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Spike trains

Network of 10 Izhikevich model neurons
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History of Cox method

Survival Analysis: Study of time to failure.

Popular in: Medicine, pharma, actuarial science, insurance, financial
engineering, ...

The Cox Method is maximum likelihood estimation of structure parameters of
the failure pdf

We will borrow the statistical techniques from survival analysis by assigning
failure = spike, and effects from other spiking neurons are described by
parameters to be estimated.



History of Cox method

Cox (1972, 1975): Applied MLE to survival analysis
Borisyuk, Borisyuk, Kirillow, Kovalenko, Kryukov (1985): Applied Cox to spikes
Masud, Borisyuk (2011): Applied Cox to spiking networks

Berry, Hamilton, Peixoto, Sauer (2012): Minor upgrades (inc. LM)



Hazard function

f(t)

lifetime

pdf f(t) is the probability distribution of failure times
cdf F(t) = probability of failure at time < t

Hazard function, or Age-specific failure rate, is the proportional loss rate of
survivors at time t:

L F(+A)-(1-F) (1)
At) = = lim, (1= F(t)At 1o F()

If A(t) = 0.03, then expect 3% of survivors to fail in next time unit.



Hazard function for exponential distribution
pdf f(t) is the probability distribution of failure times
cdf F(t) = probability of failure at time <t

Hazard function, or Age-specific failure rate, is the proportional loss rate of
survivors at time t:

. 1=F(t+At)— (1= F(t)) f(t)
= — | =
At) = = lim, 1 F(1)At 1- F(t)
If A(t) = 0.03, then expect 3% of survivors to fail in next time unit.

Example. (Exponential distribution.)

f(t) =ce
F(t)y=1—-e¢
f(t) ce
ANt) = ——2—~ = =
O=1"FH = e« ~°
The exponential distribution has constant hazard function.




Hazard function for spikes

pdf f(t) is the probability distribution of failure times
cdf F(t) = probability of failure at time < ¢t

Hazard function, or Age-specific failure rate, is the proportional loss rate of
survivors at time t:

_ 1= F(t+At)—(1—F(t) (1)
At) = = fim, (1= F(t)At S1-FQ

If A(t) = 0.03, then expect 3% of survivors to fail in next time unit.

Example. (Spike train.) For a given target neuron,

Pr (ISI < t + At | ISI > t)
At

# ISI lengths in [t,t+ At]

# ISI lengths in [t,00)- At

A(t) =




Cox method for spikes

Let 8 = (B, ..., 0Bn) denote the connections weights of n possible sources.

.
Assume the hazard function of the target neuron has form A(t) = Ao(t)e® =
where z; = (21, ..., Zm) are influences at time t of other “source” neurons.

Then calculate 8 by maximum likelihood estimation.

k k T T
A(T,') eB ze o 4B 2y
L=]]Pr =) =]] = -
pley AP OIACOREN ) D DI
J=ti T 2Ti
where 11, ..., 7« are ISI's of the target.

To maximize log likelihood
.
L=logl=p3"T(z +...4+2,)— Sk log 3 e’y
Ti>Ti

we solve VL = 0 for .



Cox method for spikes — MLE

To maximize £, we set VL = 0.

.
L e
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Here z; = [e""1,... e~ "n], where t; is target spike time and t,, is most

recent spike of source node s,. Other choices are possible, including making
use of more previous spikes.

0L
0B5,0Bs, "

The second derivative is H =

Use Newton iteration to solve 0 = VL.

ﬂerl — ﬁm _ H(ﬂm)71V£(ﬂm)



Cox method for spikes — using Levenberg-Marquardt

To maximize L, one can solve VL = 0 by Newton iteration

BT =87 — H(B™) T VL(B).
However, much better to use Levenberg-Marquardt to regularize the iteration:
BT =" — [(H™)TH™ + pum diag (H™)TH™)] 7 (H™)TVL(B™)
where H™ = H(5™).
The scalar u is chosen according to:
po =1 and for m > 0,

tm = pm—1/2 if ||V L]|| decreases;
tm =10 - pm_1 if ||VL]|| increases.



Statistics of Cox method

1(B) = —H(B) is the approximate Fisher information matrix.

The inverse of /() converges to the covariance matrix of 3. We can use the
diagonal entries o of /() as variances of 8 for the purpose of confidence
intervals, e.g.

[ﬂs - USSN((l - 7)/2):55 + JssN((l - 7)/2)]

for the v% quantile. Here N denotes the standard normal cdf.

