.0001 all arrays; linear regression]. nLFP peak
amplitude also increased with local synchronization of unit activity
(Fig. 1D; number of units with at least 1 spike/10 ms; see Fig. S2;
2 vs. 3 units: 0.6 SD monkey A; 0.3 % 0.1 SD monkey B; t test; P "
0.0005). These locally synchronized spikes were significantly differ-
ent from chance occurrence and were correlated across cortical
sites over many seconds in time (Fig. S2). Thus, the peak nLFP
amplitudes during ongoing activity provides a good approximation
of the instantaneous firing rate and degree of spike synchrony of the
local neuronal population.

nLFPs in Vivo Organize into Neuronal Avalanches. We then grouped
nLFPs into spatiotemporal clusters based on their occurrence in
successive time bins, regardless of the electrode on which they
occurred (Fig. 2A). Such temporal grouping of nLFPs is supported
by the strong crosscorrelation between nLFPs at different elec-
trodes (Fig. 2B). The beginning of a cluster was defined by the

occurrence of a time bin (chosen at &t ! 4 ms) with at least one
nLFP and the end by the next encounter of an empty time bin.
Clusters had size s equal to their number of nLFPs and a lifetime
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Fig. 1. nLFP peak amplitude correlates with local rate and synchrony of unit
activity. (A) Position of microelectrode arrays in primary motor (M1) and
dorsolateral premotor cortex (PMd) of two rhesus monkeys (monkey A: M1left;
monkey B: M1left,right and PMdleft, right). Circles: electrode positions with LFP
and unit activity. (B) Segment of simultaneous LFP recordings scaled in SD
(PMdright). (C) nLFP peak amplitude increases with local firing rate (number of
spikes per 10 ms at each electrode). Average (% SE) for all electrodes (left:
monkey A; right: four arrays monkey B). Insets: Example average LFP triggered
by 10 ms periods with one, two, or three spikes at a single electrode. Left:
M1left. Right: PMdright. (Scale bars, 0.4 SD left; 0.2 SD right; 100 ms.) (D) nLFP
amplitude increases with number of units that contribute at least one spike
per 10 ms, left inset) that is, local spike synchrony (see Fig. S2D for significance
of two vs. three units). Right inset: Example average LFP triggered on one, two,
or three active units (PMdright, Scale bar, 0.2 SD; 100 ms).

Fig. 2. nLFP peaks cluster as neuronal avalanches that are invariant to
temporal scale. (A) Raster of nLFP peak occurrences (dots) extracted at #2SD
(M1left; monkey A) with a period shown at higher temporal resolution (bot-
tom). nLFP peaks were grouped into a cluster (gray) when they occurred in the
same or contiguous bins of duration &t. Clusters ended when an empty bin was
encountered. Spatiotemporal size (i.e., number of nLFPs or electrode activa-
tions) and lifetime (in multiples of &t) for the three identified clusters are
indicated at the bottom. (B) Mean cross-correlation function for nLFPs be-
tween electrodes (&t ! 2 ms). Top: Peak at around time 0 reveals strong
correlation between simultaneous and successive nLFPs. Bottom: Significant
cross-correlation persists over many seconds (Right side from top plotted in
loglog-coordinates). Broken lines: correlation obtained from rasters with
rate-matched, but uniformly randomized inter nLFP times. (C) Cluster sizes
distribute according to a power law (straight line in log-log coordinates) up to
a cut-off determined by the total number of electrodes (empty circles, monkey
A; M1left, cut-off ! 32; see F). Slope ! varies systematically with &t. Broken
lines, squares: Exponentially decaying size distributions from corresponding
time-shuffled rasters (R'0.999). (D) Relationship between slope ! and &t
plotted in log-log coordinates for each array (#2 SD; solid lines: linear regres-
sion). In vitro: replotted from (13). (E) Collapse in cluster size distributions
obtained for different &t using the scaling relationship (&t/4ms)#". " ! 0.15
was taken from D (monkey A; M1left). Scaling exponent 0.22 minimizes devi-
ations in P(s) for visualization purposes. (F) The cluster sizes for M1left distrib-
ute according to a power law up to a cut-off determined by the number of
electrodes of the array (monkey A; M1left, empty circles). The cut-off shifts
from 32 to 16 electrodes if only half of the array is considered.

2 of 6 ! www.pnas.org"cgi"doi"10.1073"pnas.0904089106 Petermann et al.
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disconnected the recording amplifiers during stimulation, signifi-
cantly reducing stimulus artifacts (Multi Channel Systems). Sample
rate and filtering was identical to that used for spontaneous activity
recordings.

Pharmacology. Bath application of antagonists of fast glutamatergic or
GABAergic synaptic transmission was used to change ratios of excita-
tion to inhibition (E/I ). The normal (no-drug) followed by a drug
condition was studied within 3 h to minimize nonstationarities dur-
ing development. Stock solutions were prepared for the GABAA re-
ceptor antagonist picrotoxin (PTX), the NMDA receptor antagonist
(2 R)-amino-5-phosphonovaleric acid (AP5), and the AMPA receptor
antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). Six microli-
ters of these stock solutions were added to 600 !l of culture medium
to reach the following working concentrations (in !M): 5 PTX, 20
AP5, 10 AP5 ! 0.5 DNQX, and 20 AP5 ! 1 DNQX. After recording,
the drug medium was replaced with 300 !l of drug-free conditioned
medium (collected from the same culture the previous day) mixed
with 300 !l of fresh, unconditioned medium. Most cultures recovered
to criticality within "24 h.

Spontaneous cluster size and response to stimulus. For each electrode, we
identified negative peaks in the LFP (nLFPs) that were more negative
than #4 SDs of the electrode noise. We then identified a cluster of nLFPs
on the array as a group of consecutive nLFPs each separated by less than
a time " (Beggs and Plenz, 2003). The threshold " was chosen to be greater
than the short timescale of interpeak intervals within a cluster, but less
than the longer timescale of intercluster quiescent periods (" $ 86 % 71
ms for all cultures; see also supplemental material, available at www.
jneurosci.org). Results were robust for a large range in the choice of "
(data not shown). The size s of a cluster was quantified as the absolute
sum of all nLFP amplitudes within a cluster. Similarly, the size R of an
evoked response was quantified as the absolute sum of nLFPs within 500
ms following a stimulus.

Definition of #. For neuronal avalanches, the probability density func-
tion (PDF) of cluster size s follows a power law with slope $ $ #3/2
(Beggs and Plenz, 2003) (see Fig. 2 A). Thus, the corresponding cumula-
tive density function (CDF) for cluster sizes, FNA(%), which specifies the
fraction of measured cluster sizes s & %, is a #1/2 power-law function,
FNA(%) $ (1 # 'l/L) #1(1 # 'l/%) for l & s & L. Here we define a novel
nonparametric measure, #, to quantify the difference between an exper-
imental cluster size CDF, F(%), and the theoretical reference CDF,
FNA(%),

# & 1 '
1

m !
k$1

m

(FNA(%k) ( F(%k)), (1)

where %k are m $ 10 burst sizes logarithmically spaced between the
minimum and maximum observed burst size. Using CDFs rather than
PDFs to calculate # avoids the sensitivity to binning in constructing a
PDF. Compared to other nonparametric comparisons of CDFs, e.g.,
Kolmogorov–Smirnov and Kuiper’s test, as well as other methods, #
more accurately measures deviation from neuronal avalanches (see
supplemental material, available at www.jneurosci.org).

Dynamic range. After measuring responses to a range of stimulus
amplitudes, we used the response curve, R( S), to compute dynamic
range,

* & 10 log10(Smax/Smin), (2)

where Smax and Smin are the stimulation values leading to 90% and 10%
of the range of R, respectively.

Model. The model consisted of N all-to-all coupled, binary-state neu-
rons (N $ 250, 500, 1000) and the following dynamical rules: If neuron j
spiked at time t (i.e., sj(t) $ 1), then postsynaptic neuron i will spike at
time t ! 1 with probability pij. As such, the pij are N 2 numbers represent-
ing the synaptic coupling strengths between each pair of neurons. The pij

are asymmetric pij + pji, positive, time-independent, uniformly distrib-
uted random numbers with mean and SD of order N #1. If a set of
neurons J(t) spikes at time t, then the probability that neuron i fires at
time t ! 1 is exactly piJ(t) $ 1 # ,j!J(t)(1 # pij). To implement the
probabilistic nature and variability of unitary synaptic efficacy, neuron i

actually fires at time t ! 1 only if piJ(t) - )(t), where )(t) is a random
number from a uniform distribution on [0,1],

si(t ' 1) & ./piJ(t) ( )(t)0
& ./1 ( "

j!J(t)
(1 ( pij) ( )(t)0 , (3)

where 1[x] is the unit step function. Like our experiments, we explore a
range of network excitability by tuning the mean value of pij from 0.75/N
to 1.25/N in steps of 0.05/N by scaling all pij by a constant. For such small
mean pij, the model reduces to probabilistic integrate-and-fire, i.e., piJ 2
#j!J(t)pij to order N #2 accuracy. If the mean pij is exactly N #1, then n
spikes at time t will, on average, excite n postsynaptic spikes at time t ! 1,
which constitutes criticality in our model (Beggs and Plenz, 2003; Kinouchi
and Copelli, 2006). When mean pij is larger than or less than N #1, the
system is supercritical or subcritical, respectively. We define the control
parameter of the model *' N #1#i#ipij. In the context of dynamics, *
reflects the average ratio of spiking descendants to spiking ancestors in
consecutive time steps. At criticality, * $ 1; the coupling strengths are
balanced such that, on average, the number of active sites neither grows
nor decays with time (note that the instantaneous activity level fluctuates

Figure 2. Change in the ratio of excitation/inhibition moves cortical networks away from
criticality. A, Left, PDFs of spontaneous cluster sizes for normal (no-drug, black), disinhibited
(PTX, red), and hypoexcitable (AP5/DNQX, blue) cultures. Broken line, #3/2 power law. Cluster
size s is the sum of nLFP peak amplitudes within the cluster; P(s) is the probability of observing
a cluster of size s. Right, Corresponding CDFs and quantification of the network state using #,
which measures deviation from a #1/2 power law CDF (broken line). Vertical gray lines, The 10
distances summed to compute #, shown for one example PTX condition (red). B, Simulated
cluster size PDFs (left) and corresponding CDFs (right) for different values of the model control
parameter *. C, Summary statistics of average # values for normal, hypoexcitable, and disin-
hibited conditions (*p & 0.05 from normal). D, In simulations, # accurately estimates *.
Broken line, # $ *. Colored dots, Examples shown in B.
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of spikes that occurred during the burst. We note that in previous work we
showed that spike count during a burst was proportional to the burst size
definition based on sum of nLFP (Shew et al., 2009). Thus, defining burst size
in terms of spike count is appropriate for the computational model. Size
distributions of these bursts were used to parameterize the model dynamics
in terms of ! as defined above. Moreover, each condition was modeled on 60
different connection matrices (10 different networks of each size) to repre-
sent the possible variability from one culture to another in the experiments.
The error bars in the results represent variation among the dynamics of these
60 different networks.

To model the pharmacological manipulations made in our experi-
ments, we simply multiplied either the positive or the negative entries of
the connection matrix by a constant between zero and 1, modeling the
effects of either disfaciliation (AP5/DNQX) or disinhibition (PTX) re-
spectively. Since the average wij value of the baseline connection matrix
was 1/Q, disfacilitation or disinhibition resulted in a mean wij !1/Q or
"1/Q, respectively. As average wij is increased from !1/Q to "1/Q, the
dynamics of this computational model undergo an abrupt change at the
critical point specified by 1/Q. At the critical point the computational
model generates neuronal avalanches, i.e., the burst size distribution is a
power law with exponent near #1.5. Our computational model is similar
to others which have been used to study criticality in neural networks
(Beggs and Plenz, 2003; Haldeman and Beggs, 2005; Kinouchi and
Copelli, 2006; Larremore et al., 2011), but is different from these because
we include inhibitory neurons.

Before analyzing the computational model data, aggregate population
signals PN(t) for each model site were computed PN$t% " !

l#L
bl$t%, where

L is the set of neurons at site N. To more closely model an experimentally
observed burst, each computational model burst was padded with a pe-
riod of zeros (20 timesteps) preceding and following the burst, Gaussian
noise with amplitude 0.1 was added, and then the signal was bandpass
filtered between 5 and 100 Hz (assuming 2 ms per model time step). The
aggregate population signals from the computational model were then
analyzed to obtain burst area, duration, and phase synchrony exactly as
defined for the experimental data.

Results
Neuronal burst area and duration have moderate mean and
maximum entropy near ! " 1
We studied ongoing network activity recorded in organotypic
tissue cultures grown on planar integrated MEAs. Following es-
tablished techniques (Gireesh and Plenz, 2008; Shew et al., 2009,
2011), each culture (n & 15) was comprised of a coronal slice of
somatosensory rat cortex combined with a slice from the ventral
tegmental area, which provides dopaminergic inputs to the cor-
tex for proper network development (Gireesh and Plenz, 2008).
The tissue was cultivated directly on the surface of an 8 ' 8 grid of
electrodes (Fig. 1A, 200 $m interelectrode distance, 30 $m elec-
trode diameter, no corner electrodes, 4 kHz sampling). Record-
ings were taken between 10 and 20 d in culture allowing several
1 h recordings from each network (47 recordings in total; Stewart
and Plenz 2008). The recorded voltages were low-pass filtered at
50 Hz to obtain the LFP, which was shown to correlate with the
spiking activity of the local neuronal population near each elec-
trode (Shew et al., 2009).

Observed dynamics consisted of bursts of activity like the ex-
ample shown in Figure 1B, which often spanned many recording
sites. We determined the start and end of each burst as well as
which sites participated using a threshold to identify times and
electrodes with large-amplitude negative LFP deflections (Mate-
rial and Methods).

We applied pharmacological agents to change the network excit-
ability. Neural synchrony is expected to be sensitive to such changes
in excitatory and inhibitory interactions as we demonstrate with our
computational model below. Excitatory synaptic transmission was
reduced with combined application of the NMDA and AMPA glu-

tamate receptor antagonists AP5 and DNQX. Inhibitory synaptic
transmission was reduced with GABAA receptor antagonist PTX.
Empirically, we found that the used concentrations of DNQX/AP5
resulted in disfacilitation, i.e., decreased burst size and duration,
while the partial disinhibition with PTX increased burst size and
duration. As shown in Figure 1C (blue, black), we found that the
frequency content of the LFP signals did not show any strong
peaks at particular frequencies for the no-drug and DNQX/AP5
conditions. In contrast, %-oscillations became more prominent
in disinhibited cultures as reported previously (Fig. 1C, red;
Gireesh and Plenz, 2008).

To parameterize these drug effects on spontaneous network
dynamics, we used the statistical measure !, which is based on
measured distributions of burst sizes, as developed previously
(Shew et al., 2009, 2011). This method takes advantage of the fact
that the unperturbed condition typically results in a burst size
distribution of the form Pr(s)(s#1.5, i.e., neuronal avalanches,
while the disfacilitated and disinhibited conditions result in ex-
ponential and bimodal distributions respectively. Practically, ! )
1 for unperturbed networks (! & 1.14 * 0.01; no drug; n & 28),
! ! 1 for disfacilitated networks (! & 0.81 * 0.01; DNQX/AP5;
n & 10) and ! " 1 for disinhibited networks (! & 1.51 * 0.01;
PTX; n & 9). This relationship is apparent in Figure 2A, where
each point represents the average spatial area a of bursts and !
value from a single recording and color represents drug condi-
tion. The average burst area was very small and increased gradu-
ally for small !, and began to rise more quickly near ! & 1 and
beyond (Fig. 2A). We next quantified the variability of burst area
by computing the Shannon entropy H(a) of the burst area distri-
bution. In line with similar previous work (Shew et al., 2011), the

Figure 2. Burst area and duration have moderate mean and maximum entropy near !& 1.
A, Network dynamics were parameterized using !. Low !, ! ) 1, and high ! indicate disfa-
cilitated, neuronal avalanche, and disinhibited dynamics respectively. As network activity in-
creased with an increase in !, the average spatial extent of spontaneous bursts rose slowly for
small !, and more steeply near ! & 1. Each point is the averaged burst area from a 1 h
recording. B, The diversity, i.e., Shannon entropy, of burst area was highest near ! & 1. C, The
average duration of bursts also rose strongly near !& 1 and saturated for high !. D, Entropy of
burst duration peaked near ! & 1. Error bars indicate *SEM.
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near 1 respectively ( fAPL ! 0.52 " 0.01;
ANOVA, p # 0.01). Although such anti-
phase locking in general will reduce the
magnitude of r, the high ! conditions still
resulted in the highest average r due to the
fact that anti-phase-locked groups were
always small compared with the phase-
locked groups.

Maximum entropy and onset of
synchrony near ! " 1 in
computational model
To gain further insight into our experimental
findings, we next performed a similar investi-
gation in a network-level computational
model. Network-level phase synchrony has
been investigated extensively in previous
theoretical and model studies using coupled
oscillators (Strogatz, 2001; Arenas et al.,
2008). Naively, one might interpret the sig-
nal recorded from one electrode as one the-
oretical oscillator. However, in reality, each
electrode records the collective activity of a
population of E and I neurons. Thus, our
experimental pharmacological E–I manipu-
lations effect not only the coupling between
electrodes, but also the coupling among the
local neurons measured by a single elec-
trode. Since the intrinsic properties of a
theoretical oscillator do not depend on cou-
pling, the interpretation of one electrode as
one oscillator is problematic. Therefore, we
developed a computational model with the
aim of obtaining results which were more
directly comparable to our experiments,
while keeping the model as simple as
possible.

