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Dynamics on Networks



Given: (time series) observations at each component of a system
Goal: identify the direct causal relationships between the components
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The Problem of Causal Network Inference

…there are several reasons… 
!
medical diagnosis: identify the causes of a disease in order to suggest effective treatments  



Gather a sufficient amount of relevant data (experimental work) 
!
!
Develop an appropriate causal inference measure (theoretical work) 
!
!
Accurate and reliable estimate of such a measure (computational/statistical work)

Procedure of Causal Network Inference

…general applicability and neat interpretation... 
!
…immune (in principle) to false positives and false negatives… 
!
…accurate and fast numerical estimation… 
!
Condition (1) →…linear and nonlinear interactions… 
!
Condition (2) →…correct identification of direct couplings in complex systems 
with more than two components… 
!
Condition (3) →…appropriate statistical estimation techniques…

A good causal inference measure should satisfy



Correlation vs. Causality

Correlation does not imply causality.





Information vs. Physical Causality



Mathematical Assumptions

Ni : set of direct causal components of i

i

Ni

Stochastic process {X(i)
t }i=1,2,...,N ;t=1,2,...

(also assumes full observability of all the components)

8
>>>>>>>><

>>>>>>>>:

(i) Temporally Markov:

p(Xt|Xt�1, Xt�2, . . . ) = p(Xt|Xt�1) = p(Xt0 |Xt0�1) for any t and t0.

(ii) Spatially Markov:

p(X(i)
t |Xt�1) = p(X(i)

t |X(Ni)
t�1 ) for any i.

(iii) Identifiability:

p(X(i)
t |X(K)

t�1 ) 6= p(X(i)
t |X(L)

t�1) whenever (K \Ni) 6= (L \Ni).

M. Eichler, Graphical modeling of multivariate time series, Probability Theory and Related Fields (2012).
The necessity of making assumptions:



Basic Information-theoretic Measures

h(X) = �
Z

p(x) log p(x)dx

8
><

>:

Joint entropy: h(X,Y ) ⌘ h(Y,X) ⌘ �
R
p(x, y) log p(x, y)dxdy.

Conditional entropies:

(
h(X|Y ) ⌘ �

R
p(x, y) log p(x|y)dxdy;

h(Y |X) ⌘ �
R
p(x, y) log p(y|x)dxdy.

8
><

>:

Mutual information: I(X;Y ) ⌘ h(X)� h(X|Y ) ⌘ h(Y )� h(Y |X).

Conditional mutual information:

I(X;Y |Z) ⌘ h(X|Z)� h(X|Y, Z) ⌘ h(Y |Z)� h(Y |X,Z).

Cover & Thomas (2006).

Entropy



Transfer Entropy, Self-Causality, and Conditioning

TY!X ⌘ h(Xt+1|Xt)� h(Xt+1|Xt,Yt)

Transfer Entropy (TE)

future of X past of X past of Y

           measures the reduction of uncertainty about          given knowledge 
about      in addition to that of      .
TY!X Xt+1

Yt Xt

Remarks: 
1.               , TE makes no indication about whether the process 
is self-causal or not, and is not designed to address such question. 
!
2.          is a bivariate measure (from Y to X), and is therefore not 
designed to infer direct causality within multiple processes.

TX!X ⌘ 0 {Xt}

TY!X

T. Schreiber, Phys. Rev. Lett. 85, 461 (2000) 
A. Kaiser & T. Schreiber, Physica D (2002) 
M. Palus et. al., Phys. Rev. E (2001)

When there are multiple processes,     directly causes         only if 
such “cause” remains after the removal of all other conditions.

Yt Xt+1

Frenzel and Pompe, Phys. Rev. Lett. (2007) 
Vejmelka and Palus, Phys. Rev. E (2008)

Self-causal or not affects system controllability.
Cowan et.al., PLOS ONE (2012)



For want of a nail a shoe was lost, 	

For want of a shoe a horse was lost, 	

For want of a horse a battle was lost 	

!
and 	

!
For want of a battle a kingdom was lost.	

And all for the want of a horseshoe nail.

Benjamin Franklin and Clive Granger

Conclusion	  -‐	  The	  blacksmith	  destroyed	  the	  kingdom.	  
–	  everything	  is	  connected	  to	  everything	  
–	  everything	  causes	  (and	  is	  caused	  by)	  everything	  
….yes….but	  not	  so	  useful.

