

Potsdam Institute for Climate Impact Research



# Quantifying causal interactions from time series of complex systems

#### Jakob Runge

#### CIDNET Workshop June 16 – 20, 2014, MPI Dresden





#### Approach: Inferring interactions in processes from investigating their time series...



Earth from Apollo 13 (wikipedia.org)



arbirator-robloxnews.blogspot.com



bigthink.com

### Outline

- 1. Pitfalls in estimating **coupling delays** with lagged cross correlation / mutual information
- 2. Ambiguities in interpreting mutual information and transfer entropy
- 3. Representing causal interactions with **time series graphs**
- 4. Quantifying **causal strength** with momentary information transfer
- 5. Estimating conditional mutual information and coping with autocorrelation in significance testing

1. Inferring coupling delays

#### **Example: ENSO teleconnections**



Reanalysis data: Monthly surface air temperature and pressure Kalnay et al., 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3), 437–471.

#### **Lagged correlations** $\rho(X_{t-\tau}; Y_t)$



#### Lagged correlations





 $X_t = aX_{t-1} + \varepsilon_t^X$ 





$$X_t = aX_{t-1} + \varepsilon_t^X$$

#### "internal dynamics"



### **Toy model**

















#### Who drives whom?





height of peak strongly varies with "driving persistence" *a* 



lag is strongly shifted for large "susceptibility" b



height of peak strongly varies with "driving persistence" a



lag is strongly shifted for large "susceptibility" *b* 

for the same small mechanism strength C = 0.1 and mechanism delay  $\tau = 1$ 



height of peak strongly varies with "driving persistence" *a* 

#### lag is strongly shifted for large "susceptibility" b

#### Same thing happens for lagged mutual information!

# 2. Measuring causal strength

# How to interprete measures of coupling strength



#### Measures based on (conditional) mutual information

$$I(X;Y | Z) = \int p(z) \int \int p(x, y|z) \log \frac{p(x, y|z)}{p(x|z) \cdot p(y|z)} dx dy dz$$
$$= H(X|Z) + H(Y|Z) - H(X, Y|Z)$$

# Estimation via *k*-nearest neighbor statistics

#### Commonly used approach: (Multivariate) Transfer Entropy (TE) = Generalized Granger Causality

$$I_{X \to Y}^{\mathrm{TE}} = I(X_t^-; Y_t \mid Y_t^-, \ldots)$$

$$X_t^- = (X_{t-1}, X_{t-2}, \ldots)$$

*T.* Schreiber, Phys.Rev.Lett. 85, 461 (2000) Barnett et al., Physical Review Letters, 103, 238701 (2009)







 $X_t = a_X X_{t-1} + \eta_t^X$  $Y_t = c_{XY} X_{t-2} + \eta_t^Y$ 



$$I_{X \to Y}^{\text{TE}} = \frac{1}{2} \ln \left( 1 + \frac{(c_{XY}^2 \sigma_X^2) / (1 - a_X^2)}{\sigma_Y^2} \right)$$

# But what does conditional TE measure?



$$Z_t = c_{XZ} X_{t-1} + \eta_t^Z$$
  

$$X_t = \eta_t^X$$
  

$$Y_t = c_{XY} X_{t-2} + c_{WY} W_{t-1} + \eta_t^Y$$
  

$$W_t = \eta_t^W$$

# But what does conditional TE measure?

$$Z_{t} = c_{XZ}X_{t-1} + \eta_{t}^{Z}$$

$$Z_{t} = \eta_{t}^{X}$$

$$X_{t} = \eta_{t}^{X}$$

$$Y_{t} = c_{XY}X_{t-2} + c_{WY}W_{t-1} + \eta_{t}^{Y}$$

$$W_{t} = \eta_{t}^{W}$$

$$I_{X \to Y}^{\mathrm{TE}} = \frac{1}{2} \ln \left( 1 + \frac{c_{XY}^2 \sigma_X^2 \sigma_Z^2}{\sigma_Y^2 (c_{XZ}^2 \sigma_X^2 + \sigma_Z^2)} \right)$$

