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Spike trains

Network of 10 Izhikevich model neurons



History of Cox method

Survival Analysis: Study of time to failure.

Popular in: Medicine, pharma, actuarial science, insurance, financial
engineering, ...

The Cox Method is maximum likelihood estimation of structure parameters of
the failure pdf

We will borrow the statistical techniques from survival analysis by assigning
failure = spike, and effects from other spiking neurons are described by
parameters to be estimated.



History of Cox method

Cox (1972, 1975): Applied MLE to survival analysis

Borisyuk, Borisyuk, Kirillow, Kovalenko, Kryukov (1985): Applied Cox to spikes

Masud, Borisyuk (2011): Applied Cox to spiking networks

Berry, Hamilton, Peixoto, Sauer (2012): Minor upgrades (inc. LM)



Hazard function

pdf f (t) is the probability distribution of failure times
cdf F (t) = probability of failure at time ≤ t

Hazard function, or Age-specific failure rate, is the proportional loss rate of
survivors at time t:

λ(t) = − lim
∆t→0

1− F (t + ∆t)− (1− F (t))

(1− F (t))∆t
=

f (t)

1− F (t)

If λ(t) = 0.03, then expect 3% of survivors to fail in next time unit.



Hazard function for exponential distribution
pdf f (t) is the probability distribution of failure times
cdf F (t) = probability of failure at time ≤ t

Hazard function, or Age-specific failure rate, is the proportional loss rate of
survivors at time t:

λ(t) = − lim
∆t→0

1− F (t + ∆t)− (1− F (t))

(1− F (t))∆t
=

f (t)

1− F (t)

If λ(t) = 0.03, then expect 3% of survivors to fail in next time unit.

Example. (Exponential distribution.)

f (t) = ce−ct

F (t) = 1− e−ct

λ(t) =
f (t)

1− F (t)
=

ce−ct

e−ct
= c

The exponential distribution has constant hazard function.



Hazard function for spikes
pdf f (t) is the probability distribution of failure times
cdf F (t) = probability of failure at time ≤ t

Hazard function, or Age-specific failure rate, is the proportional loss rate of
survivors at time t:

λ(t) = − lim
∆t→0

1− F (t + ∆t)− (1− F (t))

(1− F (t))∆t
=

f (t)

1− F (t)

If λ(t) = 0.03, then expect 3% of survivors to fail in next time unit.

Example. (Spike train.) For a given target neuron,

λ(t) =
Pr (ISI < t + ∆t | ISI > t)

∆t

≈ # ISI lengths in [t, t + ∆t]

# ISI lengths in [t,∞) ·∆t



Cox method for spikes
Let β = (β1, . . . , βn) denote the connections weights of n possible sources.

Assume the hazard function of the target neuron has form λ(t) = λ0(t)eβ
T zt

where zt = (zt1, . . . , ztn) are influences at time t of other “source” neurons.

Then calculate β by maximum likelihood estimation.

L =
k∏

i=1

Pr (τi ) =
k∏

i=1

λ(τi )∑
τj≥τi

λ(τj)
=

eβ
T zt1 +...+βT ztk∏k
i=1

∑
τj≥τi

e
βT ztj

where τ1, . . . , τk are ISI’s of the target.

To maximize log likelihood

L = log L = βT (zt1 + . . .+ ztk )−
∑k

i=1 log
∑
τj≥τi

e
βT ztj

we solve ∇L = 0 for β.



Cox method for spikes – MLE

To maximize L, we set ∇L = 0.

0 =
∂L
∂βs

=
k∑

i=1

zsi −
k∑

i=1

∑
τj≥τi

zsje
βT ztj

∑
τj≥τi

e
βT ztj

.

Here ztj = [eti−ts1 , . . . , eti−tsn ], where ti is target spike time and tsp is most
recent spike of source node sp. Other choices are possible, including making
use of more previous spikes.

The second derivative is H =
∂2L

∂βs1∂βs2

.

Use Newton iteration to solve 0 = ∇L.

