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Interactions in complex systems

EVOLUTION OF (SUB)SYSTEMS: recorded time series
INTERACTIONS:

COUPLING / DEPENDENCE→ SYNCHRONIZATION ?
none, unidirectional, bidirectional
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COUPLING / DEPENDENCE

RANDOM VARIABLES X , Y
Probability Distribution Functions p(x), p(y)

INDEPENDENCE: p(x , y) = p(x)p(y)

digression from independence: log p(x ,y)
p(x)p(y)

a measure of dependence: MUTUAL INFORMATION

I(X ; Y ) =
∑

x

∑
y

p(x , y) log
p(x , y)

p(x)p(y)
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Mutual information

mutual information

I(X ; Y ) = H(X ) + H(Y )− H(X ,Y )

average amount of common information, contained in the
variables X and Y
measure of general statistical dependence
I(X ; Y ) ≥ 0
I(X ; Y ) = 0 iff X and Y are independent
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Conditional mutual information

conditional mutual information I(X ; Y |Z ) of variables X , Y
given the variable Z

I(X ; Y |Z ) = H(X |Z ) + H(Y |Z )− H(X ,Y |Z )

Z independent of X and Y

I(X ; Y |Z ) = I(X ; Y )

I(X ; Y |Z ) = I(X ; Y ; Z )− I(X ; Z )− I(Y ; Z )
here

I(X ; Y ; Z ) = H(X ) + H(Y ) + H(Z )− H(X ,Y ,Z )

“net” dependence between X and Y without possible
influence of Z

M. Paluš Cross-scale information transfer



Granger causality

DIRECTED COUPLING – CAUSAL INFLUENCE

Sir Clive W. J. Granger, 2003 Nobel prize in economy
inspiration by the Wiener’s work about causality:

1 The cause occurs before the effect; and
2 The cause contains information about the effect that is

unique, and is in no other variable.
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Granger causality

Sir Clive W. J. Granger, 2003 Nobel prize in economy

causal variable can help to forecast the effect variable after
other data has been first used
restricted sense of causality, referred to as
Granger causality (GC)
process Xt Granger causes another process Yt if future
values of Yt can be better predicted using the past values
of Xt and Yt rather then only past values of Yt
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Granger causality

a linear regression model

Yt = ao +
L∑

k=1

b1kYt−k +
L∑

k=1

b2kXt−k + ξt , (1)

where ξt are uncorrelated random variables with zero
mean and variance σ2, L is the specified number of time
lags, and t = L + 1, . . . ,N.
The null hypothesis that Xt does not Granger cause Yt is
supported when b2k = 0 for k = 1, . . . ,L:

Yt = ao +
L∑

k=1

b1kYt−k + ξ̃t . (2)

process Xt Granger causes process Yt iff b2k 6= 0
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Generalization of Granger causality

time series {x(t)} and {y(t)}: realizations of stationary
and ergodic stochastic processes {X (t)} and {Y (t)}
we will mark x(t) as x and x(t + τ) as xτ , {y(t)} . . .
mutual information I(y ; xτ ) measures the average amount
of information contained in the process {Y} about the
process {X} in its future τ time units ahead (τ -future
thereafter).
I(y ; xτ ) also contains an information about the τ -future of
the process {X} contained in this process itself if the
processes {X} and {Y} are not independent, i.e., if
I(x ; y) > 0
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Conditional mutual information

In order to obtain the “net” information about the τ -future of
the process {X} contained in the process {Y}, use the
conditional mutual information I(y ; xτ |x)

in time-series representation I
(
~Y (t); ~X (t + τ)|~X (t)

)
= I
((

y(t), y(t − ρ), . . . , y(t − (m − 1)ρ)
)
; x(t + τ)|

(
x(t), x(t − η), . . . , x(t − (n − 1)η)

))
,

η, ρ: time lags, embedding of trajectories {~X (t)}, {~Y (t)}
equivalent to transfer entropy (Schreiber, 2000)
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Conditional mutual information

typically

I
(
y(t); x(t + τ)|x(t), x(t − η), . . . , x(t − (n − 1)η)

