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The -omics revolution in biology

e Breaking life into ever more accurate

parts lists

— Sequences: genomics, metagenomincs,
epigenomics,...

— Activities: gene expression, metabolic profiling,
phosphoproteomics, electrophysiology ... P——

— Zoology of molecules — like cataloging high ‘ e
energy resonances in 1970s.

e Putting it all back into a network of

Interactions

— Metabolic, transcriptional, protein signaling,
neural, networks...

— Which things go together?
— Number of possible interactions is _
. Califano et al., Nat Gen 2005;
astronomically large. BMC Bioinf 2006
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Attempting to address the complexity:
Coarse-graining networks into functional modules

e Groups of interacting molecules are like modules

In engineering systems.

e But function (dynamics) of a module doesn’t

easily follow from its constitutive parts.

Wall et al.,
JMB 2005
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Kinetic parameters are extremely important in
determining a function

e Bifurcations are abundant. Huang and Ferrell, PNAS, 1996
Markevich et al., JCB, 2004

Qiao et al., PLoS CB, 2007
and many others
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Kinetic parameters are extremely important in
determining a function

e Bifurcations are abundant.

e The same cellular network can perform multlple accurate
(logical) functions.

— see also Tikhonov and Bialek, arXiv 2013. |
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Ziv, IN, Wiggins, PLoS ONE, 2007
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Kinetic parameters are extremely important in
determining a function

e Bifurcations are abundant.

e The same cellular network can perform multiple accurate
(logical) functions.

e Correlations between parameter changes and the resulting

function changes are weak. J 053 -
~ see also Sethna et al., PLoS CB 2007, 0.52] anticorrelated -
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Mugler, Ziv, IN, Wiggins, IET SB, 2009
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Kinetic parameters are extremely important in
determining a function

e Bifurcations are abundant.

e The same cellular network can perform multiple accurate
(logical) functions.

e Correlations between parameter changes and the resulting
function changes are weak.

» Small un-anticipated interactions can have dramatic
functional effects. - - -

. | 5,000 cells per biopixel
Prindle et al., Nature 2012 .5 milion total colls
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Have | made a case for dyna-omics?

» To predict dynamics, we will need to measure details of many
interactions with excruciating details.

 The number of interactions is combinatorially large compared to the
(large) number of interacting components.

PP -
o]w IgE dimer l o“ aw “
| ’ B | xow
| gl FceRI = E 0 : 1 B
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Goldstein, Hlavacek, 354 - .
| species / 3680 reactions
| Faeder, et al., 2000-2009 (2954 for trimers)

e |s this program feasible? Can we do better if we only need the
macroscopic dynamics, but not the microscopic accuracy per se?

EMORY [lya Nemenman, CIDNET14, Dresden, June 2014

UNIVERSITY



Of exactitude in science

...In that Empire, the craft of Cartography attained such Perfection that
the Map of a Single province covered the space of an entire City, and the
Map of the Empire itself an entire Province. In the course of Time, these
Extensive maps were found somehow wanting, and so the College of
Cartographers evolved a Map of the Empire that was of the same Scale as
the Empire and that coincided with it point for point. Less attentive to the
Study of Cartography, succeeding Generations came to judge a map of
 such Magnitude cumbersome, and, not without Irreverence, they
abandoned it to the Rigours of sun and Rain. In the western Deserts,
tattered Fragments of the Map are still to be found, Sheltering an
occasional Beast or beggar; in the whole Nation, no other relic 1s left of the
~ Daiscipline of Geography.

| From Travels of Praiseworthy Men (1658) by J. A. Suarez Miranda (a fictional reference)
| By Jorge Luis Borges and Adolfo Bioy Casares.

English translation quoted from J. L. Borges, A Universal History of Infamy,
Penguin Books, London, 1975.
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Simplifying complexity?

* Models must loose details. Otherwise...

