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The -omics revolution in biology

• Breaking life into ever more accurate 
parts lists 
– Sequences: genomics, metagenomincs, 

epigenomics,… 
– Activities: gene expression, metabolic profiling, 

phosphoproteomics, electrophysiology … 
– Zoology of molecules — like cataloging high 

energy resonances in 1970s. 

• Putting it all back into a network of 
interactions 
– Metabolic, transcriptional, protein signaling, 

neural, networks… 
– Which things go together? 
– Number of possible interactions is 

astronomically large.
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Califano et al., Nat Gen 2005;  
BMC Bioinf 2006
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Attempting to address the complexity: 
Coarse-graining networks into functional modules
• Groups of interacting molecules are like modules 

in engineering systems. 

• But function (dynamics) of a module doesn’t 
easily follow from its constitutive parts.

!3

Mangan and Alon,  
PNAS 2003

Wall et al.,  
JMB 2005
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Kinetic parameters are extremely important in 
determining a function

• Bifurcations are abundant.

!4

Huang and Ferrell, PNAS, 1996  
Markevich et al., JCB, 2004 
Qiao et al., PLoS CB, 2007 

and many others
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Kinetic parameters are extremely important in 
determining a function

• Bifurcations are abundant. 

• The same cellular network can perform multiple accurate 
(logical) functions. 
– see also Tikhonov and Bialek, arXiv 2013.
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Ziv, IN, Wiggins, PLoS ONE, 2007



Ilya Nemenman,  CIDNET14, Dresden, June 2014

Kinetic parameters are extremely important in 
determining a function

• Bifurcations are abundant. 

• The same cellular network can perform multiple accurate 
(logical) functions. 

• Correlations between parameter changes and the resulting 
function changes are weak. 
– see also Sethna et al., PLoS CB 2007, 
…, Science, 2013.
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Mugler, Ziv, IN, Wiggins, IET SB, 2009
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Kinetic parameters are extremely important in 
determining a function

• Bifurcations are abundant. 

• The same cellular network can perform multiple accurate 
(logical) functions. 

• Correlations between parameter changes and the resulting 
function changes are weak. 

• Small un-anticipated interactions can have dramatic 
functional effects.

!7

Prindle et al., Nature 2012
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Have I made a case for dyna-omics?
• To predict dynamics, we will need to measure details of many 

interactions with excruciating details. 

• The number of interactions is combinatorially large compared to the 
(large) number of interacting components. 

!

!

!

!

!
!

• Is this program feasible? Can we do better if we only need the 
macroscopic dynamics, but not the microscopic accuracy per se?

!8

354 species / 3680 reactions 
(2954 for trimers) 

Goldstein, Hlavacek,  
Faeder, et al., 2000-2009
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Of exactitude in science

!9

...In that Empire, the craft of  Cartography attained such Perfection that 
the Map of  a Single province covered the space of  an entire City, and the 
Map of  the Empire itself  an entire Province. In the course of  Time, these 
Extensive maps were found somehow wanting, and so the College of  
Cartographers evolved a Map of  the Empire that was of  the same Scale as 
the Empire and that coincided with it point for point. Less attentive to the 
Study of  Cartography, succeeding Generations came to judge a map of  
such Magnitude cumbersome, and, not without Irreverence, they 
abandoned it to the Rigours of  sun and Rain. In the western Deserts, 
tattered Fragments of  the Map are still to be found, Sheltering an 
occasional Beast or beggar; in the whole Nation, no other relic is left of  the 
Discipline of  Geography.  

From Travels of  Praiseworthy Men (1658) by J. A. Suarez Miranda (a fictional reference).  
 By Jorge Luis Borges and Adolfo Bioy Casares.  

English translation quoted from J. L. Borges, A Universal History of  Infamy,  
Penguin Books, London, 1975.
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Simplifying complexity?

!10

• Models must loose details. Otherwise… 
– The best material model of a cat is  another, or preferably the same, cat.  

(Philosophy of Science, Wiener and Rosenblueth, 1945) 

• Each modeling level needs its own effective degrees of freedom 
– “Don’t model bulldozers with quarks.” (Goldenfeld and Kadanoff, Science, 1999) 

• Adaptive coarsening is common in physics and every-day life 
– Which level of description is better for driving to a local school?
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So...