The computational model was com-
prised of an all-to-all connected network of
binary neurons, 80% excitatory and 20% in-
hibitory. The model neurons were divided
into 59 groups meant to represent the pop-
ulations of neurons measured by our 59
electrodes in the experiments (Fig. 7A). Dif-
ferent network sizes were studied with
between 30 and 80 neurons per group.
Probabilistic integrate-and-fire dynamics
were implemented (Materials and Meth-
ods). We modeled bursts like those ob-
served in our experiments one at a time,
each starting with a single initially active ex-
citatory neuron and continuing until activ-
ity ceased or a time limit was reached. The
spike activity of each group was summed to
model an LFP-like population signal (Fig.
7B,C). This is justified based on previous
experiments showing that the size of a burst
based on LFP measurements is proportional
to the number of spikes recorded from the
underlying network during the burst (Shew et al., 2009). These
group signals were then subjected to precisely the same analysis as
performed with the experimental data. Figure 7, D and E, shows
example phase traces, a dynamic phase histogram, and a synchrony

r trace. We quantified how burst area, duration, and phase syn-
chrony depend on E–I conditions, as revealed by !.

Disinhibited or disfacilitated conditions were modeled by weak-
ening all efferent connections from inhibitory or excitatory neurons,

Figure 6. Synchrony as function of ! is independent of spatial extent, resolution of MEA, and frequency band of LFP. The data shown
and described in Figure 5 were recomputed using two different arrangements of MEA electrodes and three different frequency bands. A, A
4$4compactgroupofelectrodescoveringa800"m$800"mrecordingareanearthecenterofthearray(red). B,A4$4sparsegroup
of electrodes covering the full 1600"m$1600"m area, but with half the spatial resolution (blue). C, Frequency bands included 4 –12 Hz
(green),12–25Hz(gold),and25–50Hz(orange). D–I,SamefigurelegendasinFigure5A–F.Notethatmainconclusionswereunchanged,
although average network synchrony tended to decrease for higher frequency bands.
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greatly). To obtain response as a function of
stimulus in the model, we simulated increasing
stimulus amplitude S by increasing the number
of initially activated neurons (S ! 1, 2, 4, 16,
32, 64, 128 initially active neurons). Finally, we
note that our model is very similar to (N "
1)-dimensional directed percolation (Buice
and Cowan, 2007). Therefore, at high dimen-
sion (N # 5) and weak coupling, it is expected
that the model behaves as a branching process,
where ! is the branching parameter and the
"3/2 power law is predicted at criticality.

To test for statistical differences between
groups, a one-way ANOVA followed by a
Tukey post hoc test was used.

Results
Cortex–VTA cocultures from rat (n ! 16),
which closely parallel in vivo differentia-
tion and maturation of cortical superficial
layers (Gireesh and Plenz, 2008), were
grown on 8 $ 8 integrated planar micro-
electrode arrays (Fig. 1A). LFPs were
recorded after superficial layer differenti-
ation (#10 d in vitro, DIV) and analyzed
to extract spatiotemporal clusters of
nLFPs (n ! 47 experiments). Extracellu-
lar unit activity recorded simultaneously
with the LFP revealed that sizes of nLFP
clusters correlated with the level of su-
prathreshold neuronal activity in the net-
work (Fig. 1B) (R ! 0.84 % 0.13, mean %
SD; n ! 5 cultures). For each experimen-
tal condition, we first measured sponta-
neous activity (Fig. 1C) and quantified
the deviation of the observed spontaneous
network dynamics from neuronal ava-
lanche dynamics by calculating " (Fig.
2A) (see Materials and Methods). In a sec-
ond step, we measured the input/output
dynamic range & of the cultured network
based on its response to a range of stimu-
lus amplitudes (Figs. 1D, 3A). These mea-
surements were performed under normal
conditions and repeated after changing the ratio of excitation and
inhibition through bath application of the antagonists PTX or
AP5/DNQX.

Quantifiying the cortical network state based on !
Figure 2A (left) shows experimental cluster size PDFs obtained
from three cultures under normal, unperturbed conditions and
in the presence of PTX or AP5/DNQX, respectively. Under nor-
mal conditions, cultures revealed a PDF close to "3/2 power law
as predicted for neuronal avalanches (Fig. 2A, black). In the pres-
ence of PTX, however, the PDF is bimodal, revealing a high like-
lihood for small and large activity clusters, but a decreased
probability of medium-sized clusters (Fig. 2A, red). In contrast,
bath application of AP5/DNQX reduces large clusters resulting in
mostly small clusters (Fig. 2A, blue). These differences in PDFs
are robustly assessed using the corresponding CDFs (Fig. 2A,
right). Reducing excitation results in a steep early rise of the CDF,
while reducing inhibition results in a delayed rise of the CDF. "
robustly quantifies these observations using the difference be-
tween a measured CDF of cluster sizes and the theoretically ex-

pected reference CDF for neuronal avalanches (Fig. 2A, right,
gray lines). As summarized in Figure 2C, " ! 1 under normal
conditions (" ! 1.14 % 0.01, mean % SE; n ! 28), " ' 1 when
excitation is reduced (" ! 0.81 % 0.01; n ! 10) and " # 1 when
inhibition is reduced (" ! 1.51 % 0.01; n ! 9; F(2,44) ! 82.7; p '
0.05 for PTX and AP5/DNQX from normal).

This experimental strategy was paralleled using a network-
level computational model of binary, integrate-and-fire neurons,
in which changes in the excitation/inhibition ratio (E/I) were
mimicked by tuning the parameter ! (see Materials and Meth-
ods). For ! ' 1, a neuron triggers activity in less than one neuron,
on average, resulting in a hypoexcitable state. Conversely, for ! #
1, one neuron excites on average more than one neuron in the
near future, resulting in a hyperexcitable condition. Accordingly,
for ! ! 1, propagation of activity is balanced, as was found ex-
perimentally for neuronal avalanches (Beggs and Plenz, 2003;
Stewart and Plenz, 2008). We simulated “spontaneous” activity
clusters by activating a single randomly chosen neuron and mon-
itoring the ensuing until activity ceased or 500 time steps were
executed. The total number of spikes in a cluster was taken as the

Figure 3. Stimulus–response curves and dynamic range &. A, Experimental response R evoked by current stimulation of
amplitude S for three example cultures with different " values. Orange arrows, Range from Smin to Smax; length is proportional to
&. Note that & is largest for " ! 1. B, Model response evoked by different numbers of initially activated sites; & is largest for
! ! 1. Like the experiment, each point is calculated from 40 stimuli. Error bars, 1 SE. C, Experimental summary statistics for "
under different pharmacological conditions (*p ' 0.05 from normal). D, Simulation summary statistics for " comparing different
ranges of ! (*p ' 0.05 from ! ! 1).
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cluster size. One thousand clusters were simulated at each of 11
levels of !. In agreement with established theory, model cluster
size PDFs near criticality (i.e., ! ! 1) fit a "3/2 power law very
closely (Fig. 2B, right, black) (Harris, 1989; Zapperi et al., 1995).
Just as in the experiment, we computed " based on CDFs of
simulated spontaneous activity for different values of ! (Fig. 2B).
We found that " and ! were almost linearly related (Fig. 2D),
which supports the following interpretation: In the experiments,
" ! 1 is close to criticality, " # 1 identifies the subcritical regime,
and " $ 1 is analog to the supercritical regime of the model.

Stimulus-evoked activity and dynamic range
After obtaining " for a given experimental condition, we re-
corded the response R as a function of stimulus amplitude S (for
peristimulus time histograms of response for different S, see sup-
plemental material, available at www.jneurosci.org) Typical re-
sponse curves from experiments and simulations are shown in
Figure 3, A and B, respectively. We found that the shape of the
response curves in the model closely matched the experimental
findings. When excitatory synaptic transmission was reduced
(" # 1), the system was relatively insensitive (required a larger
stimulus to evoke a given response). When inhibitory synaptic
transmission was reduced (" $ 1), the system was hyperexcitable,
with responses that saturate for relatively small stimuli. In the
balanced E/I condition with " ! 1, the range of stimuli resulting
in nonzero and nonsaturated response was largest.

Maximal dynamic range at criticality, ! ! 1
For each response curve, we quantified the range of stimuli the
network can process, i.e., the dynamic range % (see Materials and
Methods). We found experimentally that % ! 5.0 & 0.1 (mean &
SE) under normal conditions, % ! 2.4 & 0.1 in the presence of
PTX, and % ! 3.4 & 0.3 for AP5/DNQX (Fig. 3C) (F(2,44) ! 11.3;
p # 0.05 PTX and AP5/DNQX from normal). Importantly, the
dynamic range was largest in unperturbed networks, in which
neuronal avalanches are most likely to occur. These results were
robust for different network sizes and different maximal stimulus
amplitudes, whether or not the response curves reached satura-
tion for all conditions (see supplemental material, available at
www.jneurosci.org). Similar overall changes in % were also found
in our simulations (Fig. 3D) (F(2,195) ! 820; p # 0.05).

We then derived a tuning curve of % versus " by combining all
experimental conditions into one scatter plot (Fig. 4A). These
data demonstrate that % is maximized and its variability is largest
near " ! 1. These findings agree well with our model including
changes in % as the system is pushed away from " ! 1, '10 dB
drop (10-fold reduction in Smax/Smin) for a 30% change in " (Fig.
4B). The tuning curve demonstrates that the change in the dy-
namic range of a network due to a shift in E/I depends on both the
original, unperturbed state and the resulting change in ".

Discussion
We experimentally derived a tuning curve that linked the state of
a cortical network with its ability to process stimuli. When the
network was closest to criticality, as indicated by neuronal ava-
lanches, " was close to 1 and dynamic range was maximized. This
is the first experimental demonstration to confirm theoretical
predictions on the computational advantage of operating at crit-
icality. Dynamic range has been predicted in simulations to peak
at criticality (Kinouchi and Copelli, 2006). Our simulations ad-
vance previous studies by linking the dynamic range of a network
with the spontaneous activity it generates. Because the dynamic
range increases with the ability of a network to map input differ-

ences into distinguishable network outputs, our result is also
closely related to network-mediated separation, which has been
predicted to peak at criticality, at the transition from ordered to
chaotic dynamics (Bertschinger and Natschlager, 2004; Legenstein
and Maass, 2007). In contrast, our results show that variability of
response to a given stimulus is highest at criticality. Further in-
vestigation of reliability versus variability in cortical networks is
warranted.

Considering the simplicity of our model with all-to-all con-
nectivity, absence of refractory period, and approximating inhi-
bition by reducing !, the overall agreement in the %–"
relationship between experiment and simulation is remarkable.
The increase of variability in % as well as the drop in % due to
deviation from " ! 1 was well matched between experiment and
simulations. Such similarity supports the notion that universal
principles, independent of system details, are found at criticality
(Stanley, 1971; Bak and Paczuski, 1995; Jensen, 1998). The main
quantitative difference was the lower % values for experiments
compared to the model. Experimental noise, which is absent in
the model, effectively adds a constant value to Smin and Smax,
which systematically reduces %.

Further neurophysiological insight into our results can be
gained from Figure 3. There it is shown that networks poorly
discriminate small inputs in the hypoexcitable state, whereas they
tend to saturate, failing to discriminate larger inputs in the hy-
perexcitable state. Both these reductions in performance result in
reduced dynamic range compared to balanced networks. In line
with these findings, dissociated cultures respond to inputs with a
“network spike” if ! $ 1 (Eytan and Marom, 2006) and display a

Figure 4. Network tuning curve for dynamic range % near criticality. A, In experiments, %
peaks close to " ! 1 and drops rapidly with distance from criticality. Paired measurements
share the same symbol shape; normal (no-drug) condition was measured just before the drug
condition. Circles, Unpaired measurement. B, In simulations, % is also maximum for " ! 1.
Symbol indicates network size (circles, N ! 250; squares, N ! 500; triangles, N ! 1000). Lines
represent binned averages.
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Peak information transmission between stimulus and
response for intermediate E/I and neuronal avalanches
We now present measurements of stimulus-evoked activation
patterns. A priori, one can expect a different distribution of
stimulus-evoked patterns compared with ongoing activity and
thus different entropy. Indeed, studies suggest that ongoing ac-
tivity is more diverse than typical stimulus-evoked activity (Fiser,
2004; Luczak et al., 2009; Churchland et al., 2010). However, if
the entropy of evoked patterns changes with E/I in the same way
that we found for ongoing activity, then evoked entropy may also

peak near ! ! 1. This possibility is in line with significant evi-
dence that ongoing activity in the cortex is intimately related to
stimulus-evoked activity (Kenet et al., 2003; Ji and Wilson, 2007;
Han et al., 2008; Luczak et al., 2009). For instance, stimulus-
evoked activity patterns recur during ongoing activity, at both the
population level (Kenet et al., 2003; Han et al., 2008) and the level
of spike sequences (Ji and Wilson, 2007). Therefore, our next aim
was to test whether our finding of peak entropy near ! ! 1 also
holds for stimulus-evoked activity.

Stimuli consisted of 10 different amplitude single bipolar
shocks each applied 40 times in randomized order through a
single electrode of the MEA within cortical layers II/III (see Ma-
terials and Methods). A binary pattern was constructed to repre-
sent each response during the 20 –500 ms after the stimulus. The
evoked entropy H was calculated for the set of 400 stimulus-
evoked activation patterns for each E/I. As found for ongoing
activity, the evoked entropy was highest near ! ! 1 for both fine
and coarse spatial resolution (Fig. 3A, black shows 8 " 8, green
shows coarse-grained 4 " 4) ( p # 0.05).

In Introduction, we gave a simple example in which informa-
tion transmission from input to output was limited because of
low entropy. With our measurements of network responses (i.e.,
output) to stimuli (i.e., input), we can directly test whether effi-
cacy of information transmission is optimized when entropy is
maximized. This idea is concisely summarized in the following
equation: MI(S;R) ! H(R) $ H(R!S). Here, MI(S;R) is the mu-
tual information of stimulus and response, which quantifies the
information transmission (Rieke et al., 1997; Dayan and Abbott,
2001). H(R) is the entropy of the full set of response patterns for
all stimuli, whereas H(R!S) is the conditional entropy (Rieke et
al., 1997; Dayan and Abbott, 2001). As shown above, H(R) is
maximized near ! ! 1. Because H(R!S) is always positive,
MI(S;R) is bounded by H(R) and thus potentially also peaks near
! ! 1. Indeed, we measured MI(S;R) under different E/I condi-
tions and found that stimulus–response mutual information was
maximized near ! ! 1 (Fig. 3B, black shows 8 " 8, green shows
coarse-grained 4 " 4) ( p # 0.05).

Competition between activity rates and interactions explains
peak in entropy
To identify and quantify the mechanisms leading to the peak in
entropy near ! ! 1, we analyzed in more detail the coarse-grained
4 " 4 patterns measured during ongoing activity (Fig. 2D, green).
A priori, the total number of unique patterns that are possible is
2 16, implying a maximum H " log2(2 16) ! 16 bits. This maxi-
mum would be reached if all 2 16 patterns occurred with equal
probability. However, during a 1 h recording, the network did
not generate all possible patterns, nor were different patterns
equally likely, resulting in H that was always below 16 bits. The
peak in H was explained by three main factors that changed with
the E/I ratio: (1) the number N of patterns observed during the
recording, (2) the likelihood L that sites participate in patterns,
and (3) the strength of interactions between sites. The first two
effects are related to the rates of observed activity and impose upper
bounds on H: effect 1 requires H " log2(N) (Fig. 4A, dash–dot line),
and effect 2 limits H in a way that depends on L (Fig. 4A, dashed
line). Specifically, the highest possible entropy for a given L can be
computed by assuming that sites are independent:

H # $"
i!1

M

%Li log2 Li % %1 $ Li& log2%1 $ Li&&. (9)

Figure 2. Ongoing activity: peak information capacity at intermediate E/I ratio specified by
! ' 1. A, Information capacity (entropy H ) of the pattern repertoire is maximized when no
drugs perturb the E/I ratio. Significant differences are marked; *p#0.05. Box plot lines indicate
lower quartile, median, upper quartile; whiskers indicate range of data, excluding outliers ((,
)1.5 times the interquartile range). B, The statistic ! provides a graded measure of E/I condi-
tion based on network dynamics (see Materials and Methods). C, Entropy H peaks near ! ' 1.
Each point represents one recording of ongoing activity (n ! 47; 8 " 8 MEA; 1 h; color indicates
drug condition: red, PTX; blue, AP-5/DNQX; black, no drug). Line is the binned average of points.
D, The peak in entropy H is robust to changes in spatial resolution (green; 4 " 4 coarse binned,
1 h), spatial extent (orange; 4 " 4 subregion, 1 h), and duration (purple; 4 " 4 coarse binned,
12 min) of recording (black, same data as in C). Error bars indicate mean * SEM.
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where M is the number of recording sites, and Li is the likelihood
of participation for site i. This formula is based on the fact that the
entropy of two independent systems combined is the sum of their
individual entropies. Because a single site i is either active (with
probability Li) or inactive (with probability 1 ! Li), its entropy is
!Li log2 Li ! (1 ! Li) log2 (1 ! Li). Thus, adding the entropy of
all sites, we obtain the formula above. When L " 1⁄2, increasing L
increases the upper bound on H. When L # 1⁄2, increasing L
decreases the upper bound on H. We found that L increased over
the range of E/I conditions we studied (Fig. 4C), whereas the
number of patterns N did not show a systematic trend.

We turn now to effect 3. Increased interactions between sites
always reduce H because of the increased redundancy of the in-
formation at different sites (Schneidman et al., 2003). We found
that site-to-site interactions during ongoing activity increased
with E/I (Fig. 4E) and quantified this trend in two ways. First, we

computed MI between the activity recorded from different pairs
of sites (Fig. 4E, red). Note that above we used mutual informa-
tion in a different way, computed between stimulus and re-
sponse, MI(R;S), to assess information transmission. Second, we
estimated the effect of interactions by computing the drop in
entropy resulting from shuffling the data. The shuffling proce-
dure destroyed interactions by randomizing the set of population
events in which each site participated, while keeping L and N
fixed (see Materials and Methods). The entropy of the shuffled
data for the corresponding original ! value is shown in Figure 4A
(black) and, as expected, nearly reached the bounds set by the
combined effects 1 and 2. The difference in entropy $H between
the measured and shuffled data is attributable to interactions
(Fig. 4E, blue). $H has been used previously to quantify redun-
dancy (Dayan and Abbott, 2001).