— The best material model of a cat is another, or preferably the same, cat.
(Philosophy of Science, Wiener and Rosenblueth, 1945)

e Each modeling level needs its own effective degrees of freedom
— “Don’t model bulldozers with quarks.” (Goldenfeld and Kadanoff, Science, 1999)

e Adaptive coarsening is common in physics and every-day life
— Which level of description is better for driving to a local school?
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So...

e Can we build adaptive, phenomenological, coarse-
grained, and yet functionally accurate representations
of (some) biological dynamics, or are we forever
doomed to every detail mattering?

— Examples of effective phenomenological models in physics that
do not obviously follow from the microscopic description:
— Ohm’s law, Hooke’s law;
— Ildeal gas law;
— Second law of thermodynamics;
— Newton’s law of universal gravitation.
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Overview

e |ntroduction
* Hope: Why do we expect coarse-grained models to work?

e Approach: inference of coarse-grained (deterministic)
dynamics
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Part 1:
Why would this be possible?

Cﬂeong et al., Sciencé, 2011
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e Macroscopic dynamics are often simpler than the network structure:
a handful of phenomenological parameters describe responses to most
experimentally accessible perturbations.

* Relation of phenomenological to mechanistic parameters often unclear.
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One explicitly calculated example:
Macromolecules assembly through kinetic proofreading

end

a - relative strength
of proofreading shortcuts

6 exponential pdf

* exponential completion time
PDF for KPR

* very narrow completion time
PDF for competing KPR systems

O L L
| 0 0.05 0.1 0.15
| Scaling Parameter, «

Bel, Munsky, Cheng, IN, PhysBiol, JCP, 2009-13
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Another example (with more details):
Emergence of apparent criticality for free

e Modern biology experiments measure multidimensional
vectors of “states” of biological systems

— Neurons firing/not firing at an instance ?; in a time window
1 = 1...N.Activity: 0; = %1. Firing at different times correlated.

— Neuron i in a set of N neurons firing. Activity: o; = +1. Firing of
pre/post synaptic neurons correlated.

— Genetic sequences of length N, with o; = {A, C, G, T} the
letter at position i. Different nearby letters are correlated.

 Estimate the distribution of the activities P(5) = P({0;})
from data and study its properties — often see Zipf.
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Zipf law (frequency~1/rank) is observed!
Why such universality?

Activity of the fly H1  Activity of N neurons Zebrafish antibody

neuron in a time window in salamander retina sequences
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First, why is Zipf significant?
A signature of very special criticality!

e Define energy, temperature, density of states, and micro
canonical entropy.

DI e =" d R e
| AR § N =
P(IT) = e ] B
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P(0) x }, :>S(E):E+0(N) s f \
T(O’)O‘ o 15 :
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O) = 75 fr-m * |

Tkacik et al., 2007
Mora and Bialek, 2010
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Why should these diverse biological systems be
Zipf-critical?

e There are many arguments for why brain should be critical.
But why should the brain be Zipfian specifically?

e Such arguments are harder to come by for cellular or
genetic data.

e So could there be another explanation?

« But: we never record everything about the system...
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Coupling to unobserved variables Schwab, IN, Mehta, 2014

N N ehO'i
P(@h) =] Pleilh) = T] 50—
1=1 )

= =1 h
— 1 N (hm—log cosh h A// \
P(3) =gy [ dhp(ihg)e (m-oseosn) |
01 09 03 ON

EGE(m’hO);
m:ZO'i/N, E:ho

e Saddle point for large N, to the |
leading order.

» There’s always No(ho, var h), such that for N > No
E(m)=5(m)+ o(N)

Coupling to a hidden variable produces Zipf’s scaling

EMORY [lya Nemenman, CIDNET14, Dresden, June 2014

UNIVERSITY



This is general, but non-generic

e Large deviations theory generalizes @ T T
the result (with caveats) to -1 -
— Multiple external variables ol - -
— infections, complex neural stimuli. E; 5
— Nonuniform coupling. . Iated
— Field-independent terms in energy o S'mu_ ate
—e.g., response to stimulus by a ' L SPIDS o
spike train with refractoriness. T
e Only works if N is large enough to | fly H1 model
iInfer the field # from the spins | data

— for moderate N requires adaptation, so ;3
that the spins are affected by the field. =

Schwab, IN, Mehta, 2014 | o 1 2 8 4 s

log rank
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Summary #1:
e For many biological systems, deterministic or stochastic,
dynamics is simpler than the network structure.