# What does the Mutual Information measure?



$$Z_t = c_{XZ} X_{t-1} + \eta_t^Z$$
  

$$X_t = a_X X_{t-1} + \eta_t^X$$
  

$$Y_t = c_{XY} X_{t-2} + c_{WY} W_{t-1} + \eta_t^Y$$
  

$$W_t = \eta_t^W$$

# What does the Mutual Information measure?



$$I_{X \to Y}^{\text{MI}} = \frac{1}{2} \ln \left( 1 + \frac{(c_{XY}^2 \sigma_X^2) / (1 - a_X^2)}{c_{WY}^2 \sigma_W^2 + \sigma_Y^2} \right)$$



TE(X  $\rightarrow$  Y) depends on external or internal driving of X and even on processes driven by X

MI depends on external or internal driving of X and other drivers of Y

Are these well-interpretable/precise measures of the coupling strength between X and Y?

# Time series graphs + momentary information transfer

### **Conditional independence**

- W www.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.hummen.humme



Conditional independence of X and Y given Z:

#### $X \perp \!\!\!\perp Y | Z \iff I(X;Y|Z) = 0$



#### **Conditional independence for time series**

|                                            |   |     |     | past | present |
|--------------------------------------------|---|-----|-----|------|---------|
|                                            |   | t-3 | t-2 | t-1  | t       |
| Mr. M. | X |     |     | O    | O       |
| www.www.www.www.www.www.www.www.www.ww     | Y | O   |     | O    |         |
| www.www.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M    | Ζ | O   |     | O    | O       |

#### **Time series graphs/graphical models**

S. L. Lauritzen, Graphical Models, Oxford, 1996 R. Dahlhaus, Metrika 51, 157 (2000) M. Eichler, Probability Theory and Related Fields 1 (2012)

#### **Conditional independence for time series**

#### **Time series graphs/graphical models**

S. L. Lauritzen, Graphical Models, Oxford, 1996 R. Dahlhaus, Metrika 51, 157 (2000) M. Eichler, Probability Theory and Related Fields 1 (2012)

#### **Time series graphs**



#### **Time series graphs**



#### **Markov property**



### **Markov property**



Markov Property: Separation in graph ==> independence  $\mathbf{X}_t^- \setminus \mathcal{P}_{Y_t} \quad \bot \quad Y_t \mid \mathcal{P}_{Y_t}$ 

Spirtes (2000), Pearl (2000), Eichler (2012)

Estimation? Iterative PCalgorithm / Jie Sun's algorithm

> *P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and Search (MIT, Cambridge, MA, 2000).*

> J. Runge et al., Phys. Rev. Lett. 108, 258701 (2012)

#### **Re-examined: ENSO teleconnections**



Reanalysis data: Monthly surface air temperature and pressure Kalnay et al., 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3), 437–471.

### **Pacific - Atlantic teleconnection**

#### Correlation / ITY / MIT



### **Pacific - Atlantic teleconnection**

#### Correlation / ITY / MIT



### **Pacific - Atlantic teleconnection**

#### Correlation / ITY / MIT



# What is a well interpretable coupling strength?



# Ansatz for a well interpretable measure of coupling strength



Source entropy of X:  $H(X_{t-\tau}|\mathcal{P}_{X_{t-\tau}})$ 

→ dynamical noise in a stochastic system
(→ uncertainty in a chaotic deterministic system)
→ input from unobserved variables

B. Pompe and J. Runge, Phys. Rev. E 83, 051122 (2011)

# Ansatz for a well interpretable measure of coupling strength



Source entropy of X:  $H(X_{t-\tau}|\mathcal{P}_{X_{t-\tau}})$ 

Source entropy of Y:  $H(Y_t | \mathcal{P}_{Y_t})$ 

→ dynamical noise in a stochastic system
 (→ uncertainty in a chaotic deterministic system)
 → input from unobserved variables