In summary, at low E/I, effects 2 and 3 compete and effect 2
wins, i.e., activity rates drop sufficiently low to cause low entropy
although interactions are also low. At high E/I, effects 2 and 3
cooperate, i.e., both high activity rates and strong interactions
cause low entropy. Entropy peaked at an intermediate E/I ratio
at which interactions between sites were not too low or too
high (specified by MI % 0.2) and activity was not too de-
pressed (L % 0.25).

Figure 3. Stimulus-evoked activity: peak information transmission at intermediate E/I ratio
specified by ! % 1. A, Single shock stimuli with 10 different amplitudes (10 –200 "A) were
applied 40 times each using a single electrode. The pattern repertoire of stimulus-evoked ac-
tivity has maximum entropy near ! & 1. This holds for 8 ' 8 response patterns (black line) as
well as coarse-resolution 4 ' 4 patterns (green line). Points correspond to 8 ' 8 patterns: light
blue, AP-5/DNQX; gray, no drug; pink, PTX. B, The efficacy of information transfer, i.e., mutual
information of stimulus and response, also peaks near !& 1 (black, 8 ' 8; green, 4 ' 4). Error
bars indicate SEM.

Figure 4. Peak information capacity explained. A detailed analysis of in vitro experimental
results (left, Fig. 2 D, green) and model results. A, B, Upper bounds on entropy are set by (1) the
average likelihood that sites participate in patterns (dashed) and (2) the number of patterns
observed (dash-dotted). When the effects of interactions are removed by shuffling (see Mate-
rials and Methods), the entropy reaches these bounds (black), but the measured entropy
(green) is always lower as a result of interactions. C, D, Rise in participation likelihood L as E/I
ratio is increased. This rise accounts for the bounds (dashed) shown in A and B. E, F, Rise in
interactions between sites (mutual information, red) is proportional to the loss in information
capacity $H (blue). All error bars indicate SEM.
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processing in cortical networks, with peak
performance found under balanced con-
ditions that generate neuronal avalanche
activity.

Materials and Methods
Organotypic cultures on microelectrode arrays.
Coronal slices from rat somatosensory cortex
(350 !m thick, postnatal day 0 –2; Sprague
Dawley) and the midbrain (VTA; 500 !m
thick) were cut and cultured on a poly-D-
lysine-coated 8 ! 8 microelectrode array
(MEA) (Multi Channel Systems; 30 !m elec-
trode diameter; 200 !m interelectrode dis-
tance). In this organotypic slice coculture, the
development of deep and superficial cortical
layers (Götz and Bolz, 1992; Plenz and Kitai,
1996) as well as neuronal avalanche activity
parallels that observed in vivo (Gireesh and
Plenz, 2008). In short, a sterile chamber at-
tached to the MEA allowed for repeated re-
cording from cultures for weeks. After plasma/
thrombin-based adhesion of the tissue to the
MEA, standard culture medium was added
(600 !l, 50% basal medium, 25% HBSS, 25%
horse serum; Sigma-Aldrich). MEAs were then
affixed to a slowly rocking tray inside a custom-
built incubator ("65° angle, 0.005 Hz fre-
quency, 35.5 " 0.5°C) (Stewart and Plenz,
2008).

Spontaneous activity. Using a recording head
stage inside the incubator (MEA1060 w/blank-
ing circuit; !1200 gain; bandwidth 1–3000 Hz;
12 bit A/D; range 0 – 4096 mV; Multi Channel
Systems), local field potential (LFP; 4 kHz sam-
pling rate; reference electrode in bath) was ob-
tained from 1 h of continuous recordings of
extracellular activity (low-pass, 100 Hz, phase-
neutral). To establish a correlation between
LFP and neuronal spiking activity, in n # 5
cultures, extracellular activity was recorded for
15 min at 25 kHz. In addition to extracting
LFP, the extracellular signal was filtered in the
frequency band 300 –3000 Hz and $78 single
units were identified per culture using thresh-
old detection and PCA-based spike sorting
(Offline Sorter; Plexon).

Stimulus-evoked activity. Immediately fol-
lowing each 1 h recording of spontaneous ac-
tivity, stimulus-evoked activity was measured.
Stimuli were applied at 5 s intervals at one elec-
trode located approximately at the center of the
culture, in superficial cortical layers. Stimuli were
current-controlled, single shocks with bipolar
square waveform: 50 !s with amplitude %S fol-
lowed by 100 !s with amplitude &S/2, where
6 $ S $ 200 !A. We tested one set of stimulus
amplitudes with fine resolution (S # 10 –200
!A in steps of 10 !A), and another with coarser
resolution (S # 6, 12, 24, 50, 65, 80, 100, 150,
200 !A). Results were similar for the two pro-
tocols. Each stimulus level was repeated 40
times in pseudorandomized order resulting
in a total recording duration of 2000 (coarse)
or 4000 (fine) s. Each stimulus-evoked re-
sponse was recorded using all electrodes ex-
cept for the stimulation electrode during 500
ms following stimulation. A blanking circuit

Figure 1. Measuring spontaneous and stimulus-evoked activity from cortical networks. A, Light-microscopic image of a
somatosensory cortex and dopaminergic midbrain region (VTA) coronal slice cultured on a 60-channel microelectrode
array. Yellow dot, Stimulation site. Black dots, Recording sites. B, Number of extracellular spikes correlates with the size of
simultaneously recorded nLFP burst (R # 0.84 " 0.13; n # 1). Each point represents total number of spikes versus the
corresponding spontaneous nLFP burst size. C, Example recordings of spontaneous LFP fluctuations (left) and nLFP rasters
(right) for three drug conditions (top, AP5/DNQX; middle, no drug; bottom, PTX). D, Examples of LFP evoked by 70 !A
stimulus (left) and rasters recorded during the application of four stimuli of amplitudes 50, 40, 90, 150 !A (yellow line,
stimulus time) (right) for three drug conditions. For both spontaneous (C) and stimulus-evoked (D) activity AP5/DNQX
(PTX) typically results in reduced (increased) amplitude LFP events with lesser (greater) spatial extent. In C and D, black
dots on the LFP traces indicate nLFP events, raster point color indicates nLFP amplitude, and all calibration bars (left)
represent 50 !V, 100 ms.
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disconnected the recording amplifiers during stimulation, signifi-
cantly reducing stimulus artifacts (Multi Channel Systems). Sample
rate and filtering was identical to that used for spontaneous activity
recordings.

Pharmacology. Bath application of antagonists of fast glutamatergic or
GABAergic synaptic transmission was used to change ratios of excita-
tion to inhibition (E/I ). The normal (no-drug) followed by a drug
condition was studied within 3 h to minimize nonstationarities dur-
ing development. Stock solutions were prepared for the GABAA re-
ceptor antagonist picrotoxin (PTX), the NMDA receptor antagonist
(2 R)-amino-5-phosphonovaleric acid (AP5), and the AMPA receptor
antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). Six microli-
ters of these stock solutions were added to 600 !l of culture medium
to reach the following working concentrations (in !M): 5 PTX, 20
AP5, 10 AP5 ! 0.5 DNQX, and 20 AP5 ! 1 DNQX. After recording,
the drug medium was replaced with 300 !l of drug-free conditioned
medium (collected from the same culture the previous day) mixed
with 300 !l of fresh, unconditioned medium. Most cultures recovered
to criticality within "24 h.

Spontaneous cluster size and response to stimulus. For each electrode, we
identified negative peaks in the LFP (nLFPs) that were more negative
than #4 SDs of the electrode noise. We then identified a cluster of nLFPs
on the array as a group of consecutive nLFPs each separated by less than
a time " (Beggs and Plenz, 2003). The threshold " was chosen to be greater
than the short timescale of interpeak intervals within a cluster, but less
than the longer timescale of intercluster quiescent periods (" $ 86 % 71
ms for all cultures; see also supplemental material, available at www.
jneurosci.org). Results were robust for a large range in the choice of "
(data not shown). The size s of a cluster was quantified as the absolute
sum of all nLFP amplitudes within a cluster. Similarly, the size R of an
evoked response was quantified as the absolute sum of nLFPs within 500
ms following a stimulus.

Definition of #. For neuronal avalanches, the probability density func-
tion (PDF) of cluster size s follows a power law with slope $ $ #3/2
(Beggs and Plenz, 2003) (see Fig. 2 A). Thus, the corresponding cumula-
tive density function (CDF) for cluster sizes, FNA(%), which specifies the
fraction of measured cluster sizes s & %, is a #1/2 power-law function,
FNA(%) $ (1 # 'l/L) #1(1 # 'l/%) for l & s & L. Here we define a novel
nonparametric measure, #, to quantify the difference between an exper-
imental cluster size CDF, F(%), and the theoretical reference CDF,
FNA(%),

# & 1 '
1

m !
k$1

m

(FNA(%k) ( F(%k)), (1)

where %k are m $ 10 burst sizes logarithmically spaced between the
minimum and maximum observed burst size. Using CDFs rather than
PDFs to calculate # avoids the sensitivity to binning in constructing a
PDF. Compared to other nonparametric comparisons of CDFs, e.g.,
Kolmogorov–Smirnov and Kuiper’s test, as well as other methods, #
more accurately measures deviation from neuronal avalanches (see
supplemental material, available at www.jneurosci.org).

Dynamic range. After measuring responses to a range of stimulus
amplitudes, we used the response curve, R( S), to compute dynamic
range,

* & 10 log10(Smax/Smin), (2)

where Smax and Smin are the stimulation values leading to 90% and 10%
of the range of R, respectively.

Model. The model consisted of N all-to-all coupled, binary-state neu-
rons (N $ 250, 500, 1000) and the following dynamical rules: If neuron j
spiked at time t (i.e., sj(t) $ 1), then postsynaptic neuron i will spike at
time t ! 1 with probability pij. As such, the pij are N 2 numbers represent-
ing the synaptic coupling strengths between each pair of neurons. The pij

are asymmetric pij + pji, positive, time-independent, uniformly distrib-
uted random numbers with mean and SD of order N #1. If a set of
neurons J(t) spikes at time t, then the probability that neuron i fires at
time t ! 1 is exactly piJ(t) $ 1 # ,j!J(t)(1 # pij). To implement the
probabilistic nature and variability of unitary synaptic efficacy, neuron i

actually fires at time t ! 1 only if piJ(t) - )(t), where )(t) is a random
number from a uniform distribution on [0,1],

si(t ' 1) & ./piJ(t) ( )(t)0
& ./1 ( "

j!J(t)
(1 ( pij) ( )(t)0 , (3)

where 1[x] is the unit step function. Like our experiments, we explore a
range of network excitability by tuning the mean value of pij from 0.75/N
to 1.25/N in steps of 0.05/N by scaling all pij by a constant. For such small
mean pij, the model reduces to probabilistic integrate-and-fire, i.e., piJ 2
#j!J(t)pij to order N #2 accuracy. If the mean pij is exactly N #1, then n
spikes at time t will, on average, excite n postsynaptic spikes at time t ! 1,
which constitutes criticality in our model (Beggs and Plenz, 2003; Kinouchi
and Copelli, 2006). When mean pij is larger than or less than N #1, the
system is supercritical or subcritical, respectively. We define the control
parameter of the model *' N #1#i#ipij. In the context of dynamics, *
reflects the average ratio of spiking descendants to spiking ancestors in
consecutive time steps. At criticality, * $ 1; the coupling strengths are
balanced such that, on average, the number of active sites neither grows
nor decays with time (note that the instantaneous activity level fluctuates

Figure 2. Change in the ratio of excitation/inhibition moves cortical networks away from
criticality. A, Left, PDFs of spontaneous cluster sizes for normal (no-drug, black), disinhibited
(PTX, red), and hypoexcitable (AP5/DNQX, blue) cultures. Broken line, #3/2 power law. Cluster
size s is the sum of nLFP peak amplitudes within the cluster; P(s) is the probability of observing
a cluster of size s. Right, Corresponding CDFs and quantification of the network state using #,
which measures deviation from a #1/2 power law CDF (broken line). Vertical gray lines, The 10
distances summed to compute #, shown for one example PTX condition (red). B, Simulated
cluster size PDFs (left) and corresponding CDFs (right) for different values of the model control
parameter *. C, Summary statistics of average # values for normal, hypoexcitable, and disin-
hibited conditions (*p & 0.05 from normal). D, In simulations, # accurately estimates *.
Broken line, # $ *. Colored dots, Examples shown in B.

Shew et al. • Dynamic Range Maximized during Neuronal Avalanches J. Neurosci., December 9, 2009 • 29(49):15595–15600 • 15597

Pattern Entropy

mimicked the doubly peaked distribution produced when
we bathed the cortical cultures in picrotoxin, an agent that
selectively blocked inhibition and increased ! [Fig. 1(b)]
[7]. The hump in the distribution near S ! 60 is caused by
activity that propagates over the entire electrode array
before dying out. The model also produced similarity
matrices and metastable states similar to those in living
networks (Fig. 2), suggesting that the simple branching
network qualitatively captured salient features of cortical
slice culture.

Using this model, we determine the branching pa-
rameter’s influence on the number of metastable states.
We ran simulations in driven mode increasing ! from
0.00 to 3.00 in increments of 0.02. For small networks
(N2 " 64) the number of metastable states peaked at
clearly supercritical values of ! [! # 1:6; Fig. 3(a)],
but for larger networks this peak gradually approached
the critical value of ! ! 1:0 [for N2 ! 2500, ! ! 1:00;
best least-squares fit single exponential for all data: ! !
1:03$ 0:01, mean$ s:d:, R2 ! 0:98; Fig. 3(b)]. While
most of these simulations used few connections to reduce
computation times (C ! 4), increasing C to 16 or 32 did
not change appreciably our results [Fig. 3(b)].

The similarity matrices the three types of networks
produced offer an intuitive explanation of these results.
Subcritical networks have units weakly coupled so their
activity is uncorrelated, producing few output configura-
tions that share more than chance similarities [Fig. 2(b),
left]. In contrast, supercritical networks have units con-
nected so strongly that activation of any unit usually acti-
vates the whole network. The one resulting metastable
state was highly ordered, but inhibited other states
[Fig. 2(b), right]. When the branching parameter was criti-
cal (! ! 1:0), a mixture of variety and order prevailed,

allowing several different clusters of output configurations
to achieve significance [Fig. 2(b), center], thus maximizing
the number of metastable states.

We also investigated dynamics in the branching net-
works. For all networks, the Boolean Lyapunov exponent
" did not settle at one value, but wandered itinerantly near
a mean (Fig. 4) [20]. In critical networks, this mean was
indistinguishable from zero (! ! 1;" % 0), producing
neutral dynamics on average. By neutral, we mean that
the distance between nearby trajectories remained nearly
constant over time. Supercritical networks had chaotic
dynamics (!> 1;" # 0), where small initial distances
between trajectories were amplified over time. Subcritical
networks had attracting dynamics (!< 1;" " 0), where
distances between trajectories shrank over time. Thus the
branching parameter determined three dynamical regimes.

Bursting in cortical slice cultures differs from the more
continuous activity seen in awake, behaving animals [21].
However, others have shown that when &0:6 cm2 slabs of
cortical tissue in vivo are isolated by cutting from incoming
connections, they burst in ways remarkably similar to
cortical cultures [22]. When slabs are made larger, burst-
ing becomes more frequent, suggesting that slabs the size
of the entire cortical mantle would produce continuous

FIG. 2. Model reproduces metastable states in culture.
(a) Similarity matrix from cortical cultures. Darker pixels along
the diagonal indicate similar output configurations, while boxes
selected by the clustering algorithm indicate possible metastable
states. (b) Similarity matrices from the model. The critical
matrix resembles experimental data, with most boxes high-
contrast. The contrast of a box typically predicts its statistical
significance, which we determine by comparison to shuffled data
[11,12]. Experimental data from [7].
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FIG. 3. The number of metastable states is maximal at the
critical point. (a) Number of metastable states plotted against !.
Peaks become sharper and closer to ! ! 1:0 for larger networks.
(b) The number of metastable states is maximal at ! ! 1:0
for largest network, regardless of the number of connections
per unit (4, 16, 32). Fit for all data asymptotically approaches
! ! 1:03$ 0:01.
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What are the consequences of changes in synaptic 
strength and consequently excitability on network

 dynamics?

Does the sensitivity of neuronal avalanches and related 
metrics to E/I conditions capture these effects?

Could these effects account for the observed 
impairments to information processing in cortical 

networks?
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‣EEG every 3 hours, 27 channels
‣we used artefact free 20s segments (eyes open condition)



Neuronal avalanches

Cascades of activity identified by two methods:

Large positive or negative events on each channel 
exceeding a certain threshold

(A)

(B) Events with high similarity - „coherence potentials“
Thiagarajan, PLoS Biol, 2010
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Synchrony and entropy measurements. We followed the approach de-
scribed previously (Yang et al., 2012) to quantify mean and variability of
synchronization. The calculation was performed on the same artifact-
free segments used for the derivation of coherence potentials. After fil-
tering the data in the alpha band (8 –12 Hz), we first obtained a phase
trace !i(t) from each EEG trace Fi(t) using its Hilbert transform H[Fi(t)]:

!i!t" " arctan
H#Fi(t)$

Fi(t)
. (2)

Next, we quantified the mean synchrony in each EEG segment by

%r!t"& "
1

L!
t'1

L

r!t", (3)

where L ' 5000 is the length of our EEG segments in samples and r(t) is
the Kuramoto order parameter:

r!t" "
1

n " !
j'1

n

ei!j!t" " , (4)

which was used as a time-dependent measure of phase synchrony with
n ' 27 being the number of EEG channels in our data.

As a measure for the variability of synchronization we derived the
entropy of r(t) in each EEG segment by

H!r!t"" " # !
i'1

B

pi log2 pi, (5)

where we estimated a probability distribution of r(t) by binning values
into intervals. pi is then the probability that r(t) falls into a range bi (
r(t) $ bi)1. Similar to Yang et al. (2012), we found results to be robust
over a broad range for the number of bins B used. We applied B ' 24 in
the current analysis.

