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A Theory for Sleep !

robserved in all species, from fruitflies to mammals
rabout one third of lifetime is spent asleep

»,,from the brain, for the brain™

rrole unknown



A Theory for Sleep !

without sleep:

rreduced responsiveness to stimuli
rimpaired information processing
rreduced learning ...

Banks, | Clin Sleep Med, 2007
Mignot, PLoS Biol, 2008

... observations suggest that sleep may play an important role in
organizing or reorganizing neuronal networks in the brain
toward states where information processing is optimized




Two-process model of sleep

»sleep propensity increases during wake and decreases during sleep
- sleep homeostasis (Achermann, Brain Res Bul,1992)
rrelated to theta and slow-wave activity in the EEG
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»sleep propensity increases during wake and decreases during sleep
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» Tononi: Synaptic homeostasis is underlying sleep homeostasis
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Two-process model of sleep

Process S
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Tononi and Cirelli, Sleep Med., 2006 Huber et al., Cereb. Cortex, 2012
Bushey et al., Science, 201 | Tononi and Cirelli, Nat. Neurosc., 2014




Cortical Network Dynamics

»cortical activity in superficial layers is -
composed of cascades of activity TR a2
following a precise scaling relationship W

size s (elec)

»first observed in organotypic cultures
Beggs and Plenz, J. Neurosci, 2003

*in awake monkeys
Peterman et al., PNAS, 2009

»in human MEG, ECoG, fMRI

Tagliazucchi et al,, Front. Phys., 2012

Palva et al., PNAS, 2013
Shriki et al., J. Neurosci, 201 3
Priesemann et al., PLoS CB, 2013

»at the level of individual neurons

Bellay et al., in submission




Dependence on E/l balance

»in vitro: systematic control of E/l balance
»control GABAergic and Glutamatergic syn. transm.

»organotypic cortical cultures
»neuronal avalanches characteristic for E/l balance
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Optimization of certain information processing capabilites
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What are the consequences of changes in synaptic
strength and consequently excitability on network
dynamics!?

Does the sensitivity of neuronal avalanches and related
metrics to E/l conditions capture these effects!?

Could these effects account for the observed
impairments to information processing in cortical
networks?




Study design

»8 healthy subjects

»sleep deprivation for a total of 40 hours

»EEG every 3 hours, 27 channels

rwe used artefact free 20s segments (eyes open condition)

rdistribution of neuronal avalanches
rmean and variability of synchronization
rdistribution of phase-lock intervals




Neuronal avalanches

Cascades of activity identified by two methods:

(A) Large positive or negative events on each channel
exceeding a certain threshold

(B) Events with high similarity - ,,coherence potentials®
Thiagarajan, PLoS Biol,2010
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Neuronal avalanches
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hours awake

AD ... deviation from a power-law
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Neuronal avalanches
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Variability and mean of synchronization

rphase synchronization in the alpha (8-16 Hz) and theta
(4-8 Hz) frequency bands
H[F;(t) ]
Fi(t)
»Kuramoto orderparameter ...

>phase . 0(t) = arctan

rmean synchronization ... (1)) = —E r(1)

rvariability of synchronization ... H(r(t)) = - 2 pilog, p;
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Variability and mean of synchronization

rdistribution of phase-lock intervals in the alpha (8-16

Hz) and theta (4-8 Hz) frequency bands

»PLI ... continuous intervals with |A®i, j(t)| < 7/4
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Variability and mean of synchronization

rdistribution of phase-lock intervals in the alpha (8-16
Hz) and theta (4-8 Hz) frequency bands

»PLI ... continuous intervals with |A®i, j(t)| < 7/4
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» Again: effect observed in both frequency bands
»Cannot be explained by changes in power alone




Microelectrode recording under sleep deprivation
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Fpz ( - L/
In vitro
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»robservations in EEG
i during sleep deprivation
- are in agreement with a
shift towards increased
excitability where larger
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Interpretation: Criticality !

(1) All those seemingly different findings are precisely captured by
a critical branching process.
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Droste et al,, JRS Interface, 2013
Haldeman and Beggs, PRL, 2005
Shew et al., J. Neurosci, 2009
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Interpretation: Criticality !

(1) All those seemingly different findings are precisely captured by
a critical branching process.

(2) Tuning of one parameter is sufficient to account for all the
observations during sleep deprivation:
the balance between excitation and inhibition
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Interpretation: Criticality !

(1) All those seemingly different findings are precisely captured by
a critical branching process.

(2) Tuning of one parameter is sufficient to account for all the

observations during sleep deprivation:
the balance between excitation and inhibition

(3) A change in the E/l balance towards higher excitation is known
to occur during sleep deprivation.

W

(4) A critical branching process captures other experimental
observations: maximal dynamic range, maximal pattern entropy, power-
law scaling of avalanche durations, relations between scaling exponents,
optimal information transmission (mutual information between stimulus

and response), ...




Hypothesis:

Sleep reorganizes cortical network dynamics to a critical state
and thereby assures optimal computational capabilities for the
time awake.

The Journal of Neuroscience, October 30, 2013 - 33(44):17363-17372 - 17363
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