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Abstract

A semiclassical approach, based on the discrete WKB approximation, is developed for the description of purely

rotational recurrences in thermal ensembles of collisionless asymmetric top molecules. Exact non-perturbative ex-

pressions are derived for the periods of the J-, H-, and K-type transients. These formulas automatically account for the

phenomenon of increasing the period of the J-type transients for oblate asymmetric tops and decreasing that for prolate

asymmetric tops in parallel with the enhancement of molecular asymmetry. The asymmetry corrections are demon-

strated to magnify the period of the K- and H-type transients, irrespective of the form of the molecular top. The

polarity of the A- and C-type transients is established. New kinds of transients are predicted and characterized by their

periods and polarity. The most important of these is demonstrated to be the P-type transients arising for planar

molecules. Ó 2000 Published by Elsevier Science B.V. All rights reserved.

PACS: 03.65.Sq; 42.50.Md

1. Introduction

Several dozens of years ago, both experimental
[1] and theoretical (see e.g. Ref. [2]) indications
were obtained that the rotational rephasing e�ects
in thermal ensembles of molecular species should
manifest themselves in the polarization sensitive
time domain measurements. The ®rst observations
of rotational recurrences (RRs) in the collisionless
ensembles of trans-stilbene, trans-stilbene-d12 and
trans-stilbene±Ar complexes under the cooling in
the supersonic jet were reported in Refs. [3,4].
Since that time, the rotational coherence spec-

troscopy (RCS) has been developed into a pow-
erful technique for determining the main moments
of inertia of polyatomic molecules, structures of
van der Waals complexes of polyatomic molecules
and various species, and also for de®ning direc-
tions of absorption and emission dipole moments
in the molecular frame [5]. Refs. [6±12] and the
literature cited therein give an account of the re-
cent experimental progress in the ®eld of RCS.

A theoretical basis for the RCS has been de-
veloped in papers [13±18]. More speci®cally, a
polarization response of an ensemble of molecules
under collision-free conditions is proportional to
the quantum orientational correlation function
(OCF) of the dipole moments involved

rk�t� � hP k�~̂l1�0�~̂l2�t��i: �1�
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The time dependence here is entirely due to the free
rotation of molecules; h� � �i denotes the quantum
mechanical averaging over the initial states and
summation over the ®nal states;~l1 and~l2 stand for
the pump±probe or absorption±emission dipole
moments; P k�x� is the Legendre polynomial of the
rank k, and caps are used to designate operators.
There exists no problem to write down the explicit
analytical expression for this OCF in the case of
symmetric top molecules [13±15]. Such an equation
allows one to classify all the possible kinds of
transients in the collisionless ensemble of symmet-
ric tops to determine the polarity of the transients
and also to derive extremely simple analytical for-
mulas that express the transient periods through
the rotational constants of the molecules [13±16].
The case of asymmetric tops is more involved. In-
deed, a direct computation of asymmetric top
quantum OCFs presents no di�culties [15±18].
These OCFs depend on temperature (which is a few
kelvins for experiments in supersonic jets), rota-
tional constants and directions of dipole moments
in the molecular frame. By varying the two latter
sets of parameters, one can try to bring into cor-
respondence the calculated and experimental
transients, thereby getting knowledge on the rota-
tional constants and directions of the dipole mo-
ments. This is the standard approach to the
interpretation of measured RRs [3±18]. However,
this procedure is essentially numerical, and it
hardly allows one to grasp general tendencies in the
variation of the RR periods vs. molecular param-
eters. Before embarking on performing experi-
ments on speci®c molecules and/or complexes, it
would be desirable to have guidelines on possible
kinds, periods, and polarity of the transients.

If the asymmetric molecule under study can
roughly be considered as a prolate or oblate
symmetric top, one would expect that the RR pe-
riods would be described fairly well by (slightly
modi®ed) formulas derived for the pertinent sym-
metric tops. It has been proved, that such formulas
work surprisingly well [3±18]. Moreover, the new
kinds of asymmetry transients (the so-called
C- and A-type transients) were established and
characterized by invoking semiclassical treatment
of the asymmetric top rotation [18]. In addition,
one can get valuable insight into the problem of

the RRs by considering the classical mechanics
symmetric [13±16] and asymmetric [19±21] top
OCFs, but with the rotational frequencies replaced
by their quantum (discrete) analogues.

It is the aim of the present work to carry out
a comprehensive semiclassical study of the RRs
in the ensemble of collisionless asymmetric
top molecules. Following this way, it is possible
to perform a complete and uniform analysis
and classi®cation of the RRs for asymmetric tops,
to derive accurate non-perturbative expressions for
the RR periods, and also to predict new kinds of
transients. The outline of the paper is as follows:
General formulas for quantum asymmetric top
OCFs of an arbitrary rank are introduced
in Section 2. A semiclassical analysis of the OCFs is
made in Section 3. The results of this analysis are
discussed in Section 4. Our main ®ndings and
conclusions are brie¯y summarized in Section 5.