βm+1 = βm − H(βm)−1∇L(βm)



Cox method for spikes – using Levenberg-Marquardt

To maximize L, one can solve ∇L = 0 by Newton iteration

βm+1 = βm − H(βm)−1∇L(βm).

However, much better to use Levenberg-Marquardt to regularize the iteration:

βm+1 = βm − [(Hm)THm + µm diag ((Hm)THm)]−1(Hm)T∇L(βm)

where Hm ≡ H(βm).

The scalar µ is chosen according to:

µ0 = 1 and for m > 0,

µm = µm−1/2 if ||∇L|| decreases;
µm = 10 · µm−1 if ||∇L|| increases.



Statistics of Cox method

I (β) ≡ −H(β) is the approximate Fisher information matrix.

The inverse of I (β) converges to the covariance matrix of β. We can use the
diagonal entries σss of I (β) as variances of β for the purpose of confidence
intervals, e.g.

[βs − σssN((1− γ)/2), βs + σssN((1− γ)/2)]

for the γ% quantile. Here N denotes the standard normal cdf.

We declare a link between the target and source s with γ% confidence level
⇐⇒ 0 is not contained in the confidence interval of βs .



Izhikevich neurons
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Regular Spiking Dynamics

Student Version of MATLAB
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Student Version of MATLAB

u̇ = 5u − p3a + p2u
2/10 + I

ȧ = 0.03(p1u − a)

when u exceeds threshold Θ, then u → c and a→ a + d .

p1 = 0.4

p2 = 0.2

p3 = 1.0



Statistics of Cox Method
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Running Cox at 95% confidence level, 500 spikes per node.
10-node heterogeneous Izhikevich network.
Specificity = TN/(TN+FP) should be 95%



Comparison on Izhikevich networks

Comparison of Cox with Transfer Entropy order 3,
using 500 spikes per node.

10-node heterogeneous Izhikevich network.
Sensitivity = TP/(TP+FN)



Comparison on Izhikevich networks

Comparison of Cox with Transfer Entropy order 3,
using 1000 spikes per node.

10-node heterogeneous Izhikevich network.
Sensitivity = TP/(TP+FN)



Comparison on Izhikevich networks

Comparison of Cox with Transfer Entropy order 3.

20-node heterogeneous Izhikevich network.
Sensitivity = TP/(TP+FN)



Neural cultures

Determining Causal Connections in a Neural Network

Franz Hamilton, Tyrus Berry, Timothy Sauer, Nathalia Peixoto

Abstract— Neural networks have varied functional purposes
and dynamical patterns. Within each network, neurons are
connected to one another through synapses and through the
extracellular environment. We present a novel statistical test to
determine the causal relationships between neurons. The test is
validated using the Izhikevich model for several types of neuron
behavior. We then apply our test to data sets collected from an
in vitro network plated on an MEA. By comparing the results
of our test before and after network stimulation, we attempt to
verify our method experimentally.

I. INTRODUCTION

The study of neural networks and the dynamics that guide
their behavior is an ongoing field of research. While much
has been learned about neural networks, fundamental aspects
of their network connectivity, plasticity, and response to
network stimulation leave much more to be understood.
Having a stronger grasp of network dynamics would allow
for a far more comprehensive understanding of how the
network functions.

These dynamics can be studied in vivo, in vitro or through
mathematical model. In our study we will focus on the
latter two. In vivo studies of neural networks, while most
representative of real-world behavior, present a high degree
of difficulty, since these in vivo networks are extremely
complex open systems, and the technology available to
interface with them was not originally developed to tackle
three dimensional, spatially distributed networks.

In vitro networks provide a reduced size and complexity
and allow researchers to study the dynamics of a network
in a dish, under controlled conditions. We plated cortical
murine cells (E18) onto microelectrode arrays (MEAs).
MEAs consist of electrodes, which are able to record the
spiking behavior of nearby plated neurons by measuring the
change in voltage in the extracellular environment that occurs
when a neuron spikes. Fig. 1 shows an example of an in vitro
network plated on a MEA.

