

Linda Sommerlade

Assessing the strength of directed influences among neural signals:

An approach to noisy data

Linda Sommerlade

Assessing the strength of directed influences among neural signals:

An approach to noisy data

Linda Sommerlade

Assessing the strength of directed influences hmong heural signals:

An approach to noisy data

Overview

- Motivation
- Understanding
- Advanced Method
- Application
- Conclusion

Networks

- Inference of networks from data
- Observations are afflicted with noise
- Standard measures do not consider observational noise

Granger Causality

- Causes precede
 effects in time
- Cause contains information on effect
- Autoregressive
 processes

Simulated System

$$\vec{x}(t) = \sum_{r=1}^{2} \mathbf{a}_r \vec{x}(t-r) + \boldsymbol{\varepsilon}_x(t)$$
$$y_i(t) = x_i(t) + \sigma_i \eta_i(t) \quad i = 1, 2$$

$$\mathbf{a}_1 = \begin{pmatrix} 1.3 & c \\ 0 & 1.7 \end{pmatrix}, \ \mathbf{a}_2 = \begin{pmatrix} -0.8 & 0 \\ 0 & -0.8 \end{pmatrix}$$

 \mathcal{X}

 x_2

Simulation Results

Unidirectional influence

Theory (1-dimensional)

Absolute values underestimated

Theory (2-dimensional)

Off-diagonal entries differ from zero

 \mathcal{X}

 x_2

Simulation Results

Different from theory

Schematic

Coefficients compatible with zero

Simulation Results

Increasing the number of data points

Fitted with order p = 2

Л.

 x_2

Simulation Results

Increasing the order p

 \mathcal{L}

 x_2

Simulation Results

Fitted with order p = 10

State Space Model

$$\vec{y}(t) = \mathbf{C}_u \vec{u}(t) + \vec{\eta}(t)$$

Expectation-Maximisation (EM) algorithm

Covariance of Coefficients

- Derive second derivative of likelihood
- Arrange derivatives in matrix and invert
- Covariance Matrix

$$\begin{split} \frac{\partial^2 \ln \mathcal{L}_{\vec{y}}(\Theta)}{\partial \Theta_i \partial \Theta_k} &= \frac{1}{2} \sum_{t=1}^{N} \left(\operatorname{trace}(\Sigma(t,\Theta)^{-1} \frac{\partial^2 \Sigma(t,\Theta)}{\partial \Theta_i \partial \Theta_k} \\ &- \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_k} \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i}) \right) \right) \\ &+ \frac{1}{2} \sum_{t=1}^{N} \left(\frac{\partial^2 \epsilon(t,\Theta)}{\partial \Theta_i \partial \Theta_k}^T \Sigma(t,\Theta)^{-1} \epsilon(t,\Theta) \\ &- \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_i}^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_k} \Sigma(t,\Theta)^{-1} \epsilon(t,\Theta) \\ &+ \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_i}^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_k} \Sigma(t,\Theta)^{-1} \epsilon(t,\Theta) \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \epsilon(t,\Theta) \\ &- \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \epsilon(t,\Theta) \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_k} \Sigma(t,\Theta)^{-1} \epsilon(t,\Theta) \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_k} \\ &+ \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_k}^T \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_k} \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_k} \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_i} \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_i} \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_i} \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_i} \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_i} \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_i} \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_i} \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_i} \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_i} \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \Sigma(t,\Theta)^{-1} \frac{\partial \epsilon(t,\Theta)}{\partial \Theta_i} \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i} \\ \\ \\ &+ \epsilon(t,\Theta)^T \Sigma(t,\Theta)^{-1} \frac{\partial \Sigma(t,\Theta)}{\partial \Theta_i$$

Simulation Results

Coefficients with Confidence

With state space model

 $x_2 \rightarrow x_1$

 \mathcal{X} -

 x_2

Simulation Results

Strength of the influence

Simulation Results

Strength of the influence

Application

- EEG from mice
- Right hippocampus and prefrontal cortex
- Quiet wake
- 100s segements

Application Results

Three mice

Two mice

Conclusion

- Networks from data
- Observational noise
- State space model
- Statistical inference

The Team

Björn Schelter Marco Thiel Bettina Platt Jens Timmer Wolfgang Mader Malenka Mader

Thank you for your attention!