2. Asymmetric top orientational correlation

functions

Let

Ĥ � AL̂2
x � BL̂2

y � CL̂2
z �2�

be the asymmetric top Hamiltonian. Here L̂i are
the angular momentum operators in the molecular
frame and A � �h2=2IA; B � �h2=2IB; C � �h2=2IC

are the rotational constants. Without loss of gen-
erality, we shall further assume that the main
moments of inertia are arranged according to the
requirement IC P IB P IA, so that A P B P C . In
the Heisenberg representation, Eq. (1) looks like
the following:

hP k�~̂l1�0�~̂l2�t��i � Zÿ1 Sp
Xk

a�ÿk

expf
 

ÿ Ĥ=kTgDk
0a� ÿ~l1�

� expf ÿ itĤ=�hgDk
a0�~l2� expfitĤ=�hg

!
:

�3�

Here, the partition function

Z � Sp expf
�

ÿ Ĥ=kTg
�

�4�

and Dk
a0�~l� are the Wigner functions. To get the

explicit form of Eq. (3), it is convenient to rewrite
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it in the basis of the symmetric top eigenfunctions
jJ ;K;Mi. Here, the standard quantum notation is
used: J�J � 1� is the eigenvalue of the square of the
angular momentum, K and M are, respectively, the
eigenvalues of the projection of the angular mo-
mentum on the z-axis of the molecular and labo-
ratory frame. It is further convenient to introduce
the quantity NJ

K1K2
�x� according to the de®nition,

hJ1K1M1j expfxĤgjJ2K2M2i
� dJ1J2

dM1M2
NJ1

K1K2
�x� �5�

(x is an arbitrary number). Explicitly,

NJ
K1K2
�x� � �expfxH Jg�K1K2

; �6�

where hJ1K1M1jĤ jJ2K2M2i � dJ1J2
dM1M2

H J
K1K2

, and
H J

K1K2
is regarded as a matrix with the elements

HJ
KK � f�A� B��J�J � 1� ÿ K2� � 2CK2g=2

� GJ �K�;
H J

KK�2 � �Aÿ B�
������������������������������������������������
�J � K � 2��J � K � 1�

p
�

����������������������������������������
�J ÿ K ÿ 1��J ÿ K�

p
=4

� V J �K�:
�7�

While writing down formulas (7), the explicit as-
sumption was made that the axis C of the smallest
moment of inertia was used as the quantization
axis. By cyclic permutation of rotational constants
A, B, and C, one can readily obtain analogous
expressions in the case of A and B quantization
axes. In terms of quantities (6), one arrives at the
expressions,

hP k�~̂l1�0�~̂l2�t��i �
Xk

a;b�k

Dk
�0a��ÿ~l1�F k

ab�t�Dk
b0�~l2�;

�8�

F k
ab�t� � Zÿ1

X1
J ;J 0�0

X
K1 ;K2 ;

K3 ;K4

�2J � 1�CJ 0K3

JK2;kaCJ 0K4

JK1;kbN
J
K1;K2

� �1=kT �NJ 0
K2;K3
�it=�h�NJ

K3;K4
�ÿit=�h�:

�9�
Here, CJK

J1K1J2K2
are the Clebsch±Gordan coe�-

cients. The summation in Eq. (9) is expanded
over those values of indexes, for which the

Clebsch±Gordan coe�cients are non-zero. In
particular, the selection rules

jJ ÿ J 0j 6 k; K3 � K2 � a; K4 � K1 � b �10�
must be obeyed. Eq. (9) explicitly de®nes the
asymmetric top OCF, which is the fundamental
quantity for the subsequent analyses, since it
contains all the dynamic information on the mo-
lecular rotation. Our basic expressions (8) and (9)
are very similar to that given in Section 3 of paper
[17]. The only di�erence stems from the fact that
the explicit form of equations like Eqs. (1) and (3)
is given in Ref. [17] in terms of the eigenfunctions
of the asymmetric top Hamiltonian, that are linear
combinations of functions jJ ;K;Mi.