Artificial networks generated via mathematical model al-
low for a more direct control of the network environment
and are an ideal way to test algorithms aimed at determining
network dynamics. In this study we utilized the Izhikevich

This work was supported by the National Science Foundation, grant
EFRI-EFRI-1024713. F. Hamilton is supported through a Presidential Fel-
lowship of George Mason University.

F. Hamilton is a graduate student in the Electrical and Computer En-
gineering Department, George Mason University, Fairfax, VA 22030 USA
fhamilto@masonlive.gmu.edu

T. Berry and T.Sauer are with the Mathematics Dept. of George Mason
University tyrus.berry@gmail.com, tsauer@gmu.edu

N. Peixoto is with the Bioengineering Program of George Mason Uni-
versity npeixoto@gmu.edu

Fig. 1. In vitro neural network plated on a MEA. Black circles are the
electrodes and the cell structures throughout are the plated neurons and
processes.

model [1], [2], which combines the ability to reproduce bio-
logically accurate behavior (much like the Hodgkin-Huxley
model) with computational efficiency. Fig. 2 shows some of
the network behavior that the Izhikevich model generates
under various parameter settings.

In this study, we focus on examining the topology of
a neural network with our goal being the identification of
causal relationships between neurons in the network. In order
to do so, we have developed a novel statistical test that
determines these causal relationships based on the spike
times of individual neurons. We implement this test first in
the Izhikevich model to validate its accuracy and then apply
it to pre-stimulation and post-stimulation recorded data sets
from an in vitro, spontaneously active culture to investigate
its applicability to experiment.

II. DETERMINING NETWORK CONNECTIONS

A fundamental step in the analysis of network dynamics
is the determination of network structure [3] - [9]. Within
a neural network, the goal is to extract direct connection
information from measured nodal activity. In many cases,
precise voltage amplitudes of neuron states are difficult to
obtain cleanly, and the most reliable available dynamical
information is in the form of multivariate spike trains. We
restrict our focus to methods that rely on spike timing data
alone. Many published methods in this direction rely on
computing metrics for which arbitrary thresholds must be
used to determine connections [3], [4]. Other methods rely
on specific models of neuron behavior [5] - [7]. Our method
avoids this problem by computing a true statistic, allowing
an appropriate threshold to be chosen based on the desired
confidence level.

Dissociated neurons
deposited on Multiple
Electrode Array.

After a few weeks they grow
connections and spiking
activity near electrodes can
be monitored.



Neural cultures

396 T. Berry et al. / Journal of Neuroscience Methods 209 (2012) 388– 397
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Fig. 9. (a–d) A selection of Cox  ̌ coefficients which have statistically significant changes across segments. Error bars indicate 99.993% confidence intervals. A connection is
counted  for each segment where the confidence interval does not contain zero. A change is counted for each segment where the midpoint lies outside the confidence interval
of  the previous segment.

seems to require knowledge of an influence function, which quan-
tifies the interaction mechanism, we have shown that a generic
influence function achieves the correct statistics when searching
for connections. Indeed the Cox method achieved the correct statis-
tics even for the physically realistic Izhikevich model. However,
one difference between the computational model and the in vitro
experiment is that in vitro we only have partial information as
many neurons in the culture are unobserved. Thus the connections
found in vitro may  represent complex pathways in the unobserved
network.

We have shown that the Cox method can also be used to detect
changes in connections. Detecting the creation or elimination of
connections is difficult because of the nature of the statistical test
for connectivity. However, by modifying the test we are able to find
statistically significant changes in the strength of connections. For
neural cultures in the laboratory, we consider the stationarity or
lack thereof to be a key issue and note that tools that can give a
validated statistical test are sorely needed.

Applications of the results presented here range from cortical,
hippocampal, and spinal cord networks kept in vitro for long term,
to deep brain stimulation situations. Here we have demonstrated
the case of a network of spinal cord neurons. We  intend to expand
these experimental results to other neuronal-glial cultures in vitro.
One of our long term objectives is to demonstrate the steering of
neural activity with electrical stimulation.