We declare a link between the target and source s with v% confidence level
<= 0 is not contained in the confidence interval of fs.



Regular Spiking Dynamics

Izhikevich

neurons

Fast Spiking Dynamics
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u = 5ufp3a+p2u2/10+l
a = 0.03(pru—a)

when u exceeds threshold ©, then u — cand a — a+d.

p1 =04
P2 = 0.2
pP3 = 1.0



Statistics of Cox Method
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Running Cox at 95% confidence level, 500 spikes per node.

10-node heterogeneous Izhikevich network.
Specificity = TN/(TN+FP) should be 95%

32



Comparison on Izhikevich networks
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Comparison of Cox with Transfer Entropy order 3,
using 500 spikes per node.

10-node heterogeneous Izhikevich network.
Sensitivity = TP/(TP+FN)



Comparison on Izhikevich networks
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Comparison of Cox with Transfer Entropy order 3,
using 1000 spikes per node.

10-node heterogeneous Izhikevich network.
Sensitivity = TP/(TP+FN)



Comparison on Izhikevich networks
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Comparison of Cox with Transfer Entropy order 3.

20-node heterogeneous Izhikevich network.
Sensitivity = TP/(TP+FN)



Neural cultures

Dissociated neurons
deposited on Multiple
Electrode Array.

After a few weeks they grow
connections and spiking

activity near electrodes can
be monitored.

DA



Neural cultures

(@ ® Cultured neurons grown on
. , MEA
-3 0.5
£-4 < 0
5 05 95% confidence intervals on
. P 9 successive two-minute time
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Time Segment Time Segment intervals. When the

confidence intervals avoid 0,
we say there is a connection
with 95% confidence.



Advantages of Cox method

Although “semi-parametric”, the promised FP rate appears to hold for
typical neuron models.

The TP rate compares favorably with alternative methods.

It is “statistical”, meaning that a choice of threshold from ROC curve is
not necessary.

. It is an offline method.



Network structure from time series
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Time (s)

Many methods exist.

We looked for methods that were “statistical”, i.e. where user choice of ROC
threshold is not needed.

One idea: Use ability of data assimilation techniques to fit parameters
(consider connection strengths of network to be parameters).

In addition to being statistical, this method is realtime and adaptive,
unlike Cox.



Kalman Filter

Assume a model

f(va) + we
= h(x)+ vt.

Observe y?.

Possible goals:

1. Reconstruct state x from noisy observations

2. Reconstruct state x from noisy, incomplete observations

For example,
h(x) = h(x1,...,xn) =x1

Want to reconstruct xx(t), ..., xa(t) as well as xi(t).



Ensemble Kalman Filter

Kalman Filter

Model state and state covariances, assuming Gaussian noise.

On each assimilation step, use observations to solve for maximum likelihood
solution of current x; and covariance matrix X;.

Ensemble Kalman Filter (EnKF)

At each assimilation step, use current state x; and covariance matrix ¥; to
generate a set of states, which are run in parallel according to system model f.

Results are combined to find maximum likelihood x¢4+1 and ¥:1;.



Ensemble Kalman Filter (EnKF)

(F(x))
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where Q is dynamical noise covariance.

% = “sigma points” on semimajor axes

(use Cholesky or matrix square root)



Ensemble Kalman Filter (EnKF)

Calculate y = H(X{). Set y: = <y;'>.

Pyy = 1 yt (,Vt }A’t)T +R
_ AT
Py = 2n 1 Z — X ) }’t)
K = PyP,'and P = Py, — KP, K™

Xin = X + K —$)



Kalman Filter

Assume a model

f(Xap) + wt
= h(x)+ vs.

Observe y;?.
Extra trick:

Can view parameters p as fixed variables, and ask the filter to estimate them.

x = hf(x)
)'(2 = f2(X)
)'(3 = f3(X)
pr =

p = 0



. x,, estimated x,

2, estimated z, x,

Ensemble Kalman Filter (EnKF) for neurons
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Spiking Fitzhugh-Nagumo neuron with
added noise

Time series of voltage was observed
and (hidden) recovery variable was
reconstructed by EnKF.

Further, a parameter was estimated
and tracked using the same idea.



x,, estimated x,

2, estimated z,

Ensemble Kalman Filter (EnKF) for neurons
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Many further applications followed.

e Control
Schiff, Sauer (J. Neural Eng. 2008)

® Networks
Schiff, Sauer (PRE 2009)

® Variety of neural models
Ullah, Schiff (Assimilating seizure
dynamics, PLoS 2010)



Network structure from time series

Data assimilation requires a model. A good model?