Derivation of the distribution of PLIs. PLIs were calculated for all
possible pairs of derivations of artifact-free EEG segments of 19.53 s
duration (5000 samples, same segments as for the analysis of coher-
ence potentials and synchronization measures). The analysis was per-
formed for scale 4 (8 –16 Hz; alpha band; see below) and scale 5 (4 – 8
Hz; theta band).

Hilbert wavelet transforms. To derive a scale-dependent estimate of the
phase difference between two EEG channels, we follow the approach
described previously (Kitzbichler et al., 2009) using Hilbert transform
derived pairs of wavelet coefficients (Whitcher et al., 2005). We define
the instantaneous complex phase vector for two signals Fi(t) and Fj(t) as
follows:

Cij!t" "
Wk!Fi!t""†Wk!Fj!t""

# Wk!Fi!t"" # # Wk!Fj!t"" # , (6)

where Wk denotes the kth scale of a Hilbert wavelet transform and † its
complex conjugate. Here Fi(t) and Fj(t) are different EEG derivations. A
local mean phase difference in the frequency interval defined by the kth
wavelet scale is then given by

*%i, j!t" " Arg!Ci, j!t"", (7)

with

Ci, j!t" "
%Wk!Fi!t""†Wk!Fj!t""&

$% #Wk!Fi!t""#2&% #Wk!Fj!t""#2&
(8)

being a less noisy estimate of Ci,j(t) where % · & indicates the temporal
average over a time window *t ' 2k8 in sampling steps (Kitzbichler et al.,
2009).

Intervals of phase locking can then be identified as periods when
#*&i,j(t)# is smaller than some arbitrary threshold, which we set to '/4.

We also require the modulus squared of the complex time average,
(i, j

2 " # Ci, j #2, to be larger than 0.5, limiting the analysis to phase
difference estimates above this level of significance.

Estimation of the goodness of power-law fit. To determine the quality of
the fit of a power-law function to the observed distribution we performed
a goodness-of-fit test, which leads to a p value that quantifies the plausi-
bility of the hypothesis that the distribution is power-law like (Clauset et
al., 2009). Upon fitting the empirical distribution, power-law distributed
synthetic data were generated with parameters derived from the power-
law fit and individually fit to their own power-law model. The p values
were then defined as the fraction of times the resulting Kolmogorov–
Smirnov statistics for each synthetic data (n ' 1000) relative to its own
model was larger than the value of the empirical data. Larger p values
therefore indicate a higher probability that the observed distribution
could be explained by an underlying power-law characteristic. Con-
versely, low p values make a power-law distribution a less likely distribu-
tion to describe the empirical data.

As a measure quantifying the difference of a given empirical distribu-
tion of some quantity X (in our case S or PLI) from a power-law distri-
bution with exponent ), we defined

*D "
1

NX
¥%P!X" · % X

Xmin
& )+1

# 1& , (9)

for which the cumulative probability distribution P( X) of the distri-
bution’s tail, i.e., the NX number of X values with values larger than
some minimal value Xmin, was used. For distributions of cascade sizes
the minimum Smin was set to 1 and cascade sizes up to system size (i.e.,
number of channels 27) were included in the sum. For the distribu-
tion of PLI the minimal value PLImin given by the fitting algorithm
was applied.

Power density spectra. EEG power density spectra were computed for
derivation C3A2 of artifact-free 20 s epochs (same starting points as
segments used for the derivation of coherence potentials, synchroniza-
tion measures, and PLIs; fast Fourier transform routine; Hanning win-
dow; frequency resolution 0.25 Hz). Power in the theta (5– 8 Hz) and
alpha (8.25–12 Hz) range was determined and averaged for eyes-open
segments per session and subject.

Results
Coherence potentials organize as neuronal avalanches in
the EEG
We investigated the spatiotemporal organization of coherence
potentials in artifact-free EEG intervals in the eyes-open condi-
tion. Artifact-free EEG intervals were analyzed in segments of
length 5000 samples (corresponding to 19.53 s; see Materials and
Methods). Multiple segments were analyzed for each subject and
EEG session. On each of these segments, we first determined
potentials with either a positive or a negative deflection larger
than a certain threshold, which we termed trigger events and
second identified segments with high similarity to these trigger
events (see Materials and Methods). Amplitude distributions
from EEG signals start to deviate from a Gaussian distribution for
deflections larger than 4 SD (Fig. 1A). For the detection of co-
herence potentials we therefore focused on a threshold of ,4
SD throughout the paper. Systematic exploration of other
thresholds around ,4 SD verified that results were indepen-
dent of the exact choice of threshold (Fig. 2C,D). Figure 1B
shows some exemplary trigger events, their mean duration in
all subjects was 468 , 5 ms. Next, segments of the same length
and with high similarity to trigger events were located. Poten-
tials were considered similar to a trigger event when their
correlation R was equal to or greater than 0.75 (see Materials
and Methods). Again, systematic analysis with different R val-
ues confirmed that results were robust over a range of values
(Fig. 2C,D).
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Synchrony and entropy measurements. We followed the approach de-
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synchronization. The calculation was performed on the same artifact-
free segments used for the derivation of coherence potentials. After fil-
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trace !i(t) from each EEG trace Fi(t) using its Hilbert transform H[Fi(t)]:
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Hilbert wavelet transforms. To derive a scale-dependent estimate of the
phase difference between two EEG channels, we follow the approach
described previously (Kitzbichler et al., 2009) using Hilbert transform
derived pairs of wavelet coefficients (Whitcher et al., 2005). We define
the instantaneous complex phase vector for two signals Fi(t) and Fj(t) as
follows:
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Intervals of phase locking can then be identified as periods when
#*&i,j(t)# is smaller than some arbitrary threshold, which we set to '/4.

We also require the modulus squared of the complex time average,
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2 " # Ci, j #2, to be larger than 0.5, limiting the analysis to phase
difference estimates above this level of significance.

Estimation of the goodness of power-law fit. To determine the quality of
the fit of a power-law function to the observed distribution we performed
a goodness-of-fit test, which leads to a p value that quantifies the plausi-
bility of the hypothesis that the distribution is power-law like (Clauset et
al., 2009). Upon fitting the empirical distribution, power-law distributed
synthetic data were generated with parameters derived from the power-
law fit and individually fit to their own power-law model. The p values
were then defined as the fraction of times the resulting Kolmogorov–
Smirnov statistics for each synthetic data (n ' 1000) relative to its own
model was larger than the value of the empirical data. Larger p values
therefore indicate a higher probability that the observed distribution
could be explained by an underlying power-law characteristic. Con-
versely, low p values make a power-law distribution a less likely distribu-
tion to describe the empirical data.

As a measure quantifying the difference of a given empirical distribu-
tion of some quantity X (in our case S or PLI) from a power-law distri-
bution with exponent ), we defined
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for which the cumulative probability distribution P( X) of the distri-
bution’s tail, i.e., the NX number of X values with values larger than
some minimal value Xmin, was used. For distributions of cascade sizes
the minimum Smin was set to 1 and cascade sizes up to system size (i.e.,
number of channels 27) were included in the sum. For the distribu-
tion of PLI the minimal value PLImin given by the fitting algorithm
was applied.

Power density spectra. EEG power density spectra were computed for
derivation C3A2 of artifact-free 20 s epochs (same starting points as
segments used for the derivation of coherence potentials, synchroniza-
tion measures, and PLIs; fast Fourier transform routine; Hanning win-
dow; frequency resolution 0.25 Hz). Power in the theta (5– 8 Hz) and
alpha (8.25–12 Hz) range was determined and averaged for eyes-open
segments per session and subject.

Results
Coherence potentials organize as neuronal avalanches in
the EEG
We investigated the spatiotemporal organization of coherence
potentials in artifact-free EEG intervals in the eyes-open condi-
tion. Artifact-free EEG intervals were analyzed in segments of
length 5000 samples (corresponding to 19.53 s; see Materials and
Methods). Multiple segments were analyzed for each subject and
EEG session. On each of these segments, we first determined
potentials with either a positive or a negative deflection larger
than a certain threshold, which we termed trigger events and
second identified segments with high similarity to these trigger
events (see Materials and Methods). Amplitude distributions
from EEG signals start to deviate from a Gaussian distribution for
deflections larger than 4 SD (Fig. 1A). For the detection of co-
herence potentials we therefore focused on a threshold of ,4
SD throughout the paper. Systematic exploration of other
thresholds around ,4 SD verified that results were indepen-
dent of the exact choice of threshold (Fig. 2C,D). Figure 1B
shows some exemplary trigger events, their mean duration in
all subjects was 468 , 5 ms. Next, segments of the same length
and with high similarity to trigger events were located. Poten-
tials were considered similar to a trigger event when their
correlation R was equal to or greater than 0.75 (see Materials
and Methods). Again, systematic analysis with different R val-
ues confirmed that results were robust over a range of values
(Fig. 2C,D).
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Synchrony and entropy measurements. We followed the approach de-
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synchronization. The calculation was performed on the same artifact-
free segments used for the derivation of coherence potentials. After fil-
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the current analysis.
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described previously (Kitzbichler et al., 2009) using Hilbert transform
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follows:

Cij!t" "
Wk!Fi!t""†Wk!Fj!t""

# Wk!Fi!t"" # # Wk!Fj!t"" # , (6)

where Wk denotes the kth scale of a Hilbert wavelet transform and † its
complex conjugate. Here Fi(t) and Fj(t) are different EEG derivations. A
local mean phase difference in the frequency interval defined by the kth
wavelet scale is then given by

*%i, j!t" " Arg!Ci, j!t"", (7)

with

Ci, j!t" "
%Wk!Fi!t""†Wk!Fj!t""&

$% #Wk!Fi!t""#2&% #Wk!Fj!t""#2&
(8)

being a less noisy estimate of Ci,j(t) where % · & indicates the temporal
average over a time window *t ' 2k8 in sampling steps (Kitzbichler et al.,
2009).

Intervals of phase locking can then be identified as periods when
#*&i,j(t)# is smaller than some arbitrary threshold, which we set to '/4.

We also require the modulus squared of the complex time average,
(i, j

2 " # Ci, j #2, to be larger than 0.5, limiting the analysis to phase
difference estimates above this level of significance.

Estimation of the goodness of power-law fit. To determine the quality of
the fit of a power-law function to the observed distribution we performed
a goodness-of-fit test, which leads to a p value that quantifies the plausi-
bility of the hypothesis that the distribution is power-law like (Clauset et
al., 2009). Upon fitting the empirical distribution, power-law distributed
synthetic data were generated with parameters derived from the power-
law fit and individually fit to their own power-law model. The p values
were then defined as the fraction of times the resulting Kolmogorov–
Smirnov statistics for each synthetic data (n ' 1000) relative to its own
model was larger than the value of the empirical data. Larger p values
therefore indicate a higher probability that the observed distribution
could be explained by an underlying power-law characteristic. Con-
versely, low p values make a power-law distribution a less likely distribu-
tion to describe the empirical data.

As a measure quantifying the difference of a given empirical distribu-
tion of some quantity X (in our case S or PLI) from a power-law distri-
bution with exponent ), we defined

*D "
1

NX
¥%P!X" · % X

Xmin
& )+1

# 1& , (9)

for which the cumulative probability distribution P( X) of the distri-
bution’s tail, i.e., the NX number of X values with values larger than
some minimal value Xmin, was used. For distributions of cascade sizes
the minimum Smin was set to 1 and cascade sizes up to system size (i.e.,
number of channels 27) were included in the sum. For the distribu-
tion of PLI the minimal value PLImin given by the fitting algorithm
was applied.

Power density spectra. EEG power density spectra were computed for
derivation C3A2 of artifact-free 20 s epochs (same starting points as
segments used for the derivation of coherence potentials, synchroniza-
tion measures, and PLIs; fast Fourier transform routine; Hanning win-
dow; frequency resolution 0.25 Hz). Power in the theta (5– 8 Hz) and
alpha (8.25–12 Hz) range was determined and averaged for eyes-open
segments per session and subject.

Results
Coherence potentials organize as neuronal avalanches in
the EEG
We investigated the spatiotemporal organization of coherence
potentials in artifact-free EEG intervals in the eyes-open condi-
tion. Artifact-free EEG intervals were analyzed in segments of
length 5000 samples (corresponding to 19.53 s; see Materials and
Methods). Multiple segments were analyzed for each subject and
EEG session. On each of these segments, we first determined
potentials with either a positive or a negative deflection larger
than a certain threshold, which we termed trigger events and
second identified segments with high similarity to these trigger
events (see Materials and Methods). Amplitude distributions
from EEG signals start to deviate from a Gaussian distribution for
deflections larger than 4 SD (Fig. 1A). For the detection of co-
herence potentials we therefore focused on a threshold of ,4
SD throughout the paper. Systematic exploration of other
thresholds around ,4 SD verified that results were indepen-
dent of the exact choice of threshold (Fig. 2C,D). Figure 1B
shows some exemplary trigger events, their mean duration in
all subjects was 468 , 5 ms. Next, segments of the same length
and with high similarity to trigger events were located. Poten-
tials were considered similar to a trigger event when their
correlation R was equal to or greater than 0.75 (see Materials
and Methods). Again, systematic analysis with different R val-
ues confirmed that results were robust over a range of values
(Fig. 2C,D).
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Synchrony and entropy measurements. We followed the approach de-
scribed previously (Yang et al., 2012) to quantify mean and variability of
synchronization. The calculation was performed on the same artifact-
free segments used for the derivation of coherence potentials. After fil-
tering the data in the alpha band (8 –12 Hz), we first obtained a phase
trace !i(t) from each EEG trace Fi(t) using its Hilbert transform H[Fi(t)]:

!i!t" " arctan
H#Fi(t)$

Fi(t)
. (2)

Next, we quantified the mean synchrony in each EEG segment by

%r!t"& "
1

L!
t'1

L

r!t", (3)

where L ' 5000 is the length of our EEG segments in samples and r(t) is
the Kuramoto order parameter:

r!t" "
1

n " !
j'1

n

ei!j!t" " , (4)

which was used as a time-dependent measure of phase synchrony with
n ' 27 being the number of EEG channels in our data.

As a measure for the variability of synchronization we derived the
entropy of r(t) in each EEG segment by

H!r!t"" " # !
i'1

B

pi log2 pi, (5)

where we estimated a probability distribution of r(t) by binning values
into intervals. pi is then the probability that r(t) falls into a range bi (
r(t) $ bi)1. Similar to Yang et al. (2012), we found results to be robust
over a broad range for the number of bins B used. We applied B ' 24 in
the current analysis.

Derivation of the distribution of PLIs. PLIs were calculated for all
possible pairs of derivations of artifact-free EEG segments of 19.53 s
duration (5000 samples, same segments as for the analysis of coher-
ence potentials and synchronization measures). The analysis was per-
formed for scale 4 (8 –16 Hz; alpha band; see below) and scale 5 (4 – 8
Hz; theta band).

Hilbert wavelet transforms. To derive a scale-dependent estimate of the
phase difference between two EEG channels, we follow the approach
described previously (Kitzbichler et al., 2009) using Hilbert transform
derived pairs of wavelet coefficients (Whitcher et al., 2005). We define
the instantaneous complex phase vector for two signals Fi(t) and Fj(t) as
follows:

Cij!t" "
Wk!Fi!t""†Wk!Fj!t""

# Wk!Fi!t"" # # Wk!Fj!t"" # , (6)

where Wk denotes the kth scale of a Hilbert wavelet transform and † its
complex conjugate. Here Fi(t) and Fj(t) are different EEG derivations. A
local mean phase difference in the frequency interval defined by the kth
wavelet scale is then given by
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with
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$% #Wk!Fi!t""#2&% #Wk!Fj!t""#2&
(8)

being a less noisy estimate of Ci,j(t) where % · & indicates the temporal
average over a time window *t ' 2k8 in sampling steps (Kitzbichler et al.,
2009).

Intervals of phase locking can then be identified as periods when
#*&i,j(t)# is smaller than some arbitrary threshold, which we set to '/4.

We also require the modulus squared of the complex time average,
(i, j

2 " # Ci, j #2, to be larger than 0.5, limiting the analysis to phase
difference estimates above this level of significance.

Estimation of the goodness of power-law fit. To determine the quality of
the fit of a power-law function to the observed distribution we performed
a goodness-of-fit test, which leads to a p value that quantifies the plausi-
bility of the hypothesis that the distribution is power-law like (Clauset et
al., 2009). Upon fitting the empirical distribution, power-law distributed
synthetic data were generated with parameters derived from the power-
law fit and individually fit to their own power-law model. The p values
were then defined as the fraction of times the resulting Kolmogorov–
Smirnov statistics for each synthetic data (n ' 1000) relative to its own
model was larger than the value of the empirical data. Larger p values
therefore indicate a higher probability that the observed distribution
could be explained by an underlying power-law characteristic. Con-
versely, low p values make a power-law distribution a less likely distribu-
tion to describe the empirical data.

As a measure quantifying the difference of a given empirical distribu-
tion of some quantity X (in our case S or PLI) from a power-law distri-
bution with exponent ), we defined

*D "
1

NX
¥%P!X" · % X

Xmin
& )+1

# 1& , (9)

for which the cumulative probability distribution P( X) of the distri-
bution’s tail, i.e., the NX number of X values with values larger than
some minimal value Xmin, was used. For distributions of cascade sizes
the minimum Smin was set to 1 and cascade sizes up to system size (i.e.,
number of channels 27) were included in the sum. For the distribu-
tion of PLI the minimal value PLImin given by the fitting algorithm
was applied.

Power density spectra. EEG power density spectra were computed for
derivation C3A2 of artifact-free 20 s epochs (same starting points as
segments used for the derivation of coherence potentials, synchroniza-
tion measures, and PLIs; fast Fourier transform routine; Hanning win-
dow; frequency resolution 0.25 Hz). Power in the theta (5– 8 Hz) and
alpha (8.25–12 Hz) range was determined and averaged for eyes-open
segments per session and subject.