If the molecule under consideration is a sym-
metric top �A � B�, then all the N matrices entering
Eq. (9) are diagonal,

NJ
K1K2
�x� � NJ

K1K1
�x�dK1K2

� expfxH J
K1K1
gdK1K2

; �11�

so that the Eq. (9) simpli®es to the well-known
symmetric top OCF [13±16]. For asymmetric top
molecules, one can also employ the secular (sym-
metric top like) approximation,

NJ
K1K2
�x� � expfxH J

K1K1
gdK1K2

: �12�

This is equivalent to the complete neglecting by all
the o�-diagonal elements of matrix HJ

K1K2
. Despite

the fact that this approximation is somewhat un-
controlled and unjusti®ed, it leads to surprisingly
accurate expressions for the RR periods (see pa-
pers [3±21] and discussion given below).

3. Semiclassical approximation

For an asymmetric top molecule, one can write

NJ
K1;K2
�x� �

XJ

N�ÿJ

f J
K1N expfÿxE�J ;N�gf J

NK2
; �13�

where E�J ;N� and f J
KN are the eigenvalues and ei-

genfunctions of three-diagonal matrix HJ
K1K2

. (Note
that the quantities f J

KN are nothing else than the
coe�cients in the linear expansion of the asym-
metric top eigenfunctions over the symmetric top
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ones.) It is quite simple and straightforward to ®nd
E�J ;N� and f J

KN numerically, that allows one to
calculate OCF (9). A very similar procedure was
carried out in Refs. [15,17].

However, one can get a deeper insight into the
problem by applying the semiclassical approxi-
mation. The criterion of the validity of semiclas-
sical description of molecular rotation can
immediately be established by considering the ra-
tio e of the rotational and thermal energy. If I is a
characteristic moment of inertia of a polyatomic
molecule (I � 103±104 a:u:�A2), one ®nds the ratio
e � �h2=2IkT � 1, even under the conditions of
supersonic cooling �T � 5 K�. In this case, high
enough values of the angular momentum con-
tribute signi®cantly to the summation in Eq. (9).
The semiclassical approach was successfully in-
voked for the calculation of the eigenvalues and
eigenfunctions of the rigid asymmetric top Ham-
iltonian [22±27]. However, the technique has not
been applied to the analyses of quantum asym-
metric top OCFs. For these purposes, it is ideally
suited to the discrete WKB method developed by
Braun [28,29] (the state of the art of the theory was
recently reviewed in Ref. [30]). Indeed, by invoking
the explicit form of matrix H J

K1K2
, the problem of

®nding its eigenvalues and eigenfunctions reduces
to the solution of the three-term recurrence rela-
tions

V J �K ÿ 2�f J
Kÿ2N � �GJ �K� ÿ E�N ; J��f J

KN

� V J�K�f J
K�2N � 0: �14�

This task has been solved by Braun and Kiselev
[30±32] (see also Refs. [22,23,33,34]), so we present

here all the necessary results for granted. All the
possible values of the asymmetric top rotational
energy are limited by the inequality

Cj2 < E < Aj2 �15�

(hereafter, the designation j � J � 1=2 is used).
The functional form of the asymmetric top rota-
tional energy is di�erent in the EC subspace
(Cj2 < E < Bj2, a molecule rotates nearly around
its axis of the highest moment of inertia) and in the
EA subspace (Bj2 < E < Aj2, a molecule rotates
nearly around its axis of the smallest moment of
inertia). Just the same phenomenon takes place for
a classical asymmetric top [35]. As has been men-
tioned above, we chose the axis C of the highest
moment of inertia to be the quantization axis. The
corresponding semiclassical formulas for the ro-
tational energy are given in Table 1. It must be
stressed that these are not exact semiclassical ex-
pressions for the rotational energy, but the high j
expressions, that are valid with the accuracy
O�1=j�. It is clear enough that O�1=j� corrections
will not contribute signi®cantly to the semiclassical
(high j) expressions for rotational frequencies. At
least, their contributions will be small for several
®rst transients. That is why the neglecting by the
O�1=j� terms is totally justi®ed. One also should
keep in mind that the semiclassical values of the
rotational energy are doubly degenerate [30±32].
Roughly speaking, the rotational levels belonging
to the EC subspace are doubly degenerate in the
clockwise and counterclockwise rotation (this
corresponds to the substitution K ! ÿK in
Eq. (14)), and the rotational levels belonging to the

Table 1

Rotational energies and frequencies for quantum asymmetric tops

Cj2 < E < Bj2 Bj2 < E < Aj2

E�j;N� � Cj2 � 2j�j� N�xC ÿ �j� N�2yC �O�1=j�;
N � �J ;��J ÿ 1�;��J ÿ 2� . . .