A potential clinical use of our implementation of the Cox method
is in closed loop control implants for neurodisorders, such as in a
deep brain stimulation scenario. Careful applications of this method
could indicate network connections that are changing faster than
others, representing the evolution of the disease or defect being
monitored. Knowledge of these changes could improve the ability
of the control system to apply an appropriate stimulation protocol,

with the objective of counteracting symptoms or delaying the pro-
gression of the neurodisorder.
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Advantages of Cox method

1. Although “semi-parametric”, the promised FP rate appears to hold for
typical neuron models.

2. The TP rate compares favorably with alternative methods.

3. It is “statistical”, meaning that a choice of threshold from ROC curve is
not necessary.

-1. It is an offline method.



Network structure from time series
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(a) (b)

(c) (d)

Figure 8. Measurement and assimilation of extracellular potassium in a spontaneously
active in vitro cortical network. A potassium sensitive electrode is used to record the extracellular
potassium concentration changes in a small region between three active electrodes of an in vitro cortical
culture plated on an MEA. Recording the extracellular potential is easy and noninvasive, but the
potassium measurement is di�cult to maintain over a prolonged period of time. Ideally, we would like
to estimate these concentration changes through the neuronal potential only. (a) During a 110s training
period, the potential from the three electrodes is assimilated and estimated with our EnKF (bottom)
while an optimal combination of the model variables is found (top, blue) to reconstruct the measured
potassium (top, black). For this example, each electrode is represented by two di↵erently parameterized
models. (b) Example of the four largest (in terms of magnitude) ↵k parameters during training. (c)-(d)
Zoomed in plots of (a)-(b).

Many methods exist.

We looked for methods that were “statistical”, i.e. where user choice of ROC
threshold is not needed.

One idea: Use ability of data assimilation techniques to fit parameters
(consider connection strengths of network to be parameters).

In addition to being statistical, this method is realtime and adaptive,
unlike Cox.



Kalman Filter

Assume a model

ẋ = f (x , p) + ωt

y = h(x) + νt .

Observe y o
t .

Possible goals:

1. Reconstruct state x from noisy observations

2. Reconstruct state x from noisy, incomplete observations

For example,
h(x) = h(x1, . . . , xn) = x1

Want to reconstruct x2(t), . . . , xn(t) as well as x1(t).



Ensemble Kalman Filter

Kalman Filter

Model state and state covariances, assuming Gaussian noise.

On each assimilation step, use observations to solve for maximum likelihood
solution of current xt and covariance matrix Σt .

Ensemble Kalman Filter (EnKF)

At each assimilation step, use current state xt and covariance matrix Σt to
generate a set of states, which are run in parallel according to system model f .

Results are combined to find maximum likelihood xt+1 and Σt+1.



Ensemble Kalman Filter (EnKF)

x
t
+

x
t
i

P
xx
+

F
x

t
−

F(x
t
i)

P
xx
−

~xi
t

x−t = 〈F (x i
t )〉

P−xx =
1

2n − 1

∑
(F (x i

t )− x−t )(F (x i
t )− x−t )T + Q

where Q is dynamical noise covariance.

x̃ i
t = “sigma points” on semimajor axes

(use Cholesky or matrix square root)



Ensemble Kalman Filter (EnKF)

x
t
+

x
t
i

P
xx
+

F
x

t
−

F(x
t
i)

P
xx
−

~xi
t

Calculate ỹ i
t = H(x̃ i

t ). Set ŷt = 〈ỹ i
t 〉.

Pyy =
1

2n − 1

∑
(ỹ i

t − ŷt)(ỹ i
t − ŷt)

T + R

Pxy =
1

2n − 1

∑
(x̃ i

t − x−t )(ỹ i
t − ŷt)

T

K = PxyP
−1
yy and P+

xx = P−xx − KPyyK
T

x+
t+1 = x−t + K(yt − ŷt)



Kalman Filter
Assume a model

ẋ = f (x , p) + ωt

y = h(x) + νt .