B. Pompe and J. Runge, Phys. Rev. E 83, 051122 (2011)

#### Momentary Information Transfer (MIT)



# $I_{X \to Y}^{\text{MIT}}(\tau) \equiv I(X_{t-\tau}; Y_t | \mathcal{P}_{Y_t} \setminus \{X_{t-\tau}\}, \mathcal{P}_{X_{t-\tau}})$ $= H(Y_t | \mathcal{P}_{Y_t} \setminus \{X_{t-\tau}\}, \mathcal{P}_{X_{t-\tau}}) - H(Y_t | \mathcal{P}_{Y_t})$

**J. Runge**, J. Heitzig, M. Marwan, and J. Kurths, *Quantifying causal coupling strength: ...* Phys. Rev. E 86, 061121 (2012)

#### What does MIT measure?



#### What does MIT measure?



#### Coupling Strength Autonomy Theorem

#### **Additive Models:**

$$X_t = g_X(\mathcal{P}_{X_t}) + \eta_t^X$$
$$Y_t = cX_{t-\tau} + g_Y(\mathcal{P}_{Y_t} \setminus \{X_{t-\tau}\}) + \eta_t^Y$$

Under "no sidepath"constraint:



$$I_{X \to Y}^{\text{MIT}}(\tau) = I(\eta_{t-\tau}^X; c\eta_{t-\tau}^X + \eta_t^Y)$$

#### **Path-based measures**





**a)** Time series graph

**b)** Process graph

# Significance testing under strong autocorrelations

- X  $\mathcal{M}$



#### **Estimation of CMI via k-nearest-neighbor estimator**



$$\widehat{I}_{XY|Z} = \psi(k) + \frac{1}{T} \sum_{t=1}^{T} \left[ \psi(k_{Z,t}) - \psi(k_{YZ,t}) \right]$$

Frenzel & Pompe, Phys. Rev. Lett., 99(20), 204101. (2007)

Kraskov et al., Phys. Rev. E 69, 066138 (2004)

#### parameter k ~ bandwidth in KDE

(here k in joint space defines epsilon in all dimensions)

# Much better than binning, still: Bias for short samples and large dimension



optimal *k* for best statistical power as conditional independence test

#### **Power as independence test: AUC for multivariate Gaussian**



### Significance testing

- Need to know sample distribution of estimator for independent processes
- Partial correlation: analytical distribution known for Multivariate Gaussian (Student's *t*),
   But: assuming i.i.d. samples
- Conditional mutual information (kNN): Nothing known
  - $\rightarrow$  shuffle test...

#### **Significance testing Partial correlation**

What happens for autocorrelated time series?

$$X_t = aX_{t-1} + \eta_t^X$$
$$Y_t = aY_{t-1} + cX_{t-1} + \eta_t^Y$$

#### **Significance testing Partial correlation**

What happens for autocorrelated time series?

$$X_t = aX_{t-1} + \eta_t^X$$
$$Y_t = aY_{t-1} + cX_{t-1} + \eta_t^Y$$



#### Significance testing Conditional mutual information



### Conclusions

#### Unconditional (Correlation, Mutual Information) lag functions or Transfer Entropy

- ... are not suitable to infer coupling delays (not goal of TE)
- ... are counterintuitive/ambiguous as measures of strength of mechanism
- … have large false positive rate in significance tests under high autocorrelations

#### Time series graph + Momentary information transfer

- ... yield precise coupling delays
- ... provide at least a more precisely defined measure of causal strength (also partial correlation MIT)
- ... reduce the effect of autocorrelation in significance testing

### **Challenges: Eichler's list ...plus:**

- PC Algorithm: Iterative testing → multiple testing problem → significance/posterior prob. of links difficult to estimate...but: only way without model!
- Faithfulness assumption
- CMI: shuffle tests computationally expensive
- Estimation of CMIs bias for higher dimensions → difficult to compare causal strength! → desperate search for information-theoretic characterization of causal strength