Results
Coherence potentials organize as neuronal avalanches in
the EEG
We investigated the spatiotemporal organization of coherence
potentials in artifact-free EEG intervals in the eyes-open condi-
tion. Artifact-free EEG intervals were analyzed in segments of
length 5000 samples (corresponding to 19.53 s; see Materials and
Methods). Multiple segments were analyzed for each subject and
EEG session. On each of these segments, we first determined
potentials with either a positive or a negative deflection larger
than a certain threshold, which we termed trigger events and
second identified segments with high similarity to these trigger
events (see Materials and Methods). Amplitude distributions
from EEG signals start to deviate from a Gaussian distribution for
deflections larger than 4 SD (Fig. 1A). For the detection of co-
herence potentials we therefore focused on a threshold of ,4
SD throughout the paper. Systematic exploration of other
thresholds around ,4 SD verified that results were indepen-
dent of the exact choice of threshold (Fig. 2C,D). Figure 1B
shows some exemplary trigger events, their mean duration in
all subjects was 468 , 5 ms. Next, segments of the same length
and with high similarity to trigger events were located. Poten-
tials were considered similar to a trigger event when their
correlation R was equal to or greater than 0.75 (see Materials
and Methods). Again, systematic analysis with different R val-
ues confirmed that results were robust over a range of values
(Fig. 2C,D).
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‣effect observed in both frequency bands (stronger in alpha)
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Microelectrode recording under sleep deprivation
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near 1 respectively ( fAPL ! 0.52 " 0.01;
ANOVA, p # 0.01). Although such anti-
phase locking in general will reduce the
magnitude of r, the high ! conditions still
resulted in the highest average r due to the
fact that anti-phase-locked groups were
always small compared with the phase-
locked groups.

Maximum entropy and onset of
synchrony near ! " 1 in
computational model
To gain further insight into our experimental
findings, we next performed a similar investi-
gation in a network-level computational
model. Network-level phase synchrony has
been investigated extensively in previous
theoretical and model studies using coupled
oscillators (Strogatz, 2001; Arenas et al.,
2008). Naively, one might interpret the sig-
nal recorded from one electrode as one the-
oretical oscillator. However, in reality, each
electrode records the collective activity of a
population of E and I neurons. Thus, our
experimental pharmacological E–I manipu-
lations effect not only the coupling between
electrodes, but also the coupling among the
local neurons measured by a single elec-
trode. Since the intrinsic properties of a
theoretical oscillator do not depend on cou-
pling, the interpretation of one electrode as
one oscillator is problematic. Therefore, we
developed a computational model with the
aim of obtaining results which were more
directly comparable to our experiments,
while keeping the model as simple as
possible.

The computational model was com-
prised of an all-to-all connected network of
binary neurons, 80% excitatory and 20% in-
hibitory. The model neurons were divided
into 59 groups meant to represent the pop-
ulations of neurons measured by our 59
electrodes in the experiments (Fig. 7A). Dif-
ferent network sizes were studied with
between 30 and 80 neurons per group.
Probabilistic integrate-and-fire dynamics
were implemented (Materials and Meth-
ods). We modeled bursts like those ob-
served in our experiments one at a time,
each starting with a single initially active ex-
citatory neuron and continuing until activ-
ity ceased or a time limit was reached. The
spike activity of each group was summed to
model an LFP-like population signal (Fig.
7B,C). This is justified based on previous
experiments showing that the size of a burst
based on LFP measurements is proportional
to the number of spikes recorded from the
underlying network during the burst (Shew et al., 2009). These
group signals were then subjected to precisely the same analysis as
performed with the experimental data. Figure 7, D and E, shows
example phase traces, a dynamic phase histogram, and a synchrony

r trace. We quantified how burst area, duration, and phase syn-
chrony depend on E–I conditions, as revealed by !.

Disinhibited or disfacilitated conditions were modeled by weak-
ening all efferent connections from inhibitory or excitatory neurons,

Figure 6. Synchrony as function of ! is independent of spatial extent, resolution of MEA, and frequency band of LFP. The data shown
and described in Figure 5 were recomputed using two different arrangements of MEA electrodes and three different frequency bands. A, A
4$4compactgroupofelectrodescoveringa800"m$800"mrecordingareanearthecenterofthearray(red). B,A4$4sparsegroup
of electrodes covering the full 1600"m$1600"m area, but with half the spatial resolution (blue). C, Frequency bands included 4 –12 Hz
(green),12–25Hz(gold),and25–50Hz(orange). D–I,SamefigurelegendasinFigure5A–F.Notethatmainconclusionswereunchanged,
although average network synchrony tended to decrease for higher frequency bands.

1068 • J. Neurosci., January 18, 2012 • 32(3):1061–1072 Yang et al. • Phase Synchrony and Neuronal Avalanches

disconnected the recording amplifiers during stimulation, signifi-
cantly reducing stimulus artifacts (Multi Channel Systems). Sample
rate and filtering was identical to that used for spontaneous activity
recordings.

Pharmacology. Bath application of antagonists of fast glutamatergic or
GABAergic synaptic transmission was used to change ratios of excita-
tion to inhibition (E/I ). The normal (no-drug) followed by a drug
condition was studied within 3 h to minimize nonstationarities dur-
ing development. Stock solutions were prepared for the GABAA re-
ceptor antagonist picrotoxin (PTX), the NMDA receptor antagonist
(2 R)-amino-5-phosphonovaleric acid (AP5), and the AMPA receptor
antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). Six microli-
ters of these stock solutions were added to 600 !l of culture medium
to reach the following working concentrations (in !M): 5 PTX, 20
AP5, 10 AP5 ! 0.5 DNQX, and 20 AP5 ! 1 DNQX. After recording,
the drug medium was replaced with 300 !l of drug-free conditioned
medium (collected from the same culture the previous day) mixed
with 300 !l of fresh, unconditioned medium. Most cultures recovered
to criticality within "24 h.

Spontaneous cluster size and response to stimulus. For each electrode, we
identified negative peaks in the LFP (nLFPs) that were more negative
than #4 SDs of the electrode noise. We then identified a cluster of nLFPs
on the array as a group of consecutive nLFPs each separated by less than
a time " (Beggs and Plenz, 2003). The threshold " was chosen to be greater
than the short timescale of interpeak intervals within a cluster, but less
than the longer timescale of intercluster quiescent periods (" $ 86 % 71
ms for all cultures; see also supplemental material, available at www.
jneurosci.org). Results were robust for a large range in the choice of "
(data not shown). The size s of a cluster was quantified as the absolute
sum of all nLFP amplitudes within a cluster. Similarly, the size R of an
evoked response was quantified as the absolute sum of nLFPs within 500
ms following a stimulus.

Definition of #. For neuronal avalanches, the probability density func-
tion (PDF) of cluster size s follows a power law with slope $ $ #3/2
(Beggs and Plenz, 2003) (see Fig. 2 A). Thus, the corresponding cumula-
tive density function (CDF) for cluster sizes, FNA(%), which specifies the
fraction of measured cluster sizes s & %, is a #1/2 power-law function,
FNA(%) $ (1 # 'l/L) #1(1 # 'l/%) for l & s & L. Here we define a novel
nonparametric measure, #, to quantify the difference between an exper-
imental cluster size CDF, F(%), and the theoretical reference CDF,
FNA(%),

# & 1 '
1

m !
k$1

m

(FNA(%k) ( F(%k)), (1)

where %k are m $ 10 burst sizes logarithmically spaced between the
minimum and maximum observed burst size. Using CDFs rather than
PDFs to calculate # avoids the sensitivity to binning in constructing a
PDF. Compared to other nonparametric comparisons of CDFs, e.g.,
Kolmogorov–Smirnov and Kuiper’s test, as well as other methods, #
more accurately measures deviation from neuronal avalanches (see
supplemental material, available at www.jneurosci.org).

Dynamic range. After measuring responses to a range of stimulus
amplitudes, we used the response curve, R( S), to compute dynamic
range,

* & 10 log10(Smax/Smin), (2)

where Smax and Smin are the stimulation values leading to 90% and 10%
of the range of R, respectively.

Model. The model consisted of N all-to-all coupled, binary-state neu-
rons (N $ 250, 500, 1000) and the following dynamical rules: If neuron j
spiked at time t (i.e., sj(t) $ 1), then postsynaptic neuron i will spike at
time t ! 1 with probability pij. As such, the pij are N 2 numbers represent-
ing the synaptic coupling strengths between each pair of neurons. The pij

are asymmetric pij + pji, positive, time-independent, uniformly distrib-
uted random numbers with mean and SD of order N #1. If a set of
neurons J(t) spikes at time t, then the probability that neuron i fires at
time t ! 1 is exactly piJ(t) $ 1 # ,j!J(t)(1 # pij). To implement the
probabilistic nature and variability of unitary synaptic efficacy, neuron i

actually fires at time t ! 1 only if piJ(t) - )(t), where )(t) is a random
number from a uniform distribution on [0,1],

si(t ' 1) & ./piJ(t) ( )(t)0
& ./1 ( "

j!J(t)
(1 ( pij) ( )(t)0 , (3)

where 1[x] is the unit step function. Like our experiments, we explore a
range of network excitability by tuning the mean value of pij from 0.75/N
to 1.25/N in steps of 0.05/N by scaling all pij by a constant. For such small
mean pij, the model reduces to probabilistic integrate-and-fire, i.e., piJ 2
#j!J(t)pij to order N #2 accuracy. If the mean pij is exactly N #1, then n
spikes at time t will, on average, excite n postsynaptic spikes at time t ! 1,
which constitutes criticality in our model (Beggs and Plenz, 2003; Kinouchi
and Copelli, 2006). When mean pij is larger than or less than N #1, the
system is supercritical or subcritical, respectively. We define the control
parameter of the model *' N #1#i#ipij. In the context of dynamics, *
reflects the average ratio of spiking descendants to spiking ancestors in
consecutive time steps. At criticality, * $ 1; the coupling strengths are
balanced such that, on average, the number of active sites neither grows
nor decays with time (note that the instantaneous activity level fluctuates

Figure 2. Change in the ratio of excitation/inhibition moves cortical networks away from
criticality. A, Left, PDFs of spontaneous cluster sizes for normal (no-drug, black), disinhibited
(PTX, red), and hypoexcitable (AP5/DNQX, blue) cultures. Broken line, #3/2 power law. Cluster
size s is the sum of nLFP peak amplitudes within the cluster; P(s) is the probability of observing
a cluster of size s. Right, Corresponding CDFs and quantification of the network state using #,
which measures deviation from a #1/2 power law CDF (broken line). Vertical gray lines, The 10
distances summed to compute #, shown for one example PTX condition (red). B, Simulated
cluster size PDFs (left) and corresponding CDFs (right) for different values of the model control
parameter *. C, Summary statistics of average # values for normal, hypoexcitable, and disin-
hibited conditions (*p & 0.05 from normal). D, In simulations, # accurately estimates *.
Broken line, # $ *. Colored dots, Examples shown in B.
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disconnected the recording amplifiers during stimulation, signifi-
cantly reducing stimulus artifacts (Multi Channel Systems). Sample
rate and filtering was identical to that used for spontaneous activity
recordings.

Pharmacology. Bath application of antagonists of fast glutamatergic or
GABAergic synaptic transmission was used to change ratios of excita-
tion to inhibition (E/I ). The normal (no-drug) followed by a drug
condition was studied within 3 h to minimize nonstationarities dur-
ing development. Stock solutions were prepared for the GABAA re-
ceptor antagonist picrotoxin (PTX), the NMDA receptor antagonist
(2 R)-amino-5-phosphonovaleric acid (AP5), and the AMPA receptor
antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). Six microli-
ters of these stock solutions were added to 600 !l of culture medium
to reach the following working concentrations (in !M): 5 PTX, 20
AP5, 10 AP5 ! 0.5 DNQX, and 20 AP5 ! 1 DNQX. After recording,
the drug medium was replaced with 300 !l of drug-free conditioned
medium (collected from the same culture the previous day) mixed
with 300 !l of fresh, unconditioned medium. Most cultures recovered
to criticality within "24 h.

Spontaneous cluster size and response to stimulus. For each electrode, we
identified negative peaks in the LFP (nLFPs) that were more negative
than #4 SDs of the electrode noise. We then identified a cluster of nLFPs
on the array as a group of consecutive nLFPs each separated by less than
a time " (Beggs and Plenz, 2003). The threshold " was chosen to be greater
than the short timescale of interpeak intervals within a cluster, but less
than the longer timescale of intercluster quiescent periods (" $ 86 % 71
ms for all cultures; see also supplemental material, available at www.
jneurosci.org). Results were robust for a large range in the choice of "
(data not shown). The size s of a cluster was quantified as the absolute
sum of all nLFP amplitudes within a cluster. Similarly, the size R of an
evoked response was quantified as the absolute sum of nLFPs within 500
ms following a stimulus.

Definition of #. For neuronal avalanches, the probability density func-
tion (PDF) of cluster size s follows a power law with slope $ $ #3/2
(Beggs and Plenz, 2003) (see Fig. 2 A). Thus, the corresponding cumula-
tive density function (CDF) for cluster sizes, FNA(%), which specifies the
fraction of measured cluster sizes s & %, is a #1/2 power-law function,
FNA(%) $ (1 # 'l/L) #1(1 # 'l/%) for l & s & L. Here we define a novel
nonparametric measure, #, to quantify the difference between an exper-
imental cluster size CDF, F(%), and the theoretical reference CDF,
FNA(%),

# & 1 '
1

m !
k$1

m

(FNA(%k) ( F(%k)), (1)

where %k are m $ 10 burst sizes logarithmically spaced between the
minimum and maximum observed burst size. Using CDFs rather than
PDFs to calculate # avoids the sensitivity to binning in constructing a
PDF. Compared to other nonparametric comparisons of CDFs, e.g.,
Kolmogorov–Smirnov and Kuiper’s test, as well as other methods, #
more accurately measures deviation from neuronal avalanches (see
supplemental material, available at www.jneurosci.org).

Dynamic range. After measuring responses to a range of stimulus
amplitudes, we used the response curve, R( S), to compute dynamic
range,

* & 10 log10(Smax/Smin), (2)

where Smax and Smin are the stimulation values leading to 90% and 10%
of the range of R, respectively.

Model. The model consisted of N all-to-all coupled, binary-state neu-
rons (N $ 250, 500, 1000) and the following dynamical rules: If neuron j
spiked at time t (i.e., sj(t) $ 1), then postsynaptic neuron i will spike at
time t ! 1 with probability pij. As such, the pij are N 2 numbers represent-
ing the synaptic coupling strengths between each pair of neurons. The pij

are asymmetric pij + pji, positive, time-independent, uniformly distrib-
uted random numbers with mean and SD of order N #1. If a set of
neurons J(t) spikes at time t, then the probability that neuron i fires at
time t ! 1 is exactly piJ(t) $ 1 # ,j!J(t)(1 # pij). To implement the
probabilistic nature and variability of unitary synaptic efficacy, neuron i

actually fires at time t ! 1 only if piJ(t) - )(t), where )(t) is a random
number from a uniform distribution on [0,1],

si(t ' 1) & ./piJ(t) ( )(t)0
& ./1 ( "

j!J(t)
(1 ( pij) ( )(t)0 , (3)

where 1[x] is the unit step function. Like our experiments, we explore a
range of network excitability by tuning the mean value of pij from 0.75/N
to 1.25/N in steps of 0.05/N by scaling all pij by a constant. For such small
mean pij, the model reduces to probabilistic integrate-and-fire, i.e., piJ 2
#j!J(t)pij to order N #2 accuracy. If the mean pij is exactly N #1, then n
spikes at time t will, on average, excite n postsynaptic spikes at time t ! 1,
which constitutes criticality in our model (Beggs and Plenz, 2003; Kinouchi
and Copelli, 2006). When mean pij is larger than or less than N #1, the
system is supercritical or subcritical, respectively. We define the control
parameter of the model *' N #1#i#ipij. In the context of dynamics, *
reflects the average ratio of spiking descendants to spiking ancestors in
consecutive time steps. At criticality, * $ 1; the coupling strengths are
balanced such that, on average, the number of active sites neither grows
nor decays with time (note that the instantaneous activity level fluctuates

Figure 2. Change in the ratio of excitation/inhibition moves cortical networks away from
criticality. A, Left, PDFs of spontaneous cluster sizes for normal (no-drug, black), disinhibited
(PTX, red), and hypoexcitable (AP5/DNQX, blue) cultures. Broken line, #3/2 power law. Cluster
size s is the sum of nLFP peak amplitudes within the cluster; P(s) is the probability of observing
a cluster of size s. Right, Corresponding CDFs and quantification of the network state using #,
which measures deviation from a #1/2 power law CDF (broken line). Vertical gray lines, The 10
distances summed to compute #, shown for one example PTX condition (red). B, Simulated
cluster size PDFs (left) and corresponding CDFs (right) for different values of the model control
parameter *. C, Summary statistics of average # values for normal, hypoexcitable, and disin-
hibited conditions (*p & 0.05 from normal). D, In simulations, # accurately estimates *.
Broken line, # $ *. Colored dots, Examples shown in B.

Shew et al. • Dynamic Range Maximized during Neuronal Avalanches J. Neurosci., December 9, 2009 • 29(49):15595–15600 • 15597

∆D
n

EEG FpzFp1 Fp2

T3 T4C3 Cz C4

F7 F8
F3 Fz F4
FC1 FC2

CP1 CP2
P3 Pz P4
PO1 PO2

T5 T6

OzO1 O2

in vitro

hours awake

PLI

P
(P

LI
)

P 
P

LI
.