)
is sufficient to infer coupling direction between x and y
dimensionality of condition matters
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Estimation strategies

mutual information I(X1; X2; . . . ; Xn) =

∑
x1∈Ξ1

∑
x2∈Ξ2

· · ·
∑

xn∈Ξn

p(x1, x2, . . . , xn) log
p(x1, x2, . . . , xn)

p(x1)p(x2) . . . p(xn)

continuous variables
PDD – analytic solutions (Gaussian)
metric/distance based methods

discrete variables
binning methods
symbolic/ranking methods

parametric methods
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Correlation coefficient

N observations xi , yi of two variables X and Y

x̄ =
1
N

N∑
i=1

xi σ2 =
1

N − 1

N∑
i=1

(xi − x̄)2

x̃i =
xi − x̄
σ

the correlation between X and Y is

c(X ,Y ) =
1
N

N∑
i=1

x̃i ỹi
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MI of Gaussian variables

Let variables X and Y have normal PDF p(x , y), p(x), p(y)
the correlation between X and Y is

c(X ,Y ) =
1
N

N∑
i=1

x̃i ỹi

then
I(X ; Y ) = −1

2
log
(
1− c2(X ,Y )

)
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n random variables

mutual information I(X1; X2; . . . ; Xn)
= H(X1) + H(X2) + · · ·+ H(Xn)− H(X1,X2, . . . ,Xn)

X1, . . . ,Xn an n-dimensional normally distributed random
variable with zero mean and covariance matrix C

IG(X1; . . . ; Xn) =
1
2

n∑
i=1

log(cii) −
1
2

n∑
i=1

log(σi),

where cii are the diagonal elements (variances) and σi are
the eigenvalues of the n × n covariance matrix C
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n random variables

using the correlation matrix instead of the covariance
matrix, then particularly cii = 1 for every i , and we obtain

IG(X1; . . . ; Xn) = − 1
2

n∑
i=1

log(σi)

M. Paluš Cross-scale information transfer



Binning strategies

EQUIDISTANT BINS
ADAPTIVE BINS

adaptive separately for each variable
marginally equiprobable bins
marginal equiquantization
adaptive in 2-dim (n-dim) space
Fraser-Swinney
Darbellay-Vajda

“FUZZY” BINS – B-splines
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Direction of coupling

CMI estimates
nonzero
different for x → y and y → x

how to discern unidirectional from bidirectional coupling?

M. Paluš Cross-scale information transfer



Significance testing using surrogate data

Use of bootstrap-like strategy (surrogate time series)
Ideally preserve all properties except tested (coupling)
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Testing methodology

Directionality of coupling from bivariate time series: How to avoid false causalities
and missed connections

Milan Paluš* and Martin Vejmelka†

Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věží 2, 182 07 Prague 8, Czech Republic
�Received 14 December 2006; revised manuscript received 1 March 2007; published 18 May 2007�

We discuss some problems encountered in inference of directionality of coupling, or, in the case of two
interacting systems, in inference of causality from bivariate time series. We identify factors and influences that
can lead to either decreased test sensitivity or false detections and propose ways to cope with them in order to
perform tests with high sensitivity and a low rate of false positive results.

DOI: 10.1103/PhysRevE.75.056211 PACS number�s�: 05.45.Tp, 05.45.Xt, 02.50.Ey, 87.80.Tq

I. INTRODUCTION

Cooperative behavior of coupled complex systems has re-
cently attracted considerable interest from theoreticians as
well as experimentalists �see, e.g., the monograph �1��, since
synchronization and related phenomena have been observed
not only in physical but also in many biological systems.
Examples include cardiorespiratory interactions �2–5� and
synchronization of neural signals �6–10�. In such systems it
is important not only to detect synchronized states, but also
to identify drive-response relationships between the systems
studied. This problem is a special case of the general ques-
tion of causality or causal relations between systems, pro-
cesses, or phenomena. The mathematical formulation of cau-
sality in measurable terms of predictability was given by
Wiener �11�. Granger �12� introduced a specific notion of
causality into time series analysis by evaluation of predict-
ability in bivariate autoregressive models. This linear frame-
work for measuring and testing causality has been widely
applied in economy and finance �see Geweke �13� for a com-
prehensive survey of the literature�, but also in different sci-
ences such as climatology �see �14� and references therein�
or neurophysiology, where specific problems of multichannel
electroencephalogram �EEG� recordings were solved by gen-
eralizing the Granger causality concept to multivariate cases
�15,16�. Nevertheless, the limitation of the Granger causality
concept to linear relations required further generalizations,
which emerged especially in the intensively developing field
of synchronization of complex systems. Considering the task
of identification of drive-response relationships, a number of
asymmetric dependence measures have been proposed
�6,7,9,10,17–22� and applied in diverse scientific areas such
as laser physics �23�, climatology �24,25�, cardiovascular
physiology �22,24�, neurophysiology �6,7,9,10,26–28�, and
finance �29�. In spite of these widespread applications of
various coupling asymmetry measures, the task of correct
inference of coupling asymmetry, i.e., the identification of
the driving and driven systems from experimental time se-

