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Dynamics on Networks

REVIEWS OF MODERN PHYSICS, VOLUME 80, OCTOBER-DECEMBER 2008
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n of the compactness of networks, featuring small diameters, and their complex
esults in a variety of critical effects dramatically different from those in cooperative
ces. In the last few years, important steps have been made toward understanding the
w critical phenomena in complex networks. The results, concepts, and methods of this
ing field are reviewed. Two closely related classes of these critical phenomena are
mely, structural phase transitions in the network architectures and transitions in
rdels on networks as substrates. Systems where a network and interacting agents on it
other are also discussed. A wide range of critical phenomena in equilibrium and
prks including the birth of the giant connected component, percolation, k-core
enomena near epidemic thresholds, condensation transitions, critical phenomena in
ced an natwarke eunchranization  and eelfearoanized criticalitv affecte in interactine
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The Problem of Causal Network Inference

(a) network structure (b) node dynamics (c) direct & indirect causal nodes
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Given: (time series) observations at each component of a system

Goal: identify the direct causal relationships between the components

...there are several reasons...

medical diagnosis: identify the causes of a disease in order to suggest effective treatments




Procedure of Causal Network Inference

Gather a sufficient amount of relevant data (experimental work)

?

Develop an appropriate causal inference measure (theoretical work)

!

Accurate and reliable estimate of such a measure (computational/statistical work)

A good causal inference measure should satisfy

...general applicability and neat interpretation...

...Immune (in principle) to false positives and false negatives...
...accurate and fast numerical estimation...

Condition (1) —...linear and nonlinear interactions...

Condition (2) —...correct identification of direct couplings in complex systems
with more than two components...

Condition (3) —...appropriate statistical estimation techniques...



Correlation vs. Causality
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Correlation does not imply causality.
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Information vs. Physical Causality

Paul the Octopus Go: g le paul the octopus
Results involving Germany ™=  [cdi)

Opponent ¢ Tournament # Stage $ Date ¢ Prediction ¢ Result # Outcome # e fools
== Poland Euro 2008 group stage 8 June 2008 Germany 2-0 Correct
=w= Croatia Euro 2008 group stage |12 June 2008 Germanyl@li21l 12 Incorrect
—— Austria Euro 2008 group stage 16 June 2008 Germany 1-0 Correct
EJ Portugal Euro 2008 quarter-finals 19 June 2008 Germany 3-2 Correct
Turkey Euro 2008 semi-finals |25 June 2008 Germany 3-2 Correct
= Spain Euro 2008 final 29 June 2008 Germany!?] 0-1 Incorrect

Paul In his 238 Australia ‘World Cup 2010/ group stage |13 June 2010 Germany!30! 4-0 Correct
M Serbia  World Cup 2010 group stage |18 June 2010 Serbial®®l|  0-1 Correct
o === Ghana |World Cup 2010/ group stage 23 June 2010 Germany!=C] 1-0 Correct
appellation ~}—- England World Cup 2010, round of 16 27 June 2010 Germany!3') 4-1 Correct
e === Argentina World Cup 2010 quarter-finals | 3 July 2010 Germany!24] 4-0 Correct
Sex == Spain  World Cup 2010,  semi-finals 7 July 2010 Spain®2l| 01 Correct
Occupatior . — yruguay World Cup 2010 3rd place play-off 10 July 2010 Germany 3-2 Correct
Known for

- ..l 2. .0 Naan e ti.m

c Argentine chef Nicolas Bedorrou was so angry after Paul correctly
predicted his team would lose its quarter-final clash with Germany that
" he suggested a way to cook the octopus.

2 days ago - Lucknow. The football world, rendered directionless by the demise of
soothsayer Paul the Octopus, has found its order back again. And in the ...



Mathematical Assumptions

The necessity of making assumptions:
M. Eichler, Graphical modeling of multivariate time series, Probability Theory and Related Fields (2012).

Stochastic process {Xt(i)}i:1,2,...,N;t:1,2,...
( (i) Temporally Markov:
p(thXt—17 Xt_g, .. ) — p(Xt|Xt—1) = p(Xt’|Xt’—1) for ally t and t'.
(ii) Spatially Markov:
p(X;”1X,—1) = p(X{1 X)) for any i.
(iii) Identifiability:
\ p(X1 X 5)) # p(X[V|X,5)) whenever (K N N;) # (LN N).