!
-1

PLI

PLI [sampling, s]

P
(P

LI
)

|!
D

|

p

A

B

C
hours awake hours awake

Shew et al., J. Neurosci, 2009 
Yang et al., J. Neurosci, 2012 

Beggs and Plenz, J. Neurosci, 2003 

‣observations in EEG 
during sleep deprivation 
are in agreement with a 
shift towards increased 
excitability where larger 
events dominate 
dynamics



(1) All those seemingly different findings are precisely captured by 
a critical branching process.
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Fig. 1. Stability concerns regarding the propagation of neuronal activity in the form of local,
synchronized groups. (A) Propagation of neuronal activity based on individual pyramidal
neurons (a, b, c) connected by single excitatory synapses (red arrows). Red : active neurons.
Blue: inactive neurons. This scheme is not likely to work in cortex, because the impact of
a single synaptic input is unlikely to make a postsynaptic neuron fire an action potential.
(B) ‘Synfire chain’ principle suggested by Abeles [30]. The high convergence/divergence con-
nectivity in cortex theoretically should allow for propagation of neuronal group activity, in
which a neuronal group a, composed of neurons a1 to a4 converges with their inputs onto
a target neuron, here b2. The propagation can continue if b2 itself is an active group mem-
ber. The requirement of inputs to summarize in the target neuron introduces the principle
of neuronal synchronization. (C) Neuronal group cascades are inherently unstable as small
deviations in successive group sizes either lead to premature termination or global expan-
sion. Without further restrictions, balanced cascade formation requires groups on average
to maintain the initial group size. (D) A spatially neighbored group of active neurons, i.e.
locally active group, can easily be detected in the local field potential (LFP) using a mi-
croelectrode (grey circle and lead upper right). The spatiotemporal organization of locally
synchronized neuronal groups is then monitored using a regularly spaced microelectrode
array. Note that this approach favors locally synchronized groups at the spatial scale intro-
duced by the inter-electrode distance ∆d. (E) The relationship between neuronal firing and
the LFP. A high-quality microelectrode (‘X’) allows for the simultaneous measurement of
the low-pass (1–100Hz) LFP activity of many neurons (grey triangles within circle) as well
as the high-pass (>300Hz) action potential firing of single neurons (‘units’) closely located
at the microelectrode tip (red triangles near ‘X’). Accordingly, unit activity can occur to-
gether with nLFPs, if the neuron that fires an action potential belongs to the same group
of neurons contributing to the nLFP (case 1). Alternatively, nLFPs can occur in the ab-
sence of unit activity, if the recorded single neurons (units; red) do not participate in the
neuronal group (case 2). Similarly, unit firing can occur in isolation if no neuronal group
has formed (case 3). (F) Most unit firing coincides with the local nLFP (case 2) during on-
going activity in the awake monkey (data sets from [10]; monkey A; primary motor cortex,
32-microelectrode array; average over 68 units and ∼ 12, 000 unit firings; monkey B; aver-
age over 4 arrays (47 ± 13 units each) in premotor and primary motor cortex; on average
16, 200 ± 5, 200 unit firings). (G) nLFPs without corresponding unit activity show similar
average negative waveform compared to all nLFP larger than −3SD. Red : average nLFP
waveforms for LFP triggered on unit activity. Black : average nLFP for all nLFPs crossing
−3SD of the LFP.
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non-trivial, active steady state, in which [I] < 1. The
stability of the trivial steady state is determined by the
spectrum of the Jacobian matrix J|

x
0 ∈ R10×10, where

Jij = ∂ẋi/∂xj . The steady state is asymptotically stable
if all eigenvalues of J|

x
0 have a negative real part [31].

If the variables xi are ordered as in Eqns. (1), the non-
vanishing entries of J|

x
0 are

J1,1 = J7,3 = J7,4 = J7,5 = J7,6 = J7,8 = J7,9 = −i ,

J1,4 = J3,4 = p ,

J2,1 = J5,3 = J8,3 = J9,4 = J10,5 = J10,8 = i ,

J2,2 = J4,5 = J6,7 = J6,9 = J9,10 = r ,

J3,3 = −2i ,

J4,4 = −i+ (k − 1)p ,

J5,5 = J7,7 = J8,8 = −i− r ,

J6,4 = −2kp ,

J7,10 = −i+ r ,

J9,9 = −r ,

J10,10 = −2r .

The characteristic polynomial can be factored into 7
linear factors with negative real roots and a remaining
third order polynomial

P (λ) = (−r−λ)3(−i−λ)2(−i−r−λ)(−2r−λ)f(λ) , (5)

where

f(λ) = i
(

i2 + 2i ((1− k)p+ r) + (1− 2k)pr
)

+
(

5i2 + (1 − k)pr + 3i ((1− kp) + r)
)

λ

+ (4i+ (1 − k)p+ r) λ2 + λ3 .

(6)

In other to assess the stability of x0 without explicitly
calculating the roots of f(λ), we use the Routh-Hurwitz
theorem [32]. It states that the roots of a polynomial
p(x) = bn + a1xn−1 + · · ·+ bn−1x+ bn all have negative
real parts if the Hurwitz determinants
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with k = 1 . . . n, are all positive. Calculating the Hurwitz
determinants of the Jacobian matrix J|

x
0 and evaluating

the positivity conditions reveals that the trivial steady
state is stable if and only if

k <
i

p
+

i+ r/2

i+ r
=: kc. (8)

At k = kc the trivial steady state becomes unstable as
the systems undergoes a transcritical bifurcation. In this
bifurcation a nontrivial steady state enters the positive
cone of the state space, becoming a physical solution.
The transcritical bifurcation thus marks a transition be-
tween the trivial inactive state and an active state in
which ongoing activity is observed.
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FIG. 1. Bifurcation diagram for the static network. Plot-
ted is the steady state density of firing neurons [F ] over
the network’s mean degree k. The solid line marks stable
steady states of the static system, the dashed line unstable
ones. At k = kc ≈ 5.6, the inactive steady state loses sta-
bility in a transcritical bifurcation. The respective transi-
tion from an inactive to an active phase is already observed
in individual-based simulations with N = 106 neurons (cir-
cles). Note that the critical k is nicely predicted by the
link-level approximation Eqns. (1), but underestimated by
a MCA at mean-field level (dotted lines). Parameters used
were p = 0.2, i = 0.95, r = 0.4. Nontrivial steady states were
calculated using AUTO[33].

The role of the transcritical bifurcation is illustrated
in a representative bifurcation diagram in Fig. 1. The di-
agram shows that the analytically predicted bifurcation
point is in very good agreement with numerical results
from agent-based simulations of the system. Further, nu-
merical continuation of the ODEs (1) shows good agree-
ment close to the bifurcation point. By contrast, a MCA
at mean-field level yields a much poorer approximation
and underestimates the bifurcation point.

V. LOCAL INFORMATION AND TIME-SCALE
SEPARATION

The previous section showed that the static network
model exhibits a transcritical bifurcation. In the lan-
guage of statistical physics this bifurcation constitutes a
phase transition. To establish that the adaptive network
model shows self-organized criticality we have to show
that the evolution of the connectivity drives the system
to the critical point.
In the discussion leading up to Fig. 1 we treated k as

a parameter of the system. For studying the evolution of
the connectivity we now consider k as a dynamical vari-
able that evolves according to Eq. (1k). By introducing
dynamics in k we change the dynamical system, which
can potentially lead to a changed bifurcation diagram.

active phase

inactive phase
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Fig. 1. Stability concerns regarding the propagation of neuronal activity in the form of local,
synchronized groups. (A) Propagation of neuronal activity based on individual pyramidal
neurons (a, b, c) connected by single excitatory synapses (red arrows). Red : active neurons.
Blue: inactive neurons. This scheme is not likely to work in cortex, because the impact of
a single synaptic input is unlikely to make a postsynaptic neuron fire an action potential.
(B) ‘Synfire chain’ principle suggested by Abeles [30]. The high convergence/divergence con-
nectivity in cortex theoretically should allow for propagation of neuronal group activity, in
which a neuronal group a, composed of neurons a1 to a4 converges with their inputs onto
a target neuron, here b2. The propagation can continue if b2 itself is an active group mem-
ber. The requirement of inputs to summarize in the target neuron introduces the principle
of neuronal synchronization. (C) Neuronal group cascades are inherently unstable as small
deviations in successive group sizes either lead to premature termination or global expan-
sion. Without further restrictions, balanced cascade formation requires groups on average
to maintain the initial group size. (D) A spatially neighbored group of active neurons, i.e.
locally active group, can easily be detected in the local field potential (LFP) using a mi-
croelectrode (grey circle and lead upper right). The spatiotemporal organization of locally
synchronized neuronal groups is then monitored using a regularly spaced microelectrode
array. Note that this approach favors locally synchronized groups at the spatial scale intro-
duced by the inter-electrode distance ∆d. (E) The relationship between neuronal firing and
the LFP. A high-quality microelectrode (‘X’) allows for the simultaneous measurement of
the low-pass (1–100Hz) LFP activity of many neurons (grey triangles within circle) as well
as the high-pass (>300Hz) action potential firing of single neurons (‘units’) closely located
at the microelectrode tip (red triangles near ‘X’). Accordingly, unit activity can occur to-
gether with nLFPs, if the neuron that fires an action potential belongs to the same group
of neurons contributing to the nLFP (case 1). Alternatively, nLFPs can occur in the ab-
sence of unit activity, if the recorded single neurons (units; red) do not participate in the
neuronal group (case 2). Similarly, unit firing can occur in isolation if no neuronal group
has formed (case 3). (F) Most unit firing coincides with the local nLFP (case 2) during on-
going activity in the awake monkey (data sets from [10]; monkey A; primary motor cortex,
32-microelectrode array; average over 68 units and ∼ 12, 000 unit firings; monkey B; aver-
age over 4 arrays (47 ± 13 units each) in premotor and primary motor cortex; on average
16, 200 ± 5, 200 unit firings). (G) nLFPs without corresponding unit activity show similar
average negative waveform compared to all nLFP larger than −3SD. Red : average nLFP
waveforms for LFP triggered on unit activity. Black : average nLFP for all nLFPs crossing
−3SD of the LFP.
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non-trivial, active steady state, in which [I] < 1. The
stability of the trivial steady state is determined by the
spectrum of the Jacobian matrix J|

x
0 ∈ R10×10, where

Jij = ∂ẋi/∂xj . The steady state is asymptotically stable
if all eigenvalues of J|

x
0 have a negative real part [31].

If the variables xi are ordered as in Eqns. (1), the non-
vanishing entries of J|
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0 are

J1,1 = J7,3 = J7,4 = J7,5 = J7,6 = J7,8 = J7,9 = −i ,

J1,4 = J3,4 = p ,
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J2,2 = J4,5 = J6,7 = J6,9 = J9,10 = r ,

J3,3 = −2i ,
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J5,5 = J7,7 = J8,8 = −i− r ,

J6,4 = −2kp ,

J7,10 = −i+ r ,

J9,9 = −r ,
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The characteristic polynomial can be factored into 7
linear factors with negative real roots and a remaining
third order polynomial

P (λ) = (−r−λ)3(−i−λ)2(−i−r−λ)(−2r−λ)f(λ) , (5)

where

f(λ) = i
(

i2 + 2i ((1− k)p+ r) + (1− 2k)pr
)

+
(

5i2 + (1 − k)pr + 3i ((1− kp) + r)
)
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+ (4i+ (1 − k)p+ r) λ2 + λ3 .

(6)

In other to assess the stability of x0 without explicitly
calculating the roots of f(λ), we use the Routh-Hurwitz
theorem [32]. It states that the roots of a polynomial
p(x) = bn + a1xn−1 + · · ·+ bn−1x+ bn all have negative
real parts if the Hurwitz determinants

∆k =

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 1 0 0 . . . 0
b3 b2 b1 1 . . . 0
...

...
...

...
. . .

...
b2k−1 b2k−2 b2k−3 b2k−4 . . . bk

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (7)

with k = 1 . . . n, are all positive. Calculating the Hurwitz
determinants of the Jacobian matrix J|

x
0 and evaluating

the positivity conditions reveals that the trivial steady
state is stable if and only if

k <
i
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+

i+ r/2

i+ r
=: kc. (8)

At k = kc the trivial steady state becomes unstable as
the systems undergoes a transcritical bifurcation. In this
bifurcation a nontrivial steady state enters the positive
cone of the state space, becoming a physical solution.
The transcritical bifurcation thus marks a transition be-
tween the trivial inactive state and an active state in
which ongoing activity is observed.
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FIG. 1. Bifurcation diagram for the static network. Plot-
ted is the steady state density of firing neurons [F ] over
the network’s mean degree k. The solid line marks stable
steady states of the static system, the dashed line unstable
ones. At k = kc ≈ 5.6, the inactive steady state loses sta-
bility in a transcritical bifurcation. The respective transi-
tion from an inactive to an active phase is already observed
in individual-based simulations with N = 106 neurons (cir-
cles). Note that the critical k is nicely predicted by the
link-level approximation Eqns. (1), but underestimated by
a MCA at mean-field level (dotted lines). Parameters used
were p = 0.2, i = 0.95, r = 0.4. Nontrivial steady states were
calculated using AUTO[33].

The role of the transcritical bifurcation is illustrated
in a representative bifurcation diagram in Fig. 1. The di-
agram shows that the analytically predicted bifurcation
point is in very good agreement with numerical results
from agent-based simulations of the system. Further, nu-
merical continuation of the ODEs (1) shows good agree-
ment close to the bifurcation point. By contrast, a MCA
at mean-field level yields a much poorer approximation
and underestimates the bifurcation point.

V. LOCAL INFORMATION AND TIME-SCALE
SEPARATION

The previous section showed that the static network
model exhibits a transcritical bifurcation. In the lan-
guage of statistical physics this bifurcation constitutes a
phase transition. To establish that the adaptive network
model shows self-organized criticality we have to show
that the evolution of the connectivity drives the system
to the critical point.
In the discussion leading up to Fig. 1 we treated k as

a parameter of the system. For studying the evolution of
the connectivity we now consider k as a dynamical vari-
able that evolves according to Eq. (1k). By introducing
dynamics in k we change the dynamical system, which
can potentially lead to a changed bifurcation diagram.
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of spikes that occurred during the burst. We note that in previous work we
showed that spike count during a burst was proportional to the burst size
definition based on sum of nLFP (Shew et al., 2009). Thus, defining burst size
in terms of spike count is appropriate for the computational model. Size
distributions of these bursts were used to parameterize the model dynamics
in terms of ! as defined above. Moreover, each condition was modeled on 60
different connection matrices (10 different networks of each size) to repre-
sent the possible variability from one culture to another in the experiments.
The error bars in the results represent variation among the dynamics of these
60 different networks.

To model the pharmacological manipulations made in our experi-
ments, we simply multiplied either the positive or the negative entries of
the connection matrix by a constant between zero and 1, modeling the
effects of either disfaciliation (AP5/DNQX) or disinhibition (PTX) re-
spectively. Since the average wij value of the baseline connection matrix
was 1/Q, disfacilitation or disinhibition resulted in a mean wij !1/Q or
"1/Q, respectively. As average wij is increased from !1/Q to "1/Q, the
dynamics of this computational model undergo an abrupt change at the
critical point specified by 1/Q. At the critical point the computational
model generates neuronal avalanches, i.e., the burst size distribution is a
power law with exponent near #1.5. Our computational model is similar
to others which have been used to study criticality in neural networks
(Beggs and Plenz, 2003; Haldeman and Beggs, 2005; Kinouchi and
Copelli, 2006; Larremore et al., 2011), but is different from these because
we include inhibitory neurons.

Before analyzing the computational model data, aggregate population
signals PN(t) for each model site were computed PN$t% " !

l#L
bl$t%, where

L is the set of neurons at site N. To more closely model an experimentally
observed burst, each computational model burst was padded with a pe-
riod of zeros (20 timesteps) preceding and following the burst, Gaussian
noise with amplitude 0.1 was added, and then the signal was bandpass
filtered between 5 and 100 Hz (assuming 2 ms per model time step). The
aggregate population signals from the computational model were then
analyzed to obtain burst area, duration, and phase synchrony exactly as
defined for the experimental data.

Results
Neuronal burst area and duration have moderate mean and
maximum entropy near ! " 1
We studied ongoing network activity recorded in organotypic
tissue cultures grown on planar integrated MEAs. Following es-
tablished techniques (Gireesh and Plenz, 2008; Shew et al., 2009,
2011), each culture (n & 15) was comprised of a coronal slice of
somatosensory rat cortex combined with a slice from the ventral
tegmental area, which provides dopaminergic inputs to the cor-
tex for proper network development (Gireesh and Plenz, 2008).
The tissue was cultivated directly on the surface of an 8 ' 8 grid of
electrodes (Fig. 1A, 200 $m interelectrode distance, 30 $m elec-
trode diameter, no corner electrodes, 4 kHz sampling). Record-
ings were taken between 10 and 20 d in culture allowing several
1 h recordings from each network (47 recordings in total; Stewart
and Plenz 2008). The recorded voltages were low-pass filtered at
50 Hz to obtain the LFP, which was shown to correlate with the
spiking activity of the local neuronal population near each elec-
trode (Shew et al., 2009).

Observed dynamics consisted of bursts of activity like the ex-
ample shown in Figure 1B, which often spanned many recording
sites. We determined the start and end of each burst as well as
which sites participated using a threshold to identify times and
electrodes with large-amplitude negative LFP deflections (Mate-
rial and Methods).

We applied pharmacological agents to change the network excit-
ability. Neural synchrony is expected to be sensitive to such changes
in excitatory and inhibitory interactions as we demonstrate with our
computational model below. Excitatory synaptic transmission was
reduced with combined application of the NMDA and AMPA glu-

tamate receptor antagonists AP5 and DNQX. Inhibitory synaptic
transmission was reduced with GABAA receptor antagonist PTX.
Empirically, we found that the used concentrations of DNQX/AP5
resulted in disfacilitation, i.e., decreased burst size and duration,
while the partial disinhibition with PTX increased burst size and
duration. As shown in Figure 1C (blue, black), we found that the
frequency content of the LFP signals did not show any strong
peaks at particular frequencies for the no-drug and DNQX/AP5
conditions. In contrast, %-oscillations became more prominent
in disinhibited cultures as reported previously (Fig. 1C, red;
Gireesh and Plenz, 2008).