» And one such simplification could be Zipfianity.

e Hope: it should be possible to infer low-dimensional
dynamics directly from data, rather than building a detailed
model first, and then coarse-graining it.
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Part 2: Can we fit simple, phenomenological
models to biological data?

 We will assume that dynamics of cellular networks is given
by local ordinary differential equations.

e Do not fit curves; fit dynamics.

* We will neglect stochasticity, and spatial structure for now

% = f1(£81,$2, “ e ,CEn)
déip—tn o fn(xlvx27 ¥ 7ajn)

e Data: a few points per trajectory; not derivatives.

e Can we automatically fit these functions f; from data?

— How do we enumerate the set of all possible multivariate functions?
— How do we search through this list? How do we not overfit?
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Prior art in systems biology

e The full search approach for an exact model

« Small systems dynamics — search for all possible models using S-systems
formalism (Voit et al, Theor Biol Med Model 2006).

e Searching for a control model from a (small) set of a priori allowed models
(Lillacci and Khammash, PLoS CB 2010).

e Searching for a stochastic model from a (small) set of a priori allowed models
(Munsky, et al., MSB 2009, Science 2013).

e Eureqa: exhaustive genetic algorithm search through all possible elementary
function combinations, with selection of new experiments to optimize
discriminability among models (Lipson et al., Science 2009, Phys Biol 2011).

® Phenomenological search (Crutchfield and McNamara, Compl Syst 1987).
e Problems (limiting the analysis to only a few variables)

« data/computing demands explode with the number of variables;
e cannot handle unobserved variables.
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Testing Model:
Yeast Glycolytic Oscillator

(A) External Glucose
J N
——— i e 7 species, 28 parameters
i Cytosol Glucose (S,) ;
g PPy L v § e Complex rational dynamical
, E ATP (As)v //GAP (S,) . §> Glycerol IaWS
ﬁ i l NZ‘D('NJ
ADP (A,) BPG (S,) * NADH (N,) :
i Vs :
i Pyruvate §> Ethanol
: & Y :
5 Acetaldehyde (S,) 5
1 o .:’1....._............._.E
Extracellular
space External Pyruvate/
Acetaldehyde (S;)
I
Exact Model

Ruoff et al., 2003
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Testing Model:
Yeast Glycolytic Oscillator

(A) External Glucose
Jo

‘ ; Cytosol Glucose (S,) ; . |

a e ; Amazing accuracy!

: il s Ve i
, ATP (As)v GAP (S,) t> Glycerol
J i Vsl V:l N‘AD (IN1)

: AND {A - ‘uAnu FENERY .‘ : 19 — —

Original system Automatically inferred system
s, _ _ 100%A3S, as; _ _ 98.79-A3S,
o =23 1+13.68%A3 o =233 1+12.66-A3 el
ds 200%A3 S ds 200.23-A3 S
% =6%S5, — 6% NS, — 64 % S5 + 16 % A3S; "ddstﬁ =6.00- 5, —6.00 - N,S, — 64.16 - S5 + 16.08 - A;S;
=2 =64% 853 —16% A3S; — 13 % S; — 100 % N, S, =+ =64.04-5;3 —16.03- A35; — 13.03 - S4 — 100.11 - N, S,
dt dt
+13 % S5 +¥#3.21 - S5

M — 6% S, — 18 % N»S, — 100 % N, S4 M — £0.059+5.99-S, — 17.94- N,S, — 98.82 - N, S,
Ky 108 % Ay — 20 L 198 % 6 1+ 32 4 AsS iy _ Az — 22245 4 19492 85+ 31.69 - A3S
o — — Lo * 3—m+ * J3 + * A303 & = . 3—m+ . -3+ Jl. - A3)3
&5 =1.3%8;—3.1%Ss &5 =1.23.8;—2.91- s

Schmidt et al., Phys Biol 2011
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But at the same time...