N; : set of direct causal components of ¢
N;

O

(also assumes full observability of all the components)



Basic Information-theoretic Measures

Entropy h(X) = — /p(m) log p(x)dx

Joint entropy: h(X,Y) = h(Y, X) = — [ p(x,y) log p(z, y)dzdy.
MX|Y) = — [ p(z,y)log p(z|y)drdy;
WY |X) = — [ p(x,y)logp(y|x)dzdy.

Mutual information: I(X;Y) = h(X) — A(X|Y) =h(Y) — h(Y|X).
Conditional mutual information:

[(X:Y|Z) = W(X|Z) — h(X|Y,Z) = h(Y|Z) — h(Y|X, Z).

Conditional entropies: {

"y / . Cover & Thomas (2006).
h(Y)
/

conditional entropy

D W(X|Y)=h(X,Y)-h(Y)

‘mutual information

~I(X:Y)=h(X)+h(Y)-h(X.Y)

mutual information

h(Z) XY 2)=I(X:Y)-I(X:Y|Z)



Transfer Entropy, Self-Causality, and Conditioning

Transfer Entropy (TE)
Iy . x = h(Xt—H‘Xt) — h(Xt—|—1|Xt7Yt)

[\ /

future of X past of X past of Y

Ty —, x measures the reduction of uncertainty about X;;1 given knowledge

about Y in addition to that of X;. T. Schreiber, Phys. Rev. Lett. 85, 461 (2000)
A. Kaiser & T. Schreiber, Physica D (2002)

Remarks: M. Palus et. al., Phys. Rev. E (2001)

1. Tx_x =0, TE makes no indication about whether the process {X:}
Is self-causal or not, and is not designed to address such question.

2. Ty . x IS a bivariate measure (from Y to X), and is therefore not
designed to infer direct causality within multiple processes.

Self-causal or not affects system controllability.
Cowan et.al., PLOS ONE (2012)

When there are multiple processes, Y, directly causes X, only if

such “cause’” remains after the removal of all other conditions.

Frenzel and Pompe, Phys. Rev. Lett. (2007)
Vejmelka and Palus, Phys. Rev. E (2008)



Benjamin Franklin and Clive Granger

For want of a nail a shoe was lost,
For want @C a shoe a horse was lost,

For want (Zf a 601’56 a Batt[e was [051'

and

Clive Granger

. - - “ r 4

Benjamin Franklin For want of a battle a kingdom was (ost
And all for the want of a horseshoe nail.

Conclusion - The blacksmith destroyed the kingdom.
— everything is connected to everything

— everything causes (and is caused by) everything
....yes....but not so useful.

Granger’s notion of causality: (Granger, 1969)

(1) The cause should occur before the effect (caused)

(2) The causal process should carry information—
unavailable in other processes—about the effect.



Causation Entropy

The Causation Entropy (CSE) from the set of components J to /
conditioning on K is defined (explicitly) as:

I K I K J
Cronk = h(Xt(—i—)l‘Xt( )) - h(Xt(Jr)l‘Xt( )7Xt( ))

causation entropy

Y
Crs K

(if K = I
C/—»/ K — T./—»/)

~hiKt)

Remarks:

1. CSE can be used to assess whether a process is “self-causal’.
2. CSE does not “solve” the causal inference problem.

3. The definition simply emphasizes the fact that cause-and-effect
IS not a bivariate question, but rather, involves all three parts
(cause, effect, and conditioning).



Analytical Properties of CSE

(a) OJ—»I K — 0

K

Y

(b) CJ—>I|K =0 (C) OJ—>]|K >0

(a) (Redundancy) If J C K, then C;_,;x = 0.

(b) (No false positive) If N; C K, then Cj_11x =0 for any set of nodes J.
(¢) (True positive) If J C Ny and J ¢ K, then Cj_ 5k > 0.

(d) (Decomposition) Cronk = Cxun—1 — Cror.