• Can we build adaptive, phenomenological, coarse-
grained, and yet functionally accurate representations 
of (some) biological dynamics, or are we forever 
doomed to every detail mattering? 
– Examples of effective phenomenological models in physics that 

do not obviously follow from the microscopic description: 
– Ohm’s law, Hooke’s law; 
– Ideal gas law; 
– Second law of thermodynamics; 
– Newton’s law of universal gravitation.

!11
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Overview

• Introduction 

• Hope: Why do we expect coarse-grained models to work? 

• Approach: inference of coarse-grained (deterministic) 
dynamics

!12
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Part 1: 
Why would this be possible?

• Macroscopic dynamics are often simpler than the network structure: 
a handful of phenomenological parameters describe responses to most 
experimentally accessible perturbations. 

• Relation of phenomenological to mechanistic parameters often unclear.

!13

Cheong et al., Science, 2011 
NF-kB dynamics

Golstein et al.,  
Nat Rev Immun, 2004 

TCR dynamics
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One explicitly calculated example: 
Macromolecules assembly through kinetic proofreading

end 

start 

α - relative strength 
of proofreading shortcuts

Bel, Munsky, Cheng, IN, PhysBiol, JCP, 2009-13

exponential pdf

• exponential completion time  
PDF for KPR!

• very narrow completion time  
PDF for competing KPR systems 
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Another example (with more details): 
Emergence of apparent criticality for free

• Modern biology experiments measure multidimensional 
vectors of “states” of biological systems 
– Neurons firing/not firing at an instance      in a time window 

                  . Activity:               . Firing at different times correlated. 

– Neuron i in a set of N neurons firing. Activity:               . Firing of 
pre/post synaptic neurons correlated. 

– Genetic sequences of length N, with                                 the 
letter at position i. Different nearby letters are correlated.  

• Estimate the distribution of the activities 
from data and study its properties — often see Zipf.

ti
�i = ±1i = 1 . . . N

�i = ±1

�i = {A,C,G,T}

P (~�) = P ({�i})
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Zipf law (frequency~1/rank) is observed! 
Why such universality?

Activity of the fly H1  
neuron in a time window 

Activity of N neurons 
in salamander retina

Zebrafish antibody  
sequences 

Nemenman et al., 2008 Tkacik et al., 2007 
Mora and Bialek, 2011

Mora et al., 2010 
Mora and Bialek, 2011
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First, why is Zipf significant? 
A signature of very special criticality!

• Define energy, temperature, density of states, and micro 
canonical entropy.

Tkacik et al., 2007 
Mora and Bialek, 2010

P (~�) = elogP = e�E

P (~�|T ) = 1

Z
e�E/T

P (~�) / 1

r(~�)↵
) S(E) =

E

↵

+ o(N)

C(T ) =
N

T 2


� d2S

dE2

��1
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Why should these diverse biological systems be 
Zipf-critical?

• There are many arguments for why brain should be critical. 
But why should the brain be Zipfian specifically? 

• Such arguments are harder to come by for cellular or 
genetic data. 

• So could there be another explanation? 

• But: we never record everything about the system… 
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Coupling to unobserved variables Schwab, IN, Mehta, 2014

P (~�|h) =
NY

i=1

P (�i|h) =
NY

i=1

eh�i

2 coshh
;

P (~�) =
1

2

N

Z
dh p(h|h

0

)eN(hm�log coshh)

⌘eE(m,h0)
;

m =

X
�i/N, ¯h = h

0

…�1 �2 �3 �N

h

Coupling to a hidden variable produces Zipf’s scaling

E(m) = S(m) + o(N)

• Saddle point for large N, to the  
leading order. 

• There’s always                          , such that for   N > N0N0(h0, varh)
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This is general, but non-generic
• Large deviations theory generalizes 

the result (with caveats) to 
– Multiple external variables 

– infections, complex neural stimuli. 
– Nonuniform coupling. 
– Field-independent terms in energy 

– e.g., response to stimulus by a  
spike train with refractoriness. 

• Only works if N is large enough to  
infer the field h from the spins 
– for moderate N requires adaptation, so  

that the spins are affected by the field.

Schwab, IN, Mehta, 2014 0 1 2 3 4 50
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Summary #1:

• For many biological systems, deterministic or stochastic, 
dynamics is simpler than the network structure. 
• And one such simplification could be Zipfianity. 

• Hope: it should be possible to infer low-dimensional 
dynamics directly from data, rather than building a detailed 
model first, and then coarse-graining it.
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Part 2: Can we fit simple, phenomenological 
models to biological data?

• Data: a few points per trajectory; not derivatives. 

