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Approach:
Inferring interactions in processes 
from investigating their time 
series...

arbirator-robloxnews.blogspot.com

Earth from Apollo 13 (wikipedia.org)

bigthink.com



 

Outline
1. Pitfalls in estimating coupling delays with lagged cross 

correlation / mutual information
2. Ambiguities in interpreting mutual information and 

transfer entropy

3. Representing causal interactions with time series graphs
4. Quantifying causal strength with momentary information 

transfer
5. Estimating conditional mutual information and coping with 

autocorrelation in significance testing



 

1. Inferring 1. Inferring 
coupling delayscoupling delays



 

Example: ENSO teleconnections

Reanalysis data: Monthly surface air temperature and pressure
Kalnay et al., 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the 
American Meteorological Society, 77(3), 437–471.



 

Lagged correlations



 

Lagged correlations

AR(1) significanceAR(1) significance



 

Toy model



 

Toy model

Nino3: a = 0.95Nino3: a = 0.95
ATL: a = 0.91ATL: a = 0.91

WEUR: a = 0.19WEUR: a = 0.19
EEUR: a = 0.26EEUR: a = 0.26

““internal dynamics”internal dynamics”



 

Toy model

strength of mechanism strength of mechanism c c with lagwith lag  ττ““driving driving 

persistence” persistence” aa
““susceptibility” susceptibility” bb



 

Analytical lagged correlations

c = 0.1,c = 0.1,

ττ  = 1= 1,   ,     
b = 0.9 b = 0.9 

aa

bbaa
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Analytical lagged correlations

aa

c = 0.1,c = 0.1,

ττ  = 1= 1,   ,     
b = 0.9 b = 0.9 



 

Analytical lagged correlations

bb

c = 0.1,c = 0.1,

ττ  = 1= 1,   ,     
a = 0.9 a = 0.9 



 

Who drives whom? 



 

Analysis summary

height of peak strongly varies 
with “driving persistence” a

lag is strongly shifted for large 
“susceptibility” b



 

Analysis summary

height of peak strongly varies 
with “driving persistence” a

lag is strongly shifted for large 
“susceptibility” b

for the same small for the same small 

mechanism strength mechanism strength cc = 0.1 = 0.1

and mechanism delay and mechanism delay τ τ = 1= 1  



 

Analysis summary

height of peak strongly varies 
with “driving persistence” a

lag is strongly shifted for large 
“susceptibility” b

Same thing happens for lagged mutual Same thing happens for lagged mutual 
information! information! 



 

2. Measuring causal 2. Measuring causal 
strengthstrength
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How to interpreteinterprete measures of 
coupling strength
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Measures based on 
(conditional) mutual information

Estimation via k-nearest neighbor 
statistics



 

Commonly used approach: 
(Multivariate) Transfer Entropy (TE)
= Generalized Granger Causality= Generalized Granger Causality

T. Schreiber, Phys.Rev.Lett. 85, 461 (2000)
Barnett et al., Physical Review Letters, 103, 
238701 (2009)



 

But what does TE measure?
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But what does conditional TE 
measure?
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What does the Mutual Information 
measure?
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What does the Mutual Information 
measure?
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Analysis summary

TE(X → Y) depends on external 
or internal driving of X and 
even on processes driven by X

MI depends on external or 
internal driving of X and other 
drivers of Y

Are these well-interpretable/precise Are these well-interpretable/precise 
measures of the coupling strength measures of the coupling strength 

between X and Y?between X and Y?



 

Time series graphs Time series graphs 
++

 momentary  momentary 
information transferinformation transfer



 

ConditionalConditional independence
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Conditional independence Conditional independence 
of X and Y given Z:of X and Y given Z:



 

Conditional independence for time seriestime series

X

past present

Y

Z

S. L. Lauritzen, Graphical Models, Oxford, 1996
R. Dahlhaus, Metrika 51, 157 (2000)
M. Eichler, Probability Theory and Related Fields 1 (2012)

Time series graphs/graphical modelsTime series graphs/graphical models



 

Conditional independence for time seriestime series

X

past present

Y

Z

S. L. Lauritzen, Graphical Models, Oxford, 1996
R. Dahlhaus, Metrika 51, 157 (2000)
M. Eichler, Probability Theory and Related Fields 1 (2012)

Time series graphs/graphical modelsTime series graphs/graphical models



 

Time series graphs

X

past present

Y

Z

Contemp. link:

Directed link:

M. Eichler, Probability Theory and Related Fields 1 (2012)
Not so important 

for now



 

Time series graphs

X

past present

Y

Z

Contemp. link:

Directed link:

M. Eichler, Probability Theory and Related Fields 1 (2012)

Granger- Granger- 
non-causalitynon-causality

Not so important 
for now
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Markov property