(Optimal Causation Entropy Principle) The set of direct causal neighbors is the
minimal set of nodes with mazimal Causation Entropy.
Define the family of sets with mazimal Causation Entropy as

(2.26)

K= {K|VK' CV,Cgr < CK—>I}-

Then the set of direct causal neighbors satisfies

(2.27)

Nr =NgexK = argming . K.



Existing Approaches of Conditioning
1. Condition on everything:

@ Q Q — curse of dimensionality

(estimation in the full-

Q Q dimensional space)
O @

2. Condition on subsets of increasing cardinality (PC-algorithm)

@ O Q — combinatorial search

(high computational burden)
Q @ nz(n—l)k'l
QO “h-D!

Spirtes, Glymour, Scheines (2000). Runge, Heitzig, Petoukhov, Kurths, PRL (2012)



Forward & Backward Conditioning: Discover & Remove

(a) True network structure (b) Aggregative discovery (c) Divisive removal
of causal nodes of non-causal nodes
if Cisi i 18 mazimal if Cisijxqm= 0
/ then K’ = K U{j} then K’ = K-{j}
f o o o o
R Se
° /[ Y ; o e [ o i o
\ o V"Zw... Z.—X"——V,‘ V~.‘
O ¢ O ¢
\ " B
o o
o o
Remarks:

1. The “forward” step (Aggregative Discovery) alone in principle would

result in false positives that cannot be mitigated by the increased
amount of data. Vlachos, Kugiumtzis, Phys. Rev. E (2010); Kugiumtzis, Phys. Rev. E (2013)

2. The "backward” step (Divisive removal) can be modified to one that
Is analogous to the PC-algorithm in the statistical inference literature,
with the key difference that here enumeration of conditioning subsets

needs to be performed only within K, rather than for all nodes.
Spirtes, Glymour, Scheines (2000). Runge, Heitzig, Petoukhov, Kurths, PRL (2012)



Benchmark Systems

X (%) Z A’LJX () -+ ftz) -- Classical communication channel
jEN; \ — Fluctuations around equilibrium

stable adjacency matrix = Uncorrelated Gaussian noise

Ahmed and Gokhale, IEEE Trans. Info. Theor. (1989).
Barnett, Phys. Rev. Lett. (2009).

Xt(i) are Gaussian, with covariance (7, ¢);; = COV[%&QT» ng)]
©(0) = limy—00 ©(0,) = 377, AS(AY)
B(7) = AD(T — 1) = A2D(1 —2) = --- = A"®(0)

¢ — Mog det [#(0) 77 — ®(1)1xP(0) 5 ®(1) [ ]
e
2 det [@(O)u —®(1); KUJ@(O)KluJ KUJ(I)(l)}_,KUJ}




Analytical Calculation: Directed Linear Chain

1 j_ o2
Cii = §5i,j—|—1 log (1 ) k)

o

1 2 & n
00 - -0+0

causation
entropy

:1 52 :?j
100 10 100 10
@ node index



Analytical Calculation: Directed Loop

1

]
Cimvi = 50,108 (1 _ w2)

1 2 8 n
Ci.,

causation
entropy

= w
0 0.5 1
link weight




Analytical Calculation: Directed Tree

No conditioning:

With conditioning: 1

1 (root)

1

Cj—)% — §5di,dj—|—1 lOg (d

/

P; = arginax; C—i,

Cjil{piy = 0.

d=3

, false positives
d=5 \/

i T 1)(dj T ) o (dpij T 1)2



Numerical Tests for Random Directed Networks

n : number of nodes
p : connection of probability
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Significance Level and Network Size

n = 200, np = 10, p(A) = 0.8
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Effects of Sample Size and Spectral Radius
n = 200, p(A) = 0.8
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Conclusions

— 0CSE allows for direct causal inference in an efficient way (it can be extended
to finite-order Markov process and also process with infinite but fading memory)

— Tradeoff between computation (choosing the conditioning set) and estimation
(resulting dimensionality of the random variables)

Challenges

— Latent variables M. Eichler, Journal of Machine Learning Research (2010)

— Non-stationarity Baiand Perron, Journal of Applied Econometrics (2003)

— Reliable estimation Kraskov and Grassberger, PRE (2004); Frenzel and Pompe, PRL (2007)
— Exact statistical test Pethel and Hahs, Entropy (2014, to appear)
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