• Can we automatically fit these functions fi  from data? 
– How do we enumerate the set of all possible multivariate functions? 
– How do we search through this list? How do we not overfit?

!22

8
<

:

dx1
dt

= f1(x1, x2, . . . , xn

)
· · ·
dxn
dt

= f

n

(x1, x2, . . . , xn

)

• We will assume that dynamics of cellular networks is given 
by local ordinary differential equations. 
• Do not fit curves; fit dynamics. 

• We will neglect stochasticity, and spatial structure for now



Ilya Nemenman,  CIDNET14, Dresden, June 2014

Prior art in systems biology

!23

• The full search approach for an exact model 
• Small systems dynamics — search for all possible models using S-systems 

formalism (Voit et al, Theor Biol Med Model 2006). 
• Searching for a control model from a (small) set of a priori allowed models 

(Lillacci and Khammash, PLoS CB 2010). 
• Searching for a stochastic model from a (small) set of a priori allowed models 

(Munsky, et al., MSB 2009, Science 2013). 
• Eureqa: exhaustive genetic algorithm search through all possible elementary 

function combinations, with selection of new experiments to optimize 
discriminability among models (Lipson et al., Science 2009, Phys Biol 2011). 

• Phenomenological search (Crutchfield and McNamara, Compl Syst 1987). 
• Problems (limiting the analysis to only a few variables) 

• data/computing demands explode with the number of variables; 
• cannot handle unobserved variables. 
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Testing Model:  
Yeast Glycolytic Oscillator

!24

Ruoff et al., 2003

• 7 species, 28 parameters 

• Complex rational dynamical 
laws
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Testing Model:  
Yeast Glycolytic Oscillator

!25

Schmidt et al., Phys Biol 2011

Amazing accuracy!
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But at the same time…

!26

• Astronomical computation times -- exhaustive search. 
– Overfitting -- need astronomical sample sizes. 

• Two exponential costs: selecting the best model family, fitting the best 
family with the model. Schmidt et al., Phys Biol 2011
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Can we avoid the exhaustive search?
• We don’t need to do an exhaustive search when fitting 1-

dimensional curves  
!
!
!
!
!
!
!

!
– Use Bayesian model selection to limit the complexity of the search 

space (the value of maximum K).

!27

yK(x) =

KX

k=1

Akx
k
+ noise

Schwartz, Ann Stat 1978; MacKay, Neural Comp, 1992 
 Balasubramanian, Neural Comp1996; Nemenman, Neural Comp, 2005
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Bayesian Model selection

• For large sample size N, averages done in the Laplace (saddle point) 
limit. 

• Penalty for model complexity (the log term) “selects” the best model 
family. 

• Not that simple in detail, but this description is roughly accurate. 

• Consistency properties for nested, complete (infinite) model families. 

P (K|{x
i

}) =
R
dK~↵P (~↵|{x

i

}) =
R
dK~↵P ({xi}|~↵)P(↵)

P ({xi})
=

R
dk~↵ exp(�NL)

logP (K|{x
i

}) = logP ({x
i

}|~↵ML)� 1
2 log detNF +O(N0

)

Schwartz, Ann Stat 1978; MacKay, Neural Comp, 1992 
 Balasubramanian, Neural Comp1996; Nemenman, Neural Comp, 2005
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Why is fitting dynamics so hard?

• Hidden degrees of freedom and nonlinearities breaks nestedness -- no 
consistency. 

• Choose any (reasonable) complete path through the model space 
– Good choice — good fits with few data; Bad choice — not worse than exhaustive search.

!29
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Two types of model families
• Both nested and complete. 

• Account for nonlinearities and hidden variables as more variables are added. 

• Biochemically reasonable.

!30
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FIG. 2:

One natural choice is the s-system power-law formalism. [? ] The general form of the s-system representation
consists of J dynamical variables and K inputs, with each dynamical variable governed by an ordinary di↵erential
equation of the form [? ]

dxi

dt
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0

@
J+KY

j=1

x
gij
j � �i

J+KY

j=1

x
hij

j

1

A . (4)

In a process called “recasting,” any set of di↵erential equations written in terms of elementary functions can be
rewritten in the power-law form by defining new dynamical variables in the correct way [? ]. Thus a power-law
network of su�cient size can describe any such deterministic dynamical system to arbitrary accuracy (XXX caveats?).