ries, is far from resolved. In this paper we identify some
problems encountered in this task and give some practical
advice for avoiding false detections of coupling asymmetry
or causality. We will consider two interacting systems, pos-
sibly one of them driving the other. Then the coupling asym-
metry, or, as it is called, the directionality of coupling, also
identifies causality, or causal relations between the studied
systems. The problem of distinguishing the true causality
from indirect influences in interactions of three or more sys-
tems is beyond the scope of this paper and will be addressed
elsewhere.

In Sec. II we introduce three examples of unidirectionally
coupled chaotic systems and analyze their coupling using
three already published measures. In this way we demon-
strate the importance of choice of an appropriate measure
with known properties and a solid mathematical background.
In Sec. III we review basic measures defined in information
theory and specify applications of conditional mutual infor-
mation �CMI� for detection of causality. Section IV intro-
duces multidimensional conditional mutual information ap-
plicable to amplitudes of dynamical systems or stochastic
processes, and a version of CMI for evaluation of coupling
asymmetry using instantaneous phases of coupled oscillatory
systems. Then, in Sec. V, we study bias and variance of CMI
estimates and discuss statistical evaluation of the estimated
CMI in order to assure correct inference of causality and/or
coupling asymmetry from experimental time series. Further
factors influencing the bias in the CMI estimates are dis-
cussed in Sec. VI, where also an example of assessing the
direction of coupling in cardiorespiratory interaction is pre-
sented. The discussed topics are summarized and conclusions
given in Sec. VII. Finally, the Appendix proves the equiva-
lence of the conditional mutual information and the transfer
entropy introduced by Schreiber �18�.

II. ASYMMETRY IN COUPLING:
SYSTEMS AND MEASURES

As the first example, let us consider the unidirectionally
coupled Rössler and Lorenz systems, also studied in Refs.
�7,9,19�, described by the equations

ẋ1 = − ��x2 + x3� ,

ẋ2 = ��x1 + 0.2x2� ,

*Electronic address: mp@cs.cas.cz
†Also at Department of Cybernetics, Faculty of Electrical Engi-

neering, Czech Technical University, Karlovo náměstí 13, 121 35
Praha 2—Nové Město, Czech Republic. Electronic address:
vejmelka@cs.cas.cz
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CMI – statistical evaluation

estimator bias, variance
proper surrogate data
different dynamics→ different bias in each direction:

different characteristic frequencies:
I(slower→ faster) > I(faster→ slower)
different complexity (entropy rate)
different noise content

Do NOT use differences I(X → Y )− I(Y → X )

test significance in each direction separately
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Estimation and testing

Inferring the directionality of coupling with conditional mutual information

Martin Vejmelka*
Institute of Computer Science, Academy of Sciences of the Czech Republic, Praha, Czech Republic and Department of Cybernetics,

Faculty of Electrical Engineering, Czech Technical University, Praha, Czech Republic

Milan Paluš
Institute of Computer Science, Academy of Sciences of the Czech Republic, Praha, Czech Republic

�Received 15 August 2007; published 21 February 2008�

Uncovering the directionality of coupling is a significant step in understanding drive-response relationships
in complex systems. In this paper, we discuss a nonparametric method for detecting the directionality of
coupling based on the estimation of information theoretic functionals. We consider several different methods
for estimating conditional mutual information. The behavior of each estimator with respect to its free parameter
is shown using a linear model where an analytical estimate of conditional mutual information is available.
Numerical experiments in detecting coupling directionality are performed using chaotic oscillators, where the
influence of the phase extraction method and relative frequency ratio is investigated.