Observe y o
t .

Extra trick:

Can view parameters p as fixed variables, and ask the filter to estimate them.

ẋ1 = f1(x)

ẋ2 = f2(x)

ẋ3 = f3(x)

ṗ1 = 0

ṗ2 = 0



Ensemble Kalman Filter (EnKF) for neurons
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Figure 9: Recursive parameter tracking in the FitzHugh-Nagumo model (69)

with the UKF approach. Like in the previous examples, the states and

the external parameter are estimated by observing noisy data from the first

component of x. (a) Measured data set (blue dots) and the true trajectory

of x1 (black). (b) The unobserved external variable z (black), its tracked

estimate (pink, shown with 1σ confidence intervals), the true trajectory of

the unobserved component x2 (black), and its estimate (red).
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Fig. 9. Recursive parameter tracking in the FitzHugh–Nagumo model (69) with the UKF approach. Like in the previous
examples, the states and the external parameter are estimated by observing noisy data from the first component of x.
(a) Measured data set (blue dots) and the true trajectory of x1 (black). (b) The unobserved external variable z (black), its
tracked estimate (pink, shown with 1σ confidence intervals), the true trajectory of the unobserved component x2 (black), and
its estimate (red).

is set to the constant value Q to mimic the uncer-
tainty of the variable to be tracked.

The application of the UKF is shown in Fig. 9.
Since the parameters of the model were given, the
variable z, corresponding to λ in Eq. (68), is tracked
quite accurately, along with a very precise esti-

mate of the unobserved component of the state vec-
tor. Note that this example constitutes an appli-
cation which cannot be treated with nonrecursive
approaches like multiple shooting.

A Matlab routine reproducing this example is
available via www.fdm.uni-freiburg.de/∼hv.

Spiking Fitzhugh-Nagumo neuron with
added noise

Time series of voltage was observed
and (hidden) recovery variable was
reconstructed by EnKF.

Further, a parameter was estimated
and tracked using the same idea.

Voss, Timmer, Kurths (2004)



Ensemble Kalman Filter (EnKF) for neurons
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Fig. 9. Recursive parameter tracking in the FitzHugh–Nagumo model (69) with the UKF approach. Like in the previous
examples, the states and the external parameter are estimated by observing noisy data from the first component of x.
(a) Measured data set (blue dots) and the true trajectory of x1 (black). (b) The unobserved external variable z (black), its
tracked estimate (pink, shown with 1σ confidence intervals), the true trajectory of the unobserved component x2 (black), and
its estimate (red).

is set to the constant value Q to mimic the uncer-
tainty of the variable to be tracked.

The application of the UKF is shown in Fig. 9.
Since the parameters of the model were given, the
variable z, corresponding to λ in Eq. (68), is tracked
quite accurately, along with a very precise esti-

mate of the unobserved component of the state vec-
tor. Note that this example constitutes an appli-
cation which cannot be treated with nonrecursive
approaches like multiple shooting.

A Matlab routine reproducing this example is
available via www.fdm.uni-freiburg.de/∼hv.

Many further applications followed.

• Control
Schiff, Sauer (J. Neural Eng. 2008)

• Networks
Schiff, Sauer (PRE 2009)

• Variety of neural models
Ullah, Schiff (Assimilating seizure
dynamics, PLoS 2010)

Voss, Timmer, Kurths (2004)



Network structure from time series

Data assimilation requires a model. A good model?

We consider connection strengths in an n-node network as n(n− 1) parameters,
and ask EnKF to fit the parameters from the voltage measurements only.

Our strategy was to pick a generic spiking model (Hindmarsh-Rose) and try to
reconstruct networks of

1. HR neurons, with correct and incorrect parameter settings

2. Other neuron models (HH, FN, etc.)

3. MEA data

What makes the approach statistical is that the entire covariance matrix of all
variables is carried along and refined during the run. We can use the covariance
of the parameters generated by EnKF to generate confidence intervals for the
connection strengths.