Test Set Correlation

~ | ¢ Q® | |
" ‘ @l ® | | I \“ & —
03 /| T e (] ‘i 1 1 1 1
| ISR [ | e |
“" Iit ool |1 [1] |4 104 106 108 10 1012
o 027 |4 | AR j b | Computational effort (equation evaluations)
\ J ! 8 l‘ 0| “T"‘ “‘
La 49 s R AN\ o \§/P Symbolic Regression - no prior model
0.1} ¥ WV R g

Neural Network — no prior model

— Nonlinear Regression — with impaired model

| % 5 10 \
Time (min)

—— Nonlinear Regression — with overspecified model

e Astronomical computation times -- exhaustive search.
— Overfitting -- need astronomical sample sizes.

e Two exponential costs: selecting the best model family, fitting the best
family with the model. Schmidt et al., Phys Biol 2011
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Can we avoid the exhaustive search?

 We don't need to do an exhaustive search when fitting 1-

dimensional curves
A

K
Y () = ZAkazk + noise
k=1

>

— Use Bayesian model selection to limit the complexity of the search
space (the value of maximum K).

Schwartz, Ann Stat 1978; MacKay, Neural Comp, 1992
Balasubramanian, Neural Comp1996; Nemenman, Neural Comp, 2005
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Bayesian Model selection

_, al § > P({x; Y a)P(o
P(K|{z:}) = [ X GP(a|{x:}) = [ daEz@P
= [d*dexp(—NL)

log P(K|{z;}) = log P({z;}|amL) — % logdet NF + O(N?)

» For large sample size N, averages done in the Laplace (saddle point)
limit.

e Penalty for model complexity (the log term) “selects” the best model
family.

* Not that simple in detail, but this description is roughly accurate.

e Consistency properties for nested, complete (infinite) model families.

Schwartz, Ann Stat 1978; MacKay, Neural Comp, 1992
Balasubramanian, Neural Comp1996; Nemenman, Neural Comp, 2005
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Why is fitting dynamics so hard?

N
2 - )
U — Ay @ g Few params.; Many
2 — — o
+AGEOT S bad fits B, 11t
% % T anything
(K) — P — o
AL T O OF = Space of
25 models
—
AT More hidden variables
dt A{QJCU} 4 { dgl =A@} T+ Bubi+--- + B1K§If
LK = Ag(oy@+ Bix& + - + Brr€k

* Hidden degrees of freedom and nonlinearities breaks nestedness -- no
consistency.

* Choose any (reasonable) complete path through the model space
— Good choice — good fits with few data; Bad choice — not worse than exhaustive search.
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Two types of model families

e Both nested and complete.

e Account for nonlinearities and hidden variables as more variables are added.

e Biochemically reasonable.

Why S-systems? Recasting!

Degradation . .
NS L — S1INTx
. . i, _
Sigmoidal = /7| equivalent to
recurrent ! . . . )
networks | with {(y) = L1l = &2, L2 = L3L2, L3 = —do
Daniels and Beer, L M _—
arXiv 2010 . . i
Interactions and input dependence
S'SYStemS 1 Lq Qg ik Bij bik
Savageau et al., 1976-... | dt A H Ly l;I L™ = Bi H i 1;[ it

Daniels and Nemenman, arXiv, 2014
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Finding laws that we already know:
An automated Sir Isaac (Sirlsaac on GitHub)

A B True model
120 T T T - - .
T0
— 1.00 (circle)
— 1.25 (ellipse)
— 1.50 (ellipse)
— 1.75 (ellipse)
(
(
(

Fit model (N = 150)

=

o)

o
|

80

T

2.00 (parabola)
2.25 (hyperbola)
— 2.50 (hyperbola)

60

dr/dt

Distance from sun (units G M /v3)

40
1 B
20 3 N SSSSENN B
> 0 — 1::11:::T:::"
S I
ris~~{rg = 2.5 (hyperbola) |--------}---
0 ‘ L T S | T 0L — oy
l 0 50 100 150 20 0O 2 4 o6 8 0O 2 4 6 8
T r

Time (units GM /v3)

e Finds the hidden variable needed to account for the Newton’s laws.