DOI: 10.1103/PhysRevE.77.026214 PACS number�s�: 05.45.Tp, 05.10.�a

I. INTRODUCTION

Cooperative behavior of coupled complex systems has re-
cently raised much interest in the scientific community �1�,
since synchronization and related phenomena have been ob-
served not only in physical but also in many biological sys-
tems. Examples include cardiorespiratory interaction �2–7�
and the synchronization of neural signals �8–12�. In such
physiological systems it is important not only to detect syn-
chronized states, but also to identify drive-response relation-
ships. Several indices detecting the directionality of coupling
have been proposed. For example, Schreiber �13� proposes to
compute the transfer entropy, based on the Kullback entropy
measuring the deviation of the transition probability density
function �PDF� from the generalized Markov property. In
Refs. �14,15� the authors propose to approximate functional
relationships between the instantaneous phases of interacting
oscillators using their Fourier expansions, and compute a
normalized “directionality index.”

Other approaches include various cross-prediction meth-
ods which attempt to directly exploit Granger’s ideas on mu-
tual forecasting of series generated by coupled linear systems
�16�. However, opposite opinions exist on how to interpret
the cross-prediction accuracy, e.g., in Ref. �8� the authors
hypothesize that the average cross-prediction error is smaller
in the driving system while in Ref. �9� it is suggested that the
cross-prediction error should be smaller when predicting the
driven system.

In this paper, we present a nonparametric method of de-
tecting the directionality of coupling based on information
theory. The method involves estimating a well-known infor-
mation theoretic functional—the conditional mutual informa-
tion �CMI� �17�. There is a multitude of ways to estimate the
CMI �18�. We select some of them and compare them from
two standpoints: estimator bias on a linear model and correct
detection rates on a pair of chaotic oscillators with known
coupling parameters.

When processing experimental data the situation is quite
complicated. Measurement noise and limited length of ex-
perimental time series can be sources of considerable addi-
tional variance in the estimates. Different statistical and dy-
namical properties �stochasticity, dominant frequencies� of
the two underlying systems can cause severe bias in esti-
mates of directionality indices. We show how it is possible to
alleviate these effects to a large extent by testing the com-
puted indices using sets of surrogate data �19,20�. Neverthe-
less, it should be noted that inferring directionality in sys-
tems with very different properties remains a much more
difficult problem than inferring directionality in similar sys-
tems.

The paper is organized as follows. The Introduction con-
tinues with a brief overview of relevant concepts of informa-
tion theory, the problem of detecting coupling directionality
in general, exploiting phase dynamics in particular, and
closes with the problem of significance testing. The next sec-
tion introduces some prospective methods of estimating in-
formation theoretic functionals. Two experimental sections
detailing the setup and results of several numerical experi-
ments follow, and the last section contains a discussion of the
experimental results.

A. Brief introduction to Information theory

Quantities based on information theoretic functionals
have enjoyed an important position in detecting relationships
between complex systems partly due to their nonparametric
nature, which makes them widely applicable. In this section
a brief introduction to the basic functionals is given.

Consider discrete random variables X and Y with sets of
values � and �, respectively, probability distribution func-
tions p�x�, p�y�, and the joint PDF p�x ,y�. The Shannon
entropy H�X� is defined as

H�X� = − �
x��

p�x�log p�x� . �1�

The joint entropy H�X ,Y� of X and Y is*vejmelka@cs.cas.cz
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Route to synchronization

unidirectionally coupled Rössler systems

ẋ1 = −ω1x2 − x3

ẋ2 = ω1x1 + a1 x2

ẋ3 = b1 + x3(x1 − c1)

ẏ1 = −ω2y2 − y3 + ε(x1 − y1)

ẏ2 = ω2y1 + a2 y2

ẏ3 = b2 + y3(y1 − c2)

a1 = a2 = 0.15, b1 = b2 = 0.2, c1 = c2 = 10.0
frequencies ω1 = 1.015, ω2 = 0.985.
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Route to synchronization
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MULTISCALE DYNAMICS

DECOMPOSITION OF BROAD-BAND SIGNALS

DIGITAL FILTERING
WAVELET DECOMPOSITION
EMPIRICAL MODE DECOMPOSITION
SINGULAR SPECTRUM ANALYSIS

IN-SCALE OR ACROSS SCALES INTERACTIONS

SCALE-SPECIFIC SYNCHRONIZATION
SCALE-SPECIFIC GRANGER CAUSALITY
CROSS-SCALE INTERACTIONS
CROSS-FREQUENCY COUPLING
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Phase dynamics approach