Need to improve CMI estimators  $\rightarrow$  smartly include assumptions

## **TiGraMITe**

## Python script for **Ti**me series **Gra**ph and **M**omentary Information **T**ransfer **e**stimation

www.pik-potsdam.de/members/jakrunge

| Document Viewer                                                                                                                                                                                                                                                                                                                                                                                                                                | er e                                                                                                                                                                                                            | n 🖂 📼 🖇 🎅 🕪) Wed Aug 7 15:37 👤 Jakob 🔱                          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
| 😮 🖨 🗉 🏾 TiGraMITe - /home/jakob/doktor                                                                                                                                                                                                                                                                                                                                                                                                         | arbeit/code/TiGraMITe/tigramite/config_folder/config_template.tgc                                                                                                                                                                                   | TiGraMITe/tigramite                                             |  |  |
| Project name test_run           1. Data         2. Estimation         3. Plotting           I. Choose measure of association, significant                                                                                                                                                                                                                                                                                                      | <pre>p@jakob-ThinkPa # jakob@jakob-ThinkPa #<br/>GraMITe/tigramite\$ ./tigramite.py<br/>template_results.tgr<br/>already estimated project, save config</pre>                                                                                       |                                                                 |  |  |
| Measure of associationpar_corrknn in algorithm100knn for MIT,5Normalization0                                                                                                                                                                                                                                                                                                                                                                   | Significance       alpha         Shuffle test samples       Alpha level         100       0.9750         Sensitivity       sig_lev_ensemble = [0.95, 0.975]         Fixed_thres_ensemble = [0.95, 0.975]       Fixed_thres_ensemble = [0.95, 0.975] | stuff<br>>ute 'cfg_dict'<br>.GraMITe/tigramite\$ ./tigramite.py |  |  |
| Algorithm parameters Skip algorithm and estimate measures with fixed graph dictionary:<br>Maximum lag 5 fixed_conds_graph = {0:[(0,-1)], 1:[(1,-1)], 2:[(2,-1)], 3:[(3,-1)]}<br>Maximum lag 5 fixed_conds_graph = {0:[(0,-1)], 1:[(1,-1)], 2:[(2,-1)], 3:[(3,-1)]}<br>Meximum lag 5 fixed_conds_graph = {0:[(0,-1)], 1:[(1,-1)], 2:[(2,-1)], 3:[(3,-1)]}<br>Maximum lag 5 fixed_conds_graph = {0:[(0,-1)], 1:[(1,-1)], 2:[(2,-1)], 3:[(3,-1)]} |                                                                                                                                                                                                                                                     |                                                                 |  |  |
| $ \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$                                                                                                                                                                                                            | W $W$ $W$ $W$ $W$ $W$ $W$ $W$ $W$ $W$                                                                                                                                                                                                               |                                                                 |  |  |

#### References

**J. Runge,** V. Petoukhov, and J. Kurths, *Quantifying the strength and delay of climatic interactions:* ...

Journal of Climate 27(2), 720-739 (2014)

**J. Runge**, J. Heitzig, M. Marwan, and J. Kurths, *Quantifying causal coupling strength: ...* Phys. Rev. E 86, 061121 (2012)

**J. Runge**, J. Heitzig, V. Petoukhov, and J. Kurths, *Escaping the curse of dimensionality in estimating multivariate transfer entropy* Phys. Rev. Lett. 108, 258701 (2012)

B. Pompe, **J. Runge**, *Momentary information transfer as a coupling measure of time series* Phys. Rev. E, 83, 051122 (2011)

#### www.pik-potsdam.de/members/jakrunge

Potsdam Institute for Climate Impact Research







V. Petoukhov



#### J. Kurths



#### Sponsors: DFG