An advantage of the s-system representation is the existence of a natural scheme for creating a one-dimensional
hierarchy: simply adding dynamical variables xi. The most general power-law network is fully connected, such that
every “node” xi can a↵ect every other xj through gij and hij . A simple hierarchy would start with a fully-connected
network consisting of the necessary number of input and output nodes, and simply add fully-connected “hidden”
nodes [extra xi in Eq. (??)] to add complexity. Since this adds many [1 + 2(J + K + 1)] parameters at every step
(perhaps unnecessarily), we prefer to take a more fine-grained approach, adding parameters as slowly as possible (see
FIG. ?? and Methods). (XXX We expect the specific form of this hierarchy to be not all that important...)

Finally, we may use the fact that the interactions among biological components often takes the form of a sigmoidal
function to create another similar model class, defined as

dxi

dt
= �xi/⌧i +

JX

j=1

Wij ⇠(xj + ✓j) +
KX

k=1

VikIk, (5)

where the sigmoidal function ⇠(y) = 1/(1 + e�y). This class of models has also been shown to approximate any
smooth dynamics arbitrarily well with a su�cient number of dynamical variables [? ]. We use the same method as
the s-system models to create a one-dimensional nested hierarchy.
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with

 Sigmoidal 
recurrent 
networks!

Daniels and Beer, 
arXiv 2010

Degradation Interactions Input

S-systems!
Savageau et al., 1976-…

Interactions and input dependence

dxi

dt

= Ai

Y
x

↵ij

j

Y

k

I

aik
k �Bi

Y
x

�ij

j

Y

k

I

bik
k

Daniels and Nemenman, arXiv, 2014

ẋ = sinx

equivalent to

ẋ1 = x2, ẋ2 = x3x2, ẋ3 = �x

2
2

Why S-systems? Recasting!



Ilya Nemenman,  CIDNET14, Dresden, June 2014

Finding laws that we already know: 
An automated Sir Isaac (SirIsaac on GitHub)  

• Finds the hidden variable needed to account for the Newton’s laws. 

• Accounts for different classes of trajectories.

!31
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Simple dynamics from a complex network: 
Combinatorial multisite phosphorylation

!32

A foreboding example 

•  Suppose we are 

trying to fit 

experimental 

data with a 

model… 

•  Phosphoryla$on 

on 5 sites with 

independent 

MM rates 

Input:!
Single on-rate

Output: Total 
phosphorylation at time t

Time

To
ta

l !
ph

os
ph

or
yl

at
io

n

• Rates depend on occupancy of the nearby sites, 32 species, about 50 
parameters total. 

• Caricature of some of the most combinatorially complex signaling models. 

• Typically more parameters than data. 
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Effective, reduced model of multi-site 
phosphorylation

• Effective models fit better than the true, full model for small data sets! 

• Can extrapolate to new signal classes, and not just interpolate. 

• (Of course eventually the full, true model will win).

!33
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Daniels and Nemenman, arXiv and in review, 2014
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The yeast glycolytic oscillations: 
Complex dynamics needing complex structure

• Observe only 3/7 of variables; add 
10% noise. 

• Data: N samples of structure 
– Initial condition of the 3 species; 
– Some random time later; 
– The value of these 3 species at that 

time.

!34
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Results

!35

Daniels and Nemenman, arXiv and in review, 2014
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Computational effort

!36

Scaling of computational effort
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• ~100x fewer evaluations for the same accuracy compared to full search. 

• Only 50 data points (~1000x fewer than full search).  

• Better accuracy than curve fitting.
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Conclusions
• Search for phenomenological dynamics instead of exact. 

• Why do this? 
– Sometimes biological systems do look simpler this way. 
– The duck test: If it looks like a duck, swims like a duck, and quacks like 

a duck, then it probably is a duck. 
– Indeed, can predict response to yet-unseen perturbations! 

– Find new phenomenological laws of nature  
– Repeat Hookean approach in biology: build effective models of similar systems 

and look for patterns (e.g., chemotaxis in C. elegans and E. coli). 

• Complete, nested model families of dynamics allow to use 
Bayesian model selection to adapt effective model complexity 
to the available data. 

• Such phenomenological models make accurate predictions in 
the undersampled regime, where true models overfit.

!37
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Announcements

• The q-bio Conference 
– Physical modeling in systems biology 
– Aug 10-14, 2014 
– Santa Fe, NM 
– Accepting late-breaking abstracts 
– Registration open 
– 2015 — Blacksburg, VA, 2016 — … 

• 2 PD positions immediately available
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