We consider connection strengths in an n-node network as n(n — 1) parameters,
and ask EnKF to fit the parameters from the voltage measurements only.

Our strategy was to pick a generic spiking model (Hindmarsh-Rose) and try to
reconstruct networks of

1. HR neurons, with correct and incorrect parameter settings
2. Other neuron models (HH, FN, etc.)
3. MEA data

What makes the approach statistical is that the entire covariance matrix of all
variables is carried along and refined during the run. We can use the covariance
of the parameters generated by EnKF to generate confidence intervals for the
connection strengths.



Hindmarsh-Rose Model

y—V343vi—z 41
= 1-bV?—y
z = 71(s(V+1)-2)

Typical bursting dynamics with parameter values b =5, k =4, 7 = 0.001 and
s=4.



Network structure from time series
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Network structure from time series

Four network connections from MEA data tracked over 160 of time series.
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Output Node

Input Node

Output Node

Results of two MEA experiments

Input Node
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This method is realtime and adaptive

B Parameter Strength

20 40 60 _80 100 120 140 160
Time (s)

Hodgkin-Huxley network data assimilated using Hindmarsh-Rose models.
A connection was turned on/off randomly. Bottom traces show the actual “on”

time (grey bar) and the filter-estimated “on” time of the connection (black
bar). In the upper trace, the 95% confidence region is shown.
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Kalman Filter

Assume a model

f(va) + we
= h(x)+ vt.

Observe y?.

Possible goals:

1. Reconstruct state x from noisy observations

2. Reconstruct state x from noisy, incomplete observations

For example,
h(x) = h(x1,...,xn) =x1

Want to reconstruct xx(t), ..., xa(t) as well as xi(t).



Multiple Model Ensemble Kalman Filter

y
. = H(w)+ v
y
z
where
C X F G )
: : h(x")
x™ f(x™, pm) .
w=| a |, F= 0 , H(w) = :
. . h(x™)
. ijll C,'TXI + d
Cm 0
L d L 0 J

During training phase, observe y and unmodeled variable z ; ‘
During prediction phase, observe y only and predict z as ijzl X' +d.



Multiple Model Ensemble Kalman Filter

where
- Xl
Xm
w = €1
€m
L &

w =

F(w) + we

H(w) + v;

During training phase, observe y and unmodeled variable z ; ‘
During prediction phase, observe y only and predict z as Z,m:1 ' x' +d.



Reconstructing unmodeled variables

Example. Can we use the EnKF with multiple versions of the Hindmarsh-Rose
neuron to build a predictor for one of the Hodgkin-Huxley gating variables
(m, n, h)?

Both HR and HH models have a voltage variable, but HR has no variable that
resembles the HH gating variables.

Why it might work: Using versions of HR with different time constants may
allow a reasonable fit.



Reconstructing unmodeled variable H
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During training phase, parameters ¢; are estimated, and used to predict during

prediction phase. Exact data is shown in black.

Red curve on right side is

h(t) = —0.42y; + 0.48y, + 0.33z, — 0.162, — 0.83

where y1, 2 and y», z» are output from filters using two slightly different

versions of Hindmarsh-Rose.
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Hodgkin-Huxley gating variables H, M, and N are reconstructed from V using
two versions of HR. Blue = training phase. Red = prediction phase.



Recovering potassium from voltages

60
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Top trace (black) is
measurement of potassium
concentration at particular
point in dish.

Lower traces are voltages from
three nearby electrodes.

We used Multiple Model DA
with the Hindmarsh-Rose
model to learn the unmodeled
variable (potassium). Training
phase is shown here. Blue
curve is the fit of the potassium
variable.



Recovering potassium from voltages
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Recovering potassium from voltages

52
51r
5
4.9¢
=
[
4.8
4.7
46! —Pot_assmm
—Training
45 ‘ —Prediction ‘ ‘
0 100 200 300 400

Time (s)



Summary

1. The Cox method is a slow but efficient statistical technique for network
inference from spike trains, with high specificity (control of false
positives) and sensitivity (control of false negatives).

2. Standard data assimilation methods can be used to build a realtime,
statistical algorithm for tracking network links from time series.

3. Multiple model data assimilation can be used along with training data to
track unmodeled variables.



