Study of the order parameter in noncentrosymmetric $Mg_{10}Ir_{19}B_{16}$

R. Ribeiro¹, W. Bramer-Escamilla¹, I. Bonalde¹, G. Mu² and H. Wen²

¹Centro de Física, Instituto Venezolano de Investigaciones Científicas, Apartado 21827, Caracas 1020-A, Venezuela

²National Laboratory of Condensed Matter Physics, Chinese Academy of Science, P.O. Box 603, Beijing 100080 People's Republic of China

Abstract

The study of noncentrosymmetric heavy fermion and transition-metal superconductors has attracted growing efforts to understand the role of lack of inversion symmetry on superconductivity. The transition-metal $Mg_{10}Ir_{19}B_{16}$ is the most recently discovered noncentrosymmetric superconductor. In noncentrosymmetric compounds it is expected a mixture of spin-singlet and spin-triplet states. Despite this, from previous specific heat measurements it was found that $Mg_{10}Ir_{19}B_{16}$ behaves like a s-wave isotropic superconductor. In this talk we will discuss magnetic penetration depth data of $Mg_{10}Ir_{19}B_{16}$ down to 50 mK. The preliminary results show the existence of multiple superconducting gaps.