To parameterize these drug effects on spontaneous network
dynamics, we used the statistical measure !, which is based on
measured distributions of burst sizes, as developed previously
(Shew et al., 2009, 2011). This method takes advantage of the fact
that the unperturbed condition typically results in a burst size
distribution of the form Pr(s)(s#1.5, i.e., neuronal avalanches,
while the disfacilitated and disinhibited conditions result in ex-
ponential and bimodal distributions respectively. Practically, ! )
1 for unperturbed networks (! & 1.14 * 0.01; no drug; n & 28),
! ! 1 for disfacilitated networks (! & 0.81 * 0.01; DNQX/AP5;
n & 10) and ! " 1 for disinhibited networks (! & 1.51 * 0.01;
PTX; n & 9). This relationship is apparent in Figure 2A, where
each point represents the average spatial area a of bursts and !
value from a single recording and color represents drug condi-
tion. The average burst area was very small and increased gradu-
ally for small !, and began to rise more quickly near ! & 1 and
beyond (Fig. 2A). We next quantified the variability of burst area
by computing the Shannon entropy H(a) of the burst area distri-
bution. In line with similar previous work (Shew et al., 2011), the

Figure 2. Burst area and duration have moderate mean and maximum entropy near !& 1.
A, Network dynamics were parameterized using !. Low !, ! ) 1, and high ! indicate disfa-
cilitated, neuronal avalanche, and disinhibited dynamics respectively. As network activity in-
creased with an increase in !, the average spatial extent of spontaneous bursts rose slowly for
small !, and more steeply near ! & 1. Each point is the averaged burst area from a 1 h
recording. B, The diversity, i.e., Shannon entropy, of burst area was highest near ! & 1. C, The
average duration of bursts also rose strongly near !& 1 and saturated for high !. D, Entropy of
burst duration peaked near ! & 1. Error bars indicate *SEM.
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near 1 respectively ( fAPL ! 0.52 " 0.01;
ANOVA, p # 0.01). Although such anti-
phase locking in general will reduce the
magnitude of r, the high ! conditions still
resulted in the highest average r due to the
fact that anti-phase-locked groups were
always small compared with the phase-
locked groups.

Maximum entropy and onset of
synchrony near ! " 1 in
computational model
To gain further insight into our experimental
findings, we next performed a similar investi-
gation in a network-level computational
model. Network-level phase synchrony has
been investigated extensively in previous
theoretical and model studies using coupled
oscillators (Strogatz, 2001; Arenas et al.,
2008). Naively, one might interpret the sig-
nal recorded from one electrode as one the-
oretical oscillator. However, in reality, each
electrode records the collective activity of a
population of E and I neurons. Thus, our
experimental pharmacological E–I manipu-
lations effect not only the coupling between
electrodes, but also the coupling among the
local neurons measured by a single elec-
trode. Since the intrinsic properties of a
theoretical oscillator do not depend on cou-
pling, the interpretation of one electrode as
one oscillator is problematic. Therefore, we
developed a computational model with the
aim of obtaining results which were more
directly comparable to our experiments,
while keeping the model as simple as
possible.

The computational model was com-
prised of an all-to-all connected network of
binary neurons, 80% excitatory and 20% in-
hibitory. The model neurons were divided
into 59 groups meant to represent the pop-
ulations of neurons measured by our 59
electrodes in the experiments (Fig. 7A). Dif-
ferent network sizes were studied with
between 30 and 80 neurons per group.
Probabilistic integrate-and-fire dynamics
were implemented (Materials and Meth-
ods). We modeled bursts like those ob-
served in our experiments one at a time,
each starting with a single initially active ex-
citatory neuron and continuing until activ-
ity ceased or a time limit was reached. The
spike activity of each group was summed to
model an LFP-like population signal (Fig.
7B,C). This is justified based on previous
experiments showing that the size of a burst
based on LFP measurements is proportional
to the number of spikes recorded from the
underlying network during the burst (Shew et al., 2009). These
group signals were then subjected to precisely the same analysis as
performed with the experimental data. Figure 7, D and E, shows
example phase traces, a dynamic phase histogram, and a synchrony

r trace. We quantified how burst area, duration, and phase syn-
chrony depend on E–I conditions, as revealed by !.

Disinhibited or disfacilitated conditions were modeled by weak-
ening all efferent connections from inhibitory or excitatory neurons,

Figure 6. Synchrony as function of ! is independent of spatial extent, resolution of MEA, and frequency band of LFP. The data shown
and described in Figure 5 were recomputed using two different arrangements of MEA electrodes and three different frequency bands. A, A
4$4compactgroupofelectrodescoveringa800"m$800"mrecordingareanearthecenterofthearray(red). B,A4$4sparsegroup
of electrodes covering the full 1600"m$1600"m area, but with half the spatial resolution (blue). C, Frequency bands included 4 –12 Hz
(green),12–25Hz(gold),and25–50Hz(orange). D–I,SamefigurelegendasinFigure5A–F.Notethatmainconclusionswereunchanged,
although average network synchrony tended to decrease for higher frequency bands.
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disconnected the recording amplifiers during stimulation, signifi-
cantly reducing stimulus artifacts (Multi Channel Systems). Sample
rate and filtering was identical to that used for spontaneous activity
recordings.

Pharmacology. Bath application of antagonists of fast glutamatergic or
GABAergic synaptic transmission was used to change ratios of excita-
tion to inhibition (E/I ). The normal (no-drug) followed by a drug
condition was studied within 3 h to minimize nonstationarities dur-
ing development. Stock solutions were prepared for the GABAA re-
ceptor antagonist picrotoxin (PTX), the NMDA receptor antagonist
(2 R)-amino-5-phosphonovaleric acid (AP5), and the AMPA receptor
antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). Six microli-
ters of these stock solutions were added to 600 !l of culture medium
to reach the following working concentrations (in !M): 5 PTX, 20
AP5, 10 AP5 ! 0.5 DNQX, and 20 AP5 ! 1 DNQX. After recording,
the drug medium was replaced with 300 !l of drug-free conditioned
medium (collected from the same culture the previous day) mixed
with 300 !l of fresh, unconditioned medium. Most cultures recovered
to criticality within "24 h.

Spontaneous cluster size and response to stimulus. For each electrode, we
identified negative peaks in the LFP (nLFPs) that were more negative
than #4 SDs of the electrode noise. We then identified a cluster of nLFPs
on the array as a group of consecutive nLFPs each separated by less than
a time " (Beggs and Plenz, 2003). The threshold " was chosen to be greater
than the short timescale of interpeak intervals within a cluster, but less
than the longer timescale of intercluster quiescent periods (" $ 86 % 71
ms for all cultures; see also supplemental material, available at www.
jneurosci.org). Results were robust for a large range in the choice of "
(data not shown). The size s of a cluster was quantified as the absolute
sum of all nLFP amplitudes within a cluster. Similarly, the size R of an
evoked response was quantified as the absolute sum of nLFPs within 500
ms following a stimulus.

Definition of #. For neuronal avalanches, the probability density func-
tion (PDF) of cluster size s follows a power law with slope $ $ #3/2
(Beggs and Plenz, 2003) (see Fig. 2 A). Thus, the corresponding cumula-
tive density function (CDF) for cluster sizes, FNA(%), which specifies the
fraction of measured cluster sizes s & %, is a #1/2 power-law function,
FNA(%) $ (1 # 'l/L) #1(1 # 'l/%) for l & s & L. Here we define a novel
nonparametric measure, #, to quantify the difference between an exper-
imental cluster size CDF, F(%), and the theoretical reference CDF,
FNA(%),

# & 1 '
1

m !
k$1

m

(FNA(%k) ( F(%k)), (1)

where %k are m $ 10 burst sizes logarithmically spaced between the
minimum and maximum observed burst size. Using CDFs rather than
PDFs to calculate # avoids the sensitivity to binning in constructing a
PDF. Compared to other nonparametric comparisons of CDFs, e.g.,
Kolmogorov–Smirnov and Kuiper’s test, as well as other methods, #
more accurately measures deviation from neuronal avalanches (see
supplemental material, available at www.jneurosci.org).

Dynamic range. After measuring responses to a range of stimulus
amplitudes, we used the response curve, R( S), to compute dynamic
range,

* & 10 log10(Smax/Smin), (2)

where Smax and Smin are the stimulation values leading to 90% and 10%
of the range of R, respectively.

Model. The model consisted of N all-to-all coupled, binary-state neu-
rons (N $ 250, 500, 1000) and the following dynamical rules: If neuron j
spiked at time t (i.e., sj(t) $ 1), then postsynaptic neuron i will spike at
time t ! 1 with probability pij. As such, the pij are N 2 numbers represent-
ing the synaptic coupling strengths between each pair of neurons. The pij

are asymmetric pij + pji, positive, time-independent, uniformly distrib-
uted random numbers with mean and SD of order N #1. If a set of
neurons J(t) spikes at time t, then the probability that neuron i fires at
time t ! 1 is exactly piJ(t) $ 1 # ,j!J(t)(1 # pij). To implement the
probabilistic nature and variability of unitary synaptic efficacy, neuron i

actually fires at time t ! 1 only if piJ(t) - )(t), where )(t) is a random
number from a uniform distribution on [0,1],

si(t ' 1) & ./piJ(t) ( )(t)0
& ./1 ( "

j!J(t)
(1 ( pij) ( )(t)0 , (3)

where 1[x] is the unit step function. Like our experiments, we explore a
range of network excitability by tuning the mean value of pij from 0.75/N
to 1.25/N in steps of 0.05/N by scaling all pij by a constant. For such small
mean pij, the model reduces to probabilistic integrate-and-fire, i.e., piJ 2
#j!J(t)pij to order N #2 accuracy. If the mean pij is exactly N #1, then n
spikes at time t will, on average, excite n postsynaptic spikes at time t ! 1,
which constitutes criticality in our model (Beggs and Plenz, 2003; Kinouchi
and Copelli, 2006). When mean pij is larger than or less than N #1, the
system is supercritical or subcritical, respectively. We define the control
parameter of the model *' N #1#i#ipij. In the context of dynamics, *
reflects the average ratio of spiking descendants to spiking ancestors in
consecutive time steps. At criticality, * $ 1; the coupling strengths are
balanced such that, on average, the number of active sites neither grows
nor decays with time (note that the instantaneous activity level fluctuates

Figure 2. Change in the ratio of excitation/inhibition moves cortical networks away from
criticality. A, Left, PDFs of spontaneous cluster sizes for normal (no-drug, black), disinhibited
(PTX, red), and hypoexcitable (AP5/DNQX, blue) cultures. Broken line, #3/2 power law. Cluster
size s is the sum of nLFP peak amplitudes within the cluster; P(s) is the probability of observing
a cluster of size s. Right, Corresponding CDFs and quantification of the network state using #,
which measures deviation from a #1/2 power law CDF (broken line). Vertical gray lines, The 10
distances summed to compute #, shown for one example PTX condition (red). B, Simulated
cluster size PDFs (left) and corresponding CDFs (right) for different values of the model control
parameter *. C, Summary statistics of average # values for normal, hypoexcitable, and disin-
hibited conditions (*p & 0.05 from normal). D, In simulations, # accurately estimates *.
Broken line, # $ *. Colored dots, Examples shown in B.
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disconnected the recording amplifiers during stimulation, signifi-
cantly reducing stimulus artifacts (Multi Channel Systems). Sample
rate and filtering was identical to that used for spontaneous activity
recordings.

Pharmacology. Bath application of antagonists of fast glutamatergic or
GABAergic synaptic transmission was used to change ratios of excita-
tion to inhibition (E/I ). The normal (no-drug) followed by a drug
condition was studied within 3 h to minimize nonstationarities dur-
ing development. Stock solutions were prepared for the GABAA re-
ceptor antagonist picrotoxin (PTX), the NMDA receptor antagonist
(2 R)-amino-5-phosphonovaleric acid (AP5), and the AMPA receptor
antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). Six microli-
ters of these stock solutions were added to 600 !l of culture medium
to reach the following working concentrations (in !M): 5 PTX, 20
AP5, 10 AP5 ! 0.5 DNQX, and 20 AP5 ! 1 DNQX. After recording,
the drug medium was replaced with 300 !l of drug-free conditioned
medium (collected from the same culture the previous day) mixed
with 300 !l of fresh, unconditioned medium. Most cultures recovered
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Spontaneous cluster size and response to stimulus. For each electrode, we
identified negative peaks in the LFP (nLFPs) that were more negative
than #4 SDs of the electrode noise. We then identified a cluster of nLFPs
on the array as a group of consecutive nLFPs each separated by less than
a time " (Beggs and Plenz, 2003). The threshold " was chosen to be greater
than the short timescale of interpeak intervals within a cluster, but less
than the longer timescale of intercluster quiescent periods (" $ 86 % 71
ms for all cultures; see also supplemental material, available at www.
jneurosci.org). Results were robust for a large range in the choice of "
(data not shown). The size s of a cluster was quantified as the absolute
sum of all nLFP amplitudes within a cluster. Similarly, the size R of an
evoked response was quantified as the absolute sum of nLFPs within 500
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Definition of #. For neuronal avalanches, the probability density func-
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Kolmogorov–Smirnov and Kuiper’s test, as well as other methods, #
more accurately measures deviation from neuronal avalanches (see
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Dynamic range. After measuring responses to a range of stimulus
amplitudes, we used the response curve, R( S), to compute dynamic
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where Smax and Smin are the stimulation values leading to 90% and 10%
of the range of R, respectively.

Model. The model consisted of N all-to-all coupled, binary-state neu-
rons (N $ 250, 500, 1000) and the following dynamical rules: If neuron j
spiked at time t (i.e., sj(t) $ 1), then postsynaptic neuron i will spike at
time t ! 1 with probability pij. As such, the pij are N 2 numbers represent-
ing the synaptic coupling strengths between each pair of neurons. The pij

are asymmetric pij + pji, positive, time-independent, uniformly distrib-
uted random numbers with mean and SD of order N #1. If a set of
neurons J(t) spikes at time t, then the probability that neuron i fires at
time t ! 1 is exactly piJ(t) $ 1 # ,j!J(t)(1 # pij). To implement the
probabilistic nature and variability of unitary synaptic efficacy, neuron i
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where 1[x] is the unit step function. Like our experiments, we explore a
range of network excitability by tuning the mean value of pij from 0.75/N
to 1.25/N in steps of 0.05/N by scaling all pij by a constant. For such small
mean pij, the model reduces to probabilistic integrate-and-fire, i.e., piJ 2
#j!J(t)pij to order N #2 accuracy. If the mean pij is exactly N #1, then n
spikes at time t will, on average, excite n postsynaptic spikes at time t ! 1,
which constitutes criticality in our model (Beggs and Plenz, 2003; Kinouchi
and Copelli, 2006). When mean pij is larger than or less than N #1, the
system is supercritical or subcritical, respectively. We define the control
parameter of the model *' N #1#i#ipij. In the context of dynamics, *
reflects the average ratio of spiking descendants to spiking ancestors in
consecutive time steps. At criticality, * $ 1; the coupling strengths are
balanced such that, on average, the number of active sites neither grows
nor decays with time (note that the instantaneous activity level fluctuates
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criticality. A, Left, PDFs of spontaneous cluster sizes for normal (no-drug, black), disinhibited
(PTX, red), and hypoexcitable (AP5/DNQX, blue) cultures. Broken line, #3/2 power law. Cluster
size s is the sum of nLFP peak amplitudes within the cluster; P(s) is the probability of observing
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respectively. The baseline, normal condition of the computational
model was chosen such that activity in the network propagated in a
balanced manner. More specifically, we established the magnitude of
connections between neurons such that a single active excitatory
neuron was expected, on average, to excite exactly one more neuron
in the following time step. Disinhibition and disfacilitation dis-

rupted this balance. Disinhibition made it
likely that more than one neuron would be
excited and resulted in growth (followed
eventually by saturation) of the number of
active neurons over time, on average. Disfa-
cilitation resulted in decay of the number of
active neurons over time.

The distribution of burst sizes under the
balanced normal condition was a power law
with exponent near !1.5 (Fig. 7F), i.e., the
computational model generated neuronal
avalanches and ! " 1. The burst size was
defined as the number of spikes that oc-
curred during the burst. When disinhibited,
our computational model produced bursts
with a bimodal probability distribution, i.e.,
! # 1, and when disfacilitated the distri-
bution was closer to an exponential, ! $
1, in good agreement with our experi-
ments (Fig. 7F).

We found that as the computational
model was tuned from low to high !, the
characteristics of bursts matched those ob-
served in our experiments. Most impor-
tantly, average burst area, duration and
network synchrony all displayed a sharp rise
near the critical balanced regime identified
by ! % 1 (Fig. 8A–C, left). The entropy of
these quantities reached a peak near, but just
above ! % 1, as observed in the experiments
(Fig. 8A–C, right). Instantaneous network
synchrony (Fig. 8D) and instantaneous
burst synchrony (Fig. 8E) versus ! also
matched the experiments well. However,
there were quantitative differences between
the computational model and the experi-
ments. First, the onset of average quantities
and peak entropy for the model was typi-
cally shifted to slightly larger ! values than
those observed experimentally. Second,
the range of obtainable ! values was lower
in the model—even with inhibition com-
pletely suppressed, the model did not reach
! % 1.6 as found for the most extreme
experiments. Finally, we did not observe
anti-phase locking in our model. Such
differences could arise from many possible
simplifications made in the computational
model, including all-to-all connectivity, no
large-scale network structure like cortical
layers, and binary neural state. However, we
emphasize that our main conclusions hold
for both the experiments and the computa-
tional model; namely, peak entropy and
moderate average synchrony occurred un-
der E–I conditions which result in neuronal
avalanches.