» Accounts for different classes of trajectories.
Daniels and Nemenman, arXiv, 2014
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Simple dynamics from a complex network:
Combinatorial multisite phosphorylation

Output: Total

| phosphorylation at time t

- * o

o 9
P -
- e o6 o © % o
-

E 2
E 2

Input:
Single on-rate | () «—

o —

Total
phosphorylation

B Timg

* Rates depend on occupancy of the nearby sites, 32 species, about 50
parameters total.

e Caricature of some of the most combinatorially complex signaling models.

e Typically more parameters than data.
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Effective, reduced model of multi-site

phosphorylatlon Daniels and Nemenman, arXiv and in review, 2014
o S |
T A d I' | Qut-of-samnle error I Number of parameters i 50
3.0 [ Full model max. likelihood | |
g r ) 48} Sigmoidal adaptive model
= | [ Simple model ]
21| s 125 &
{ 5 s E ] 20
5 | [ 120 o
»n | E -
O | 2
-C =
—9- - 1.5 -g-
T S
‘ 0 1.0 <=
- 3]
) 1 2 los5 S
Time ..
1 1 1 1 0.0 T
0 2 4 6 8 10 e 2

.neasurements N

\
|
i
Time (minutes) 10° J

o Effective models fit better than the true, full model for small data sets!
e Can extrapolate to new signal classes, and not just interpolate.

o (Of course eventually the full, true model will win).
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The yeast glycolytic oscillations:
Complex dynamics needing complex structure

» Observe only 3/7 of variables; add | i, o,
10% noise. - P

» Data: N samples of structure 2
— Initial condition of the 3 species; EEEIERRS
— Some random time later; G

— The value of these 3 species at that
time.
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Results

Daniels and Nemenman, arXiv and in review, 2014
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Computational effort

Test Set Correlation

L 1 1

1
104 106 108 1010
Computational effort (equation evaluations)

Symbolic Regression - no prior model
Neural Network — no prior model

— Nonlinear Regression — with impaired model

——— Nonlinear Regression — with overspecified model

e ~100x fewer evaluations for the same accuracy compared to full search.
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Multi-site phosphorlyation
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1.0

0.8

0.6

0.4

0.2

0.0

@  Sigmoidal

x N
o 88
.l
8
8
o |
10! 102

Number of measurements N

;  Sigmoidal, wide
8- out-of-sample range H
. & Sigmoidal, narrow
4 out-of-sample range
Il Il T T
10 20 30 40

Number of measurements N

—
o
<]

(model evaluations)
[
S
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10°

e Only 50 data points (~1000x fewer than full search).

e Better accuracy than curve fitting.
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Conclusions
e Search for phenomenological dynamics instead of exact.

» Why do this?
— Sometimes biological systems do look simpler this way.

— The duck test: If it looks like a duck, swims like a duck, and quacks like
a duck, then it probably is a duck.
— Indeed, can predict response to yet-unseen perturbations!

— Find new phenomenological laws of nature

— Repeat Hookean approach in biology: build effective models of similar systems
and look for patterns (e.g., chemotaxis in C. elegans and E. coli).

e Complete, nested model families of dynamics allow to use
Bayesian model selection to adapt effective model complexity
to the available data.

e Such phenomenological models make accurate predictions in
the undersampled regime, where true models overfit.
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Announcements

e The g-bio Conference
— Physical modeling in systems biology
— Aug 10-14, 2014
— Santa Fe, NM
— Accepting late-breaking abstracts
— Registration open
— 2015 — Blacksburg, VA, 2016 — ...

e 2 PD positions immediately available
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