Hindmarsh-Rose Model

V y z

V̇ = y − V 3 + 3V 2 − z + I

ẏ = 1− bV 2 − y

ż = τ(s(V + 1)− z)

Typical bursting dynamics with parameter values b = 5, k = 4, τ = 0.001 and
s = 4.



Network structure from time series

10-node Hindmarsh-Rose network,
Hindmarsh-Rose EnKF model

10-node Hodgkin-Huxley network,
Hindmarsh-Rose EnKF model



Network structure from time series

Four network connections from MEA data tracked over 160 of time series.

Shaded area denotes 95% confidence region.



Results of two MEA experiments



This method is realtime and adaptive

Hodgkin-Huxley network data assimilated using Hindmarsh-Rose models.

A connection was turned on/off randomly. Bottom traces show the actual “on”
time (grey bar) and the filter-estimated “on” time of the connection (black
bar). In the upper trace, the 95% confidence region is shown.



Outline

1. Network structure from spike trains
• Cox method from survival analysis
• Levenberg-Marquardt
• Statistics

2. Network structure from time series
• Data assimilation approach
• Simulation and results
• Neural cultures

3. Learning unmodeled variables
• Model error
• Hodgkin-Huxley
• Potassium from neural culture



Kalman Filter

Assume a model

ẋ = f (x , p) + ωt

y = h(x) + νt .

Observe y o
t .

Possible goals:

1. Reconstruct state x from noisy observations

2. Reconstruct state x from noisy, incomplete observations

For example,
h(x) = h(x1, . . . , xn) = x1

Want to reconstruct x2(t), . . . , xn(t) as well as x1(t).



Multiple Model Ensemble Kalman Filter

ẇ = F (w) + ωt
y
...
y
z

 = H(w) + νt

where

w =



x1

...
xm

c1

...
cm
d


, F =



f (x1, p1)
...

f (xm, pm)
0
...
0
0


, H(w) =


h(x1)

...
h(xm)∑m

j=1 c
T
i x i + d

 .

During training phase, observe y and unmodeled variable z ;
During prediction phase, observe y only and predict z as

∑m
j=1 c

T
i x i + d .



Multiple Model Ensemble Kalman Filter
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Reconstructing unmodeled variables

Example. Can we use the EnKF with multiple versions of the Hindmarsh-Rose
neuron to build a predictor for one of the Hodgkin-Huxley gating variables
(m, n, h)?

Both HR and HH models have a voltage variable, but HR has no variable that
resembles the HH gating variables.

Why it might work: Using versions of HR with different time constants may
allow a reasonable fit.



Reconstructing unmodeled variable H
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During training phase, parameters ci are estimated, and used to predict during
prediction phase. Exact data is shown in black.

Red curve on right side is

h(t) = −0.42y1 + 0.48y2 + 0.33z1 − 0.16z2 − 0.83

where y1, z1 and y2, z2 are output from filters using two slightly different
versions of Hindmarsh-Rose.



Reconstructing Hodgkin-Huxley gating variables

V
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Hodgkin-Huxley gating variables H, M, and N are reconstructed from V using
two versions of HR. Blue = training phase. Red = prediction phase.



Recovering potassium from voltages

Top trace (black) is
measurement of potassium
concentration at particular
point in dish.

Lower traces are voltages from
three nearby electrodes.

We used Multiple Model DA
with the Hindmarsh-Rose
model to learn the unmodeled
variable (potassium). Training
phase is shown here. Blue
curve is the fit of the potassium
variable.



Recovering potassium from voltages

Potassium and voltages

Training phase

Detail

Four of the largest coefficients
during training phase.



Recovering potassium from voltages



Summary

1. The Cox method is a slow but efficient statistical technique for network
inference from spike trains, with high specificity (control of false
positives) and sensitivity (control of false negatives).

2. Standard data assimilation methods can be used to build a realtime,
statistical algorithm for tracking network links from time series.

3. Multiple model data assimilation can be used along with training data to
track unmodeled variables.