Discussion
The ability of a network of cortical neurons to synchronize its
dynamics depends on recurrent interactions among excitatory
and inhibitory components of the network. Here we studied
spontaneously emerging network-level synchrony over a range of

Figure 7. Phase synchrony and neuronal avalanches in a network-level computational model of E–I neurons. A, A recurrently
connected population of 80% excitatory and 20% inhibitory neurons were divided into 59 groups with Q neurons in each group
(Q % 30, 40, 50, 60, 70, 80 were tested). Each group models the neurons nearby one recording site in the experiment. B, Spike
rasters from two groups. (blue, E; red, I ). C, Population signals corresponding to the two group rasters shown in B. The spikes
generated by a group at each time step were summed (light colored traces) and bandpass filtered (dark colored traces) to generate
population signals. D, Phase of these filtered population signals was obtained using the Hilbert transform. E, An example dynamic
phase histogram and synchrony trace. Phase synchrony among the 59 groups was analyzed exactly as in the experiments. F, Bursts
of activity were modeled one at a time. Burst size distributions were used to compute !. Neuronal avalanches (! " 1) were
observed only when E and I were balanced such that, on average, the spike count of the population did not grow or decay over
consecutive time steps. Bimodal size distributions (! # 1) occurred when inhibition was suppressed. And a lack of large-sized
bursts marked the disfacilitated distribution (! $ 1).
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E–I conditions in rat cortex slice cultures and a computational
model. We demonstrated the existence of a critical level of net-
work excitability identified by ! ! 1. Below criticality, synchrony
is minimal; just above criticality, significant synchrony emerges;
well above criticality, synchrony reaches intense levels. Close to
criticality, variability (entropy) of synchrony was highest and
neuronal avalanches were observed.

Below, we first discuss potential implications of variable syn-
chrony. We then relate our high ! experiments to epilepsy mod-
els. Next, we discuss our findings of anti-phase locking. Finally,
we highlight similarities between our results and theoretical pre-
dictions from critical phenomena, which suggest that the ! ! 1
condition corresponds to the critical point of a phase transition.

Variability of synchrony
One implication of our results derives from the fact that either
abnormally low or high spontaneous synchrony is associated
with cortical dysfunction. Our observations of a sigmoidal rise in
average synchrony as a function of network excitability suggests
that a limited range of E–I conditions (!1 " ! " 1.25) will confer
the cortex with a healthy, moderate range of mean syn-
chrony. This same range of excitability resulted in the highest
variability of synchrony, suggesting that extremely variable syn-
chrony may be unavoidable if the cortex must operate with mod-
erate mean synchrony.

The implications of highly variable spontaneous synchrony
for cortical information processing are not well understood. One
traditional view is that such “correlated noise” impedes reliable
coding of input from external stimuli. If this view is correct, our
results highlight a competition: moderate average synchrony
comes at the cost of high variability. Indeed, fluctuations of on-
going activity influence the processing of input (Arieli et al., 1996;
Poulet and Petersen, 2008; Kelly et al., 2010). However, a second
view suggests this influence is not necessarily detrimental, partic-
ularly when these fluctuations occur with balanced E–I (Cafaro
and Rieke, 2010). A third possible purpose of spontaneous activ-
ity is that it supports an “internal model” of previous experiences
(Berkes et al., 2011), which is consistent with many observa-
tions of similarities between spontaneous activity and previous
stimulus-evoked activity (Tsodyks et al., 1999; Ji and Wilson,
2007; Han et al., 2008; Luczak et al., 2009). In this view, main-
taining cortical E–I conditions with high entropy of synchrony,
i.e., avoiding high or low !, may be crucial. Indeed, an internal
model which accurately reflects diverse and variable previous ex-
periences may require a diverse and variable (high entropy) rep-
ertoire of spontaneous synchrony.

We note that the peak in entropy of synchrony we observed
experimentally persisted even after the variability in burst dura-
tion and spatial area were accounted for (Figs. 5F, 6 I). This was
also confirmed in our computational model (Fig. 8D,E, right).
This implies that even if one hand-selected a subset of bursts
which all have the same duration and area, their network syn-
chrony would vary from burst to burst. This variability would
peak near ! # 1. This suggests that the peak in entropy results in
part from variability at the single-electrode level. This is under-
standable considering that, for both our experiment and our
computational model, each electrode samples a subnetwork con-
sisting of tens to hundreds of E and I neurons. Our manipulations
of E–I conditions must effect synchrony within such single-site
micro-circuits. Thus, the same E–I conditions which result in
variable synchrony at the large scale (between electrodes) are also
likely to result in variability synchrony at the micro-circuit scale,
which may explain the peak in entropy of instantaneous burst
synchrony.

! > 1 identifies a pathological state of synchrony typical
for epilepsy
Cortical disinhibition is a model for epilepsy (Luhmann et al.,
1995; Prince et al., 2009). GABAA antagonists readily induce ep-
ileptiform seizures in isolated cortex preparations (Gutnick et al.,
1982) that initiate in and involve deep layer pyramidal neurons
(Connors, 1984; Pinto et al., 2005). Provided layers 5/6 are intact
(Telfeian and Connors, 1998), $10 –20% reduction in GABAA

receptor function suffices to induce seizures (Chagnac-Amitai
and Connors, 1989), in line with the relatively low dose of 5 "M

PTX concentration used in the current study, which is far from
the 50 "M required to block the GABAA receptor. Our observa-

Figure 8. Onset of synchrony and peak entropy coincide near the critical balance of E–I in
computational model. All of the experimental results presented above were well matched by
the computational model. A, Average burst area (left) increased around ! ! 1 where entropy
was highest (right). B, Average burst duration (left) increased near ! # 1 where entropy was
highest (right). C–E, Same as captions from Figure 5A–F. The largest difference between the
experiments and the model was the shift in peak entropy to higher ! values for SIN in the model.
The dashed lines delineate the variation (minimum to maximum) observed over 60 different
simulated networks (10 networks at each of 6 sizes).
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disconnected the recording amplifiers during stimulation, signifi-
cantly reducing stimulus artifacts (Multi Channel Systems). Sample
rate and filtering was identical to that used for spontaneous activity
recordings.

Pharmacology. Bath application of antagonists of fast glutamatergic or
GABAergic synaptic transmission was used to change ratios of excita-
tion to inhibition (E/I ). The normal (no-drug) followed by a drug
condition was studied within 3 h to minimize nonstationarities dur-
ing development. Stock solutions were prepared for the GABAA re-
ceptor antagonist picrotoxin (PTX), the NMDA receptor antagonist
(2 R)-amino-5-phosphonovaleric acid (AP5), and the AMPA receptor
antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). Six microli-
ters of these stock solutions were added to 600 !l of culture medium
to reach the following working concentrations (in !M): 5 PTX, 20
AP5, 10 AP5 ! 0.5 DNQX, and 20 AP5 ! 1 DNQX. After recording,
the drug medium was replaced with 300 !l of drug-free conditioned
medium (collected from the same culture the previous day) mixed
with 300 !l of fresh, unconditioned medium. Most cultures recovered
to criticality within "24 h.

Spontaneous cluster size and response to stimulus. For each electrode, we
identified negative peaks in the LFP (nLFPs) that were more negative
than #4 SDs of the electrode noise. We then identified a cluster of nLFPs
on the array as a group of consecutive nLFPs each separated by less than
a time " (Beggs and Plenz, 2003). The threshold " was chosen to be greater
than the short timescale of interpeak intervals within a cluster, but less
than the longer timescale of intercluster quiescent periods (" $ 86 % 71
ms for all cultures; see also supplemental material, available at www.
jneurosci.org). Results were robust for a large range in the choice of "
(data not shown). The size s of a cluster was quantified as the absolute
sum of all nLFP amplitudes within a cluster. Similarly, the size R of an
evoked response was quantified as the absolute sum of nLFPs within 500
ms following a stimulus.

Definition of #. For neuronal avalanches, the probability density func-
tion (PDF) of cluster size s follows a power law with slope $ $ #3/2
(Beggs and Plenz, 2003) (see Fig. 2 A). Thus, the corresponding cumula-
tive density function (CDF) for cluster sizes, FNA(%), which specifies the
fraction of measured cluster sizes s & %, is a #1/2 power-law function,
FNA(%) $ (1 # 'l/L) #1(1 # 'l/%) for l & s & L. Here we define a novel
nonparametric measure, #, to quantify the difference between an exper-
imental cluster size CDF, F(%), and the theoretical reference CDF,
FNA(%),

# & 1 '
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k$1
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(FNA(%k) ( F(%k)), (1)

where %k are m $ 10 burst sizes logarithmically spaced between the
minimum and maximum observed burst size. Using CDFs rather than
PDFs to calculate # avoids the sensitivity to binning in constructing a
PDF. Compared to other nonparametric comparisons of CDFs, e.g.,
Kolmogorov–Smirnov and Kuiper’s test, as well as other methods, #
more accurately measures deviation from neuronal avalanches (see
supplemental material, available at www.jneurosci.org).

Dynamic range. After measuring responses to a range of stimulus
amplitudes, we used the response curve, R( S), to compute dynamic
range,
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where Smax and Smin are the stimulation values leading to 90% and 10%
of the range of R, respectively.

Model. The model consisted of N all-to-all coupled, binary-state neu-
rons (N $ 250, 500, 1000) and the following dynamical rules: If neuron j
spiked at time t (i.e., sj(t) $ 1), then postsynaptic neuron i will spike at
time t ! 1 with probability pij. As such, the pij are N 2 numbers represent-
ing the synaptic coupling strengths between each pair of neurons. The pij

are asymmetric pij + pji, positive, time-independent, uniformly distrib-
uted random numbers with mean and SD of order N #1. If a set of
neurons J(t) spikes at time t, then the probability that neuron i fires at
time t ! 1 is exactly piJ(t) $ 1 # ,j!J(t)(1 # pij). To implement the
probabilistic nature and variability of unitary synaptic efficacy, neuron i

actually fires at time t ! 1 only if piJ(t) - )(t), where )(t) is a random
number from a uniform distribution on [0,1],
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where 1[x] is the unit step function. Like our experiments, we explore a
range of network excitability by tuning the mean value of pij from 0.75/N
to 1.25/N in steps of 0.05/N by scaling all pij by a constant. For such small
mean pij, the model reduces to probabilistic integrate-and-fire, i.e., piJ 2
#j!J(t)pij to order N #2 accuracy. If the mean pij is exactly N #1, then n
spikes at time t will, on average, excite n postsynaptic spikes at time t ! 1,
which constitutes criticality in our model (Beggs and Plenz, 2003; Kinouchi
and Copelli, 2006). When mean pij is larger than or less than N #1, the
system is supercritical or subcritical, respectively. We define the control
parameter of the model *' N #1#i#ipij. In the context of dynamics, *
reflects the average ratio of spiking descendants to spiking ancestors in
consecutive time steps. At criticality, * $ 1; the coupling strengths are
balanced such that, on average, the number of active sites neither grows
nor decays with time (note that the instantaneous activity level fluctuates

Figure 2. Change in the ratio of excitation/inhibition moves cortical networks away from
criticality. A, Left, PDFs of spontaneous cluster sizes for normal (no-drug, black), disinhibited
(PTX, red), and hypoexcitable (AP5/DNQX, blue) cultures. Broken line, #3/2 power law. Cluster
size s is the sum of nLFP peak amplitudes within the cluster; P(s) is the probability of observing
a cluster of size s. Right, Corresponding CDFs and quantification of the network state using #,
which measures deviation from a #1/2 power law CDF (broken line). Vertical gray lines, The 10
distances summed to compute #, shown for one example PTX condition (red). B, Simulated
cluster size PDFs (left) and corresponding CDFs (right) for different values of the model control
parameter *. C, Summary statistics of average # values for normal, hypoexcitable, and disin-
hibited conditions (*p & 0.05 from normal). D, In simulations, # accurately estimates *.
Broken line, # $ *. Colored dots, Examples shown in B.
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Figure 4. Distribution of PLI in a model exhibiting self-organized criticality. A Through an adaptive interplay of network dynamics and
topology, the Bornholdt model self-organizes toward a characteristic connectivity independent of initial conditions. The plot shows the evolution to a
characteristic connectivity of approximately K~2:55 in a network of 1024 nodes for three different initial connectivities, Kini~1:5, Kini~4 and
Kini~6. B At this self-organized connectivity the network exhibits a phase transition between order and disorder. The plot shows the frozen
component C(K) defined as the fraction of nodes that do not change their state along the attractor as a function of networks’ average connectivities
K for a network of 1024 nodes. The data were measured along the dynamical attractor reached by the system, averaged over 100 random topologies
for each value of K . A transition around a value K&2{3 can be observed. C After a period of self-organization based on the adaptive interplay
between topology and dynamics (aSO on, full black line), links were added and deleted solely with a certain probability independent of node activity
(aSO off, dashed line: links were added with p~0:9 and deleted with p~0:1, point-dashed line: links added with p~0:1, deleted with p~0:9). Each

Failure of aSOC during Epileptic Seizures
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observations during sleep deprivation:
                    the balance between excitation and inhibition 

(3) A change in the E/I balance towards higher excitation is known 
to occur during sleep deprivation.

Specifically, the curve in Fig. 1 can be interpreted
as reflecting how the total amount of synaptic
strength in the cerebral cortex (and possibly other
brain structures) changes as a function of wakeful-
ness and sleep. Thus, the hypothesis claims that,
under normal conditions, total synaptic strength
increases during wakefulness and reaches a maxi-
mum just before going to sleep. Then, as soon as
sleep ensues, total synaptic strength begins to
decrease, and reaches a baseline level by the time

sleep ends. In addition to claiming a correspon-
dence between the homeostatic Process S and total
synaptic strength, the hypothesis proposes specific
mechanisms, whereby synaptic strength would
increase during wakefulness and decrease during
sleep, and suggests why the tight regulation of
synaptic strength would be of great importance for
the brain.

Synaptic homeostasis: a schematic
diagram

The diagram in Fig. 2 presents a simplified version
of the main points of the hypothesis. During
wakefulness (yellow background), we interact
with the environment and acquire information
about it. The EEG is activated, and the neuromodu-
latory milieu (for example, high levels of nor-
adrenaline, NA) favors the storage of information,
which occurs largely through long-term poten-
tiation of synaptic strength. This potentiation
occurs when the firing of a presynaptic neuron is
followed by the depolarization or firing of a
postsynaptic neuron, and the neuromodulatory
milieu signals the occurrence of salient events.
Strengthened synapses are indicated in red, with

Fig. 1 The two-process model involving the circadian
component (process C) and the homeostatic component
(process S).

Fig. 2 The synaptic homeostasis hypothesis.
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(4) A critical branching process captures other experimental 
observations: maximal dynamic range, maximal pattern entropy, power-
law scaling of avalanche durations, relations between scaling exponents, 
optimal information transmission (mutual information between stimulus 
and response), ... 

a critical branching process.
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Hypothesis: 

Sleep reorganizes cortical network dynamics to a critical state 
and thereby assures optimal computational capabilities for the 
time awake.
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Sleep encompasses approximately a third of our lifetime, yet its purpose and biological function are not well understood. Without sleep
optimal brain functioning such as responsiveness to stimuli, information processing, or learning may be impaired. Such observations
suggest that sleep plays a crucial role in organizing or reorganizing neuronal networks of the brain toward states where information
processing is optimized.

Increasing evidence suggests that cortical neuronal networks operate near a critical state characterized by balanced activity patterns,
which supports optimal information processing. However, it remains unknown whether critical dynamics is affected in the course of
wake and sleep, which would also impact information processing. Here, we show that signatures of criticality are progressively disturbed
during wake and restored by sleep. We demonstrate that the precise power-laws governing the cascading activity of neuronal avalanches
and the distribution of phase-lock intervals in human electroencephalographic recordings are increasingly disarranged during sustained
wakefulness. These changes are accompanied by a decrease in variability of synchronization. Interpreted in the context of a critical
branching process, these seemingly different findings indicate a decline of balanced activity and progressive distance from criticality
toward states characterized by an imbalance toward excitation where larger events prevail dynamics. Conversely, sleep restores the
critical state resulting in recovered power-law characteristics in activity and variability of synchronization. These findings support the
intriguing hypothesis that sleep may be important to reorganize cortical network dynamics to a critical state thereby assuring optimal
computational capabilities for the following time awake.

Introduction
Sleep is crucial for daytime functioning and well being. Although
a vital part of life, its purpose and biological function are not yet
well understood (Mignot, 2008). The importance of sleep is illus-
trated by the deteriorating effects of chronic sleep restriction or
total sleep deprivation on human performance (Banks and
Dinges, 2007). Without sleep optimal brain functioning such as
responsiveness to stimuli, information processing, or learning
may be impaired. Such observations suggest that sleep may play
an important role in organizing or reorganizing neuronal net-
works in the brain toward states where information processing is
optimized.

The general idea that both the computational capabilities of a
system and its complexity are maximized at or nearby critical
states related to phase transitions or bifurcations (Langton, 1990)

led to the hypothesis that neuronal networks in the brain operate
at or close to a critical state. The observation of neuronal activity
patterns consistently following power-law distributions, a hall-
mark of systems at a continuous phase transition, further raised
the interest in the hypothesis of critical brain dynamics (Linkenkaer-
Hansen et al., 2001; Worrell et al., 2002; Beggs and Plenz, 2003;
Fraiman et al., 2009; Benayoun et al., 2010; Chialvo, 2010; Poil et al.,
2012). Spatiotemporal cascades of activity termed neuronal ava-
lanches obeying a power-law size distribution were observed in vitro
(Beggs and Plenz, 2003, 2004), in vivo (Gireesh and Plenz, 2008;
Petermann et al., 2009; Ribeiro et al., 2010), and human magneto-
encephalogram (MEG; Palva et al., 2013; Shriki et al., 2013). Re-
cently, the spatiotemporal patterns of coherence potentials, i.e.,
large-amplitude negative deflections with high similarity, were re-
ported to express neuronal avalanches in local field potentials (LFP;
Thiagarajan et al., 2010; Plenz, 2012). Neuronal avalanches have
been regarded an indication of balanced dynamics, i.e., avoiding
regimes of overexcitation or underexcitation. The balance in activity
is captured by the branching parameter ! ! 1 indicating that one
event on average leads to one future event resulting in the corre-
sponding cascade size distribution to follow a power-law with expo-
nent "3/2 (Zapperi et al., 1995; de Carvalho and Prado, 2000;
Haldeman and Beggs, 2005).

The idea of a balanced regime of activity in cortical networks
also extends to properties of synchrony between neuronal
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