ANALYTIC SIGNAL

ψ(t) = s(t) + j ŝ(t) = A(t)ejφ(t) (3)

INSTANTANEOUS PHASE

φ(t) = arctan
ŝ(t)
s(t)

(4)

INSTANTANEOUS AMPLITUDE

A(t) =
√

ŝ(t)2 + s(t)2 (5)

FILTERING −→ HILBERT TRANSFORM
COMPLEX CONTINUOUS WAVELET TRANSFORM
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Phase dynamics in each scale (frequency)
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CROSS-SCALE INTERACTIONS

Cross-frequency interactions

phase–phase
amplitude–amplitude
phase–amplitude
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Wavelet phase-phase method error
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Multifractal process – surrogate data

Bootstrapping Multifractals: Surrogate Data from Random Cascades on Wavelet Dyadic Trees

Milan Paluš*

Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věžı́ 2, 182 07 Prague 8, Czech Republic
(Received 30 March 2007; revised manuscript received 21 June 2008; published 25 September 2008)

A method for random resampling of time series from multiscale processes is proposed. Bootstrapped

series—realizations of surrogate data obtained from random cascades on wavelet dyadic trees—preserve

the multifractal properties of input data, namely, interactions among scales and nonlinear dependence

structures. The proposed approach opens the possibility for rigorous Monte Carlo testing of nonlinear

dependence within, with, between, or among time series from multifractal processes.

DOI: 10.1103/PhysRevLett.101.134101 PACS numbers: 05.45.Tp, 05.45.Df, 89.75.Da

The estimation of any quantity from experimental data,
with the aim to characterize an underlying process or its
change, is incomplete without assessing the confidence of
the obtained values or significance of their difference from
natural variability. With the increasing performance and
availability of powerful computers, Efron [1] proposed to
replace (not always possible) analytical derivations based
on (not always realistic) narrow assumptions by computa-
tional estimation of empirical distributions of quantities
under interest using so-called Monte Carlo randomization
procedures. In statistics, the term ‘‘bootstrap’’ [2] is coined
for random resampling of experimental data, usually with
the aim to estimate confidence intervals (‘‘error bars’’).
Theoretically different, but sometimes technically similar
applications of the resampling approaches have been de-
veloped in the field of hypothesis testing. The latter has
entered physics and nonlinear dynamics with the question
of detection of chaotic dynamics in experimental data [3].
With the aim to prove that nonlinearity (and possibly,
chaos) is present in analyzed data, ‘‘surrogate data’’ are
constructed which preserve ‘‘linear properties’’ of the an-
alyzed data but otherwise are realizations of a random pro-
cess. The standard approach [3] uses the fast Fourier trans-
form (FFT). Randomization of the phases of the complex
Fourier coefficients and the inverse FFT provides realiza-
tions of a Gaussian process reproducing the sample spec-
trum and autocorrelation function of the analyzed data.
Common preservation of spectra and amplitude distribu-
tions are solved by appropriate amplitude transformation
and iterative procedures [3]. Breakspear et al. [4] have in-
troduced surrogate data based on the wavelet transform [5].
The randomization is performed by one of the following
three ways of manipulating the wavelet coefficients within
each scale: (i) random permutation; (ii) cyclic rotation with
a random offset; and (iii) block resampling, i.e., random
permutation of blocks of the wavelet coefficients. Keylock
[6] combines both the techniques in the sense that the
wavelet coefficients within each scale undergo the iterative
amplitude-adjusted FFT randomization combined with cy-
clic rotation in order to align extrema in coefficient values.

Generally, all these approaches reproduce the ‘‘linear
properties’’ (the first and the second moments) of analyzed

data in combinations with some constraints. Possible non-
linear dependence between a signal sðtÞ and its history
sðt� �Þ is destroyed, as well as interactions among vari-
ous scales in a potentially hierarchical, multiscale process.
Multiscale processes that exhibit hierarchical information
flow or energy transfer from large to small scales, success-
fully described by using the multifractal concepts (see [7]
and references therein) have been observed in diverse fields
from turbulence to finance [8], through cardiovascular
physiology [9] or hydrology, meteorology, and climatology
[10]. Angelini et al. [11] express the need for resampling
techniques in evaluating data from atmospheric turbulence
and other hierarchical processes. They apply a sophisti-
cated block resampling of the wavelet coefficients; how-
ever, the multifractal properties of the tested data are only
partially reproduced in the resampled data [11]. The
‘‘twin’’ surrogates [12] reproduce nonlinear dependence
in trajectories, using the recurrence properties of dynami-
cal systems evolving on or near attracting sets; however,
they are not suitable for randomization of multiscale pro-
cesses violating the recurrence condition.
In this Letter we propose a method for random resam-