Benjamin Franklin

Granger’s notion of causality: (Granger, 1969)!
(1) The cause should occur before the effect (caused)!
(2) The causal process should carry information—

unavailable in other processes—about the effect.

Clive Granger



Causation Entropy

CJ!I|K = h(X(I)
t+1|X

(K)
t )� h(X(I)

t+1|X
(K)
t , X(J)

t )

The Causation Entropy (CSE) from the set of components J to I 
conditioning on K is defined (explicitly) as:

Remarks: 
1. CSE can be used to assess whether a process is “self-causal”. 
2. CSE does not “solve” the causal inference problem.  
3. The definition simply emphasizes the fact that cause-and-effect 
is not a bivariate question, but rather, involves all three parts 
(cause, effect, and conditioning).
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Analytical Properties of CSE



Existing Approaches of Conditioning
1. Condition on everything:

2. Condition on subsets of increasing cardinality (PC-algorithm)

Spirtes, Glymour, Scheines (2000). Runge, Heitzig, Petoukhov, Kurths, PRL (2012)

i

j

i

j

— curse of dimensionality 

(estimation in the full-
dimensional space)

— combinatorial search 
(high computational burden)



Forward & Backward Conditioning: Discover & Remove
(b) (c) Divisive removal

of non-causal nodes
True network structure(a) Aggregative discovery 

of causal nodes

K j i

K

j

if C      is maximal
then K’ = K   {j}

j   i |K if C          = 0
then K’ = K-{j}

j   i |(K-{j})

i

K’

K’

i

Remarks: 
1. The “forward” step (Aggregative Discovery) alone in principle would 
result in false positives that cannot be mitigated by the increased 
amount of data. 
!
2. The “backward” step (Divisive removal) can be modified to one that 
is analogous to the PC-algorithm in the statistical inference literature, 
with the key difference that here enumeration of conditioning subsets 
needs to be performed only within K, rather than for all nodes.

Spirtes, Glymour, Scheines (2000). Runge, Heitzig, Petoukhov, Kurths, PRL (2012)

Vlachos, Kugiumtzis, Phys. Rev. E (2010); Kugiumtzis, Phys. Rev. E (2013)



-- Classical communication channel	

-- Fluctuations around equilibrium

Benchmark Systems
X(i)

t =
X

j2Ni

AijX
(j)
t�1 + ⇠(i)t

stable adjacency matrix uncorrelated Gaussian noise

�(⌧, t)ij ⌘ cov[x

(i)
t+⌧ , x

(j)
t ]

X(i)
t are Gaussian, with covariance(

�(0) ⌘ limt!1 �(0, t) =
P1

k=0 A
kS(Ak)>

�(⌧) = A�(⌧ � 1) = A2�(⌧ � 2) = · · · = A⌧�(0)

CJ!I|K =

1

2

log

0

@ det

⇥
�(0)II � �(1)IK�(0)

�1
KK�(1)

>
IK

⇤

det

h
�(0)II � �(1)I,K[J�(0)

�1
K[J,K[J�(1)

>
I,K[J

i

1

A

Ahmed and Gokhale, IEEE Trans. Info. Theor. (1989). 
Barnett, Phys. Rev. Lett. (2009).



Analytical Calculation: Directed Linear Chain

. .
 .

1

2

3

n

Cj!i =
1

2

�i,j+1 log

 
1 +

Pj
k=1 �

2
k

�2
i

!



Analytical Calculation: Directed Loop

. .
 .

1

2

3

n

Cj!i =
1

2

�pi,j log

⇣
1

1� w2

⌘



Analytical Calculation: Directed Tree

Cj!i =
1

2

�di,dj+1 log
(di + 1)(dj + 1)

(di + 1)(dj + 1)� (dpij + 1)

2

(
pi = argmaxj Cj!i,

Cj!i|{pi} = 0.

No conditioning:

With conditioning:

false positives



Numerical Tests for Random Directed Networks
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n : number of nodes

p : connection of probability

w : edge weights
(each directed edge  
has weight w or -w)

⇢(A) : spectral radius
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Conclusions

JS and E.M. Bollt, Physica D267, 49 (2014) 
JS, D. Taylor, and E.M. Bollt, arXiv:cs.IT/1401.7574 (2014) 
JS, C. Cafaro, and E.M. Bollt, Entropy (to appear, 2014)

— oCSE allows for direct causal inference in an efficient way (it can be extended 
to finite-order Markov process and also process with infinite but fading memory) 

— Tradeoff between computation (choosing the conditioning set) and estimation 
(resulting dimensionality of the random variables)
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