Parents of Y at 
time t (holds 
for all t' for 
stationary 
processes)

Neighbor



 

X

past present

Y

Z

Markov 
Property:

Spirtes (2000), Pearl (2000), Eichler (2012)

Markov property

Parents of Y at 
time t (holds 
for all t' for 
stationary 
processes)

Separation in graph  ==> independence

Neighbor



 

Estimation? Estimation? 
Iterative PC-Iterative PC-
algorithm / algorithm / 

Jie Sun's algorithmJie Sun's algorithm

J. Runge et al., Phys. Rev. Lett. 108, 258701 (2012)

P. Spirtes, C. Glymour, and R. Scheines, Causation, 
Prediction, and Search (MIT, Cambridge, MA, 2000).



 

Re-examined: ENSO teleconnections

Reanalysis data: Monthly surface air temperature and pressure
Kalnay et al., 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the 
American Meteorological Society, 77(3), 437–471.



 

Pacific - Atlantic teleconnection

Correlation / ITY / MIT



 

Pacific - Atlantic teleconnection

Correlation / ITY / MIT

lag 4

lag 1



 

Pacific - Atlantic teleconnection

Correlation / ITY / MIT



 

What is a well interpretable What is a well interpretable 
coupling strength?coupling strength?
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Ansatz for a well interpretable 
measure of coupling strength
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W

 Source entropy of X:Source entropy of X:

→ dynamical noise in a stochastic system
(→ uncertainty in a chaotic deterministic system)
→ input from unobserved variables

B. Pompe and J. Runge, Phys. Rev. E 83, 051122 (2011)
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 Source entropy of X:Source entropy of X:

 Source entropy of Y:Source entropy of Y:

→ dynamical noise in a stochastic system
(→ uncertainty in a chaotic deterministic system)
→ input from unobserved variables

B. Pompe and J. Runge, Phys. Rev. E 83, 051122 (2011)

Ansatz for a well interpretable 
measure of coupling strength



 

Momentary Information Transfer 
(MIT)

X

Y

Z

W

J. Runge, J. Heitzig, M. Marwan, and J. Kurths, 
Quantifying causal coupling strength: ...
Phys. Rev. E 86, 061121 (2012)



 

What does MIT measure?
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Additive Models:

Under “no sidepath”-
constraint:

Coupling Strength Autonomy
Theorem



 

Path-based measures
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a) Time series graph b) Process graph



 

Significance testing under under 
strong autocorrelationsstrong autocorrelations
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Frenzel & Pompe, Phys. Rev. 
Lett., 99(20), 204101. (2007)

Kraskov et al., Phys. Rev. E 69, 
066138 (2004)

Estimation of CMI via k-nearest-neighbor 
estimator

parameter k ~ bandwidth in KDE

(here k in joint space defines 
epsilon in all dimensions)



 

Much better than binning, still: Bias for 
short samples and large dimension

biased for large DZ 
and dependent X 
and Y

But: unbiased for 
independent X 
and Y

optimal k for best statistical power 
as conditional independence test



 

Power as independence test:
AUC for multivariate Gaussian



 

Significance testing

• Need to know sample distribution of estimator for 
independent processes

• Partial correlation: analytical distribution known 
for Multivariate Gaussian (Student's t), 
But: assuming i.i.d. samples

• Conditional mutual information (kNN): Nothing 
known
→ shuffle test...



 

What happens for autocorrelated time series?

Significance testing
Partial correlation



 

What happens for autocorrelated time series?

Significance testing
Partial correlation



 

Significance testing
Conditional mutual information

TE



 

Conclusions

• ... are not suitable to infer coupling delays (not goal of TE)
• … are counterintuitive/ambiguous as measures of strength of 

mechanism
• … have large false positive rate in significance tests under 

high autocorrelations

➔ … yield precise coupling delays 
➔ … provide at least a more precisely defined measure of 

causal strength (also partial correlation MIT)
➔ … reduce the effect of autocorrelation in significance 

testing

Unconditional (Correlation, Mutual 
Information) lag functions or Transfer Entropy

Time series graph + 
Momentary information transfer



 

Challenges: Eichler's list ...plus:

• PC – Algorithm: Iterative testing →  multiple testing problem → 
significance/posterior prob. of links difficult to estimate...but: 
only way without model!

• Faithfulness assumption
• CMI: shuffle tests computationally expensive
• Estimation of CMIs bias for higher dimensions →  difficult to 

compare causal strength! → desperate search for 
information-theoretic characterization of causal strength 

• ...

Need to improve CMI estimators Need to improve CMI estimators 
→ smartly include assumptions→ smartly include assumptions



 

Python script for Time series Graph and 
Momentary Information Transfer estimationTiGraMITeTiGraMITe
www.pik-potsdam.de/members/jakrunge
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