pling of time series frommultifractal processes in the sense
that the resampled data replicate the multifractal properties
of the original (input) data. The method reproduces the
interactions among scales, so that multifractal spectra as
well as nonlinear dependence structures are preserved. The
proposed construction of such, let us call them multifractal
surrogate data, is based on the idea of synthesis of multi-
fractal signals using an orthonormal wavelet basis pro-
posed by Arneodo et al. [7].
Let us consider a set f j;kg of periodic wavelets that form

an orthonormal basis of L2ð½0; L�Þ. Thus any function f 2
L2ð½0; L�Þ can be written as

fðxÞ ¼ Xþ1

j¼0

X2j�1

k¼0

cj;k j;kðxÞ; (1)

where cj;k¼h j;kjfi¼
R
L j;kðxÞfðxÞdx,  j;k¼

2j=2 ð2�jx�kÞ. To construct a self-similar process whose
properties are defined multiplicatively from coarse to fine
scales, Arneodo et al. [7] propose to define a cascade using

PRL 101, 134101 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

26 SEPTEMBER 2008

0031-9007=08=101(13)=134101(4) 134101-1 � 2008 The American Physical Society

M. Paluš Cross-scale information transfer



Multifractal process
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CROSS-SCALE INTERACTIONS

CAUSAL PHASE –> AMPLITUDE INTERACTIONS
in about a century long records of daily near-surface air
temperature records from European stations

phase φ1 of slow oscillations (around 10 year period)
amplitude A2 of higher-frequency variability (periods 5
years and less)
I(φ1(t); A2(t + τ)|A2(t),A2(t − η), . . . ,A2(t −mη))

testing using surrogate data approach

Fourier transform (FT) surrogate data (Theiler et al.)
multifractal (MF) surrogate data (Paluš)
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS

I(φ1(t); A2(t + τ)|A2(t),A2(t − η), . . . ,A2(t −mη))

series length 32768
forward lags τ = 1− 750 days
backward condition lags η = 1/4 of the slow period
Gaussian process estimator
conditioning dimension: stable results from 3
raw data include annual cycle
seasonal mean and variance removed before surrogate
randomization
seasonal mean and variance added back to surrogate
realizations
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS
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CONDITIONING→ UNIDIRECTIONALITY
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS
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SSA-extracted "7–8 yr cycle", Prague SAT
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EFFECT PHASE –> AMPLITUDE COUPLING

HOW TO QUANTIFY THE EFFECT
OF PHASE –> AMPLITUDE COUPLING ?
EXTRACT THE CYCLE WITH PERIOD
AROUND 8 YEARS
EXTRACT ITS PHASE
DIVIDE THE PHASE INTO 8 BINS
COMPUTE CONDITIONAL TEMPERATURE MEANS
< T |φ ∈ (φ1, φ2) >
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Computing SAT conditional means
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EFFECT of PHASE –> AMPLITUDE COUPLING

a) Prague SAT conditional means (CM)
b) Prague SAT anomalies CM
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EFFECT of PHASE –> AMPLITUDE COUPLING

ERA SATA (ERA-40 + ERA-Interim reanalysis data)
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Cross-scale information transfer

Multiscale Atmospheric Dynamics: Cross-Frequency Phase-Amplitude Coupling
in the Air Temperature

Milan Paluš*

Department of Nonlinear Dynamics and Complex Systems, Institute of Computer Science, Academy of Sciences
of the Czech Republic, Pod vodárenskou věží 2, 182 07 Prague 8, Czech Republic

(Received 29 November 2012; published 21 February 2014)

Interactions between dynamics on different temporal scales of about a century long record of data of the
daily mean surface air temperature from various European locations have been detected using a form of the
conditional mutual information, statistically tested using the Fourier-transform and multifractal surrogate
data methods. An information transfer from larger to smaller time scales has been observed as the influence
of the phase of slow oscillatory phenomena with the periods around 6–11 yr on the amplitudes of the
variability characterized by the smaller temporal scales from a few months to 4–5 yr. The overall effect of
the slow oscillations on the interannual temperature variability within the range 1–2 ° C has been observed
in large areas of Europe.

DOI: 10.1103/PhysRevLett.112.078702 PACS numbers: 92.60.Ry, 05.45.Tp, 89.75.Da, 92.70.Gt

Understanding the complexity in the atmospheric dy-
namics and climate evolution is a great scientific challenge
with a potentially high societal impact. Attempts to infer
nonlinear dynamical mechanisms from meteorological data
date back to the 1980s when a number of researchers
claimed detections of a weather or climate attractor of a low
dimension [1–3]. Other authors pointed to a limited re-
liability of chaos-identification algorithms and considered
the observed low-dimensional weather or climate attractors
as spurious [4,5]. Paluš and Novotná [6] even found the air
temperature data well explained by a linear stochastic
process, when the dependence between a temperature time
series fxðtÞg and its lagged twin fxðtþ τÞgwas considered.
Hlinka et al. [7] extended the latter result to the bivariate
dependence of themonthly time series of the griddedwhole-
Earth air temperature reanalysis data.
On the other hand, a search for repetitive patterns on

specific temporal scales in the temperature and other
meteorological data has led to an identification of oscil-
latory phenomena possibly possessing a nonlinear origin
and exhibiting phase synchronization between oscillatory
modes extracted from either different types of climate-
related data or data recorded at different locations on Earth
[8–10]. Global circulation phenomena, identified as the
principal modes of the atmospheric variability, also show a
complex nonlinear behavior [11,12] and phase synchroni-
zation [13]. A different perspective in understanding the
complexity of the atmospheric dynamics has been discov-
ered by very active research in uncovering the long-term
persistence and multifractality in climate-related time series
including the air temperature [14–17].
Assuming that natural complex systems exhibit oscil-

lations and fluctuations on a wide range of time scales,
Gans et al. [18] propose a framework for analysis of

interactions across the temporal scales by quantifying
dependence among instantaneous amplitudes and frequen-
cies of oscillatory dynamics obtained from experimental
time series using digital filters and the Hilbert transform.
Cross-frequency interactions, in particular, a cross-frequency
phase–amplitude coupling, has recently been observed in
electrophysiological signals reflecting the brain dynamics.
Beyond the synchronization phenomena on particular
temporal scales, the cross-frequency coupling enriches
the cooperative behavior of neuronal networks and appa-
rently plays an important functional role in neuronal
computation, communication, and learning [19].
It can generally be expected that long-term air temper-

ature recordings reflect complex atmospheric dynamics on
multiple temporal scales. Considering the oscillatory and
synchronization phenomena observed on various scales of
the atmospheric dynamics [8–10], in accord with Gans
et al. [18], we will study in the air temperature recordings
possible oscillations and fluctuations on a wide range of
time scales using the phase dynamics approach [20]. For an
arbitrary time series sðtÞ, the analytic signal ψðtÞ is a
complex function of time defined as

ψðtÞ ¼ sðtÞ þ iŝðtÞ ¼ AðtÞeiϕðtÞ: (1)

The instantaneous phase ϕðtÞ of the signal sðtÞ is then

ϕðtÞ ¼ arctan
ŝðtÞ
sðtÞ ; (2)

and its instantaneous amplitude is

AðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðtÞ2 þ ŝðtÞ2
q

: (3)
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Open problems

Conditioning dimension: objective, automatic, ...,
data limitations
Estimator

Gaussian: "sees" only interactions of φ1 and A2 in the
same time scale (A2 related to fast variability given by φ2,
but A2 varies slowly, in time scale of φ1)
binning: low sensitivity
(32768 daily samples, only 11 cycles with 8yr period)
k-nn: can see more interactions? do they exist?

time scale estimation
WT: uncertainty in frequency and time localization
natural cycles - varying frequency
other methods? SSA, EMD
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Open problems

Statistical significance

sensitivity & specificity depend on number of cycles
on the estimator type
multiple testing, but dependent tests
tests of the method: artificial multiscale data

Measurable effects / conditional means, variance
nonstationarity, segmentation
WT redundacy - non-redundant decomposition?
other variables – precipitation
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CONCLUSION
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