E�j;N� � Aj2 ÿ 2j�N � 1=2�xA � �N � 1=2�2yA �O�1=j�;
N � 0; 1; 2 . . .

xC �
���������������������������������Aÿ C��Bÿ C�p

; yC � �A� B�=2ÿ C xA �
���������������������������������Aÿ C��Aÿ B�p

; yA � Aÿ �C � B�=2

xC
j;N � 2jxC

2 � 2�jÿ N�xC
1 � DC xA

j;N � 2jxA
2 � 2�N � 1=2�xA

1 � DA

xC
2 � CDj� xC�Djÿ DN� xA

2 � ADjÿ xADN

xC
1 � xCDjÿ yC�Djÿ DN� xA

1 � ÿxADj� yADN

DC � CDj2 � 2xCDj�Djÿ DN� ÿ yC�Djÿ DN�2 DA � CDj2 ÿ 2xADjDN � yADN 2
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EA subspace are doubly degenerate for the neigh-
boring odd and even K in Eq. (14). The higher
order corrections to the lowest order semiclassical
formulas will result in the splitting of the formerly
degenerate rotational levels [30±32]. These correc-
tions, being exponentially small, are beyond the
accuracy of the semiclassical approximation con-
sidered here. Note also that, in the symmetric top
limit A � B, the quantum number N reduces to the
standard symmetric top quantum number K.

It is absolutely clear from Eqs. (9) and (13) that
the RR frequencies are determined by the expres-
sion,

xj;N � fE�j� Dj;N � DN� ÿ E�j;N�g=�h: �16�
According to the selection rules (10), jDjj 6 k, but
no direct limitations are imposed on DN and,
generally, all f J

KN 6� 0. However, some approxi-
mate selection rules on DN can still be derived (see
below). The explicit values of frequencies (16) in
the EC and EA subspaces are presented in Table 1.
Hereafter, the rotational constants are given in the
units of Planck constant h.

4. Results and discussion

By inspecting Eqs. (9), (13), and Table 1, one
immediately concludes that the anisotropy of the
polarization response is described by the following
generic equation:

rk�t� �
Xn

a;b�ÿn

ak
ab cosf2pt�X1a� X2b� D�g: �17�

Here, the fundamental frequencies X1;X2, and the
parameter D depend upon molecular constants
(Table 1), and explicit expressions for the quanti-
ties ak

ab are immaterial for the subsequent quali-
tative discussion. Closely following the general

lines of reasoning presented in Ref. [18], one ex-
pects the following behavior for the anisotropy. If
frequencies X1 and X2, are incommensurable,
several partial RRs arise, e.g., for a � 0 with fre-
quency X2, for b � 0 with frequency X1, for
a � �b, with frequency X1 � X2, etc. In any case,
only �2n terms from the general set of the �4n2

terms contribute to a particular RR. So, the ``ca-
pacity'' of these RRs is very small. If, however, the
rotational constants are such that X1 � 0 or
X2 � 0 or X1 � X2, the RRs arise for an arbitrary
a and b, and their capacity is of the order of 4n2. It
is in this latter case that the RRs are presumed to
be quite pronounced and manifest themselves in
anisotropy (17). The in¯uence of parameter D on
the form and polarity of RRs is described in detail
in Ref. [18]. Note merely that for the problem
under consideration here, D is either an integer
(this results in the sign-constant transients) or a
half-integer (this results in the sign-alternating
transients).

Now, the strategy for seeking possible types of
RRs is totally transparent. One must check
whether for some values of rotational constants
A P B P C and parameters Dj, DN one obtains

xs
1 � 0 or xs

2 � 0 �18a�

or

xs
1 � xs

2 �18b�

s � C or A. It should be emphasized that one
should not limit himself to the search of some
speci®c values of parameters A P B P C giving
rise to Eqs. (18a) or (18b). One should seek for
broad enough, generic classes of molecular tops
obeying Eqs. (18a) or (18b). The corresponding
classes are given in Table 2.

Being equipped with Tables 1 and 2, one must
carefully consider various Dj and DN for which

Table 2

Expressions for parameters xi and yi in several speci®c cases

Spherical top, A � B � C xi � yi � 0

Oblate top, A � B > C xC � yC � �A� B�=2ÿ C; xA � 0

Prolate top, A > B � C xA � yA � Aÿ �B� C�=2; xC � 0

Planar top, IA � IB � IC ; C � AB=�A� B� xC � C
Very prolate top, A� B;C xA � yA � A
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requirements (18a) or (18b) hold true. The results
of this work are summarized in Tables 3 and 4. It
is essential that the RRs in case (18a) are more
stable than in case (18b). It is meant the following.
Let us assume that, for some particular values of
rotational constants, xs

2 � 0. A slight variation of
the rotational constants produces xs

1 � xs
2 6� 0.

Such a very small frequency induces a very high
period T � 1=xs

2. In this case, the RRs are still

determined by a single frequency xs
1, at least for

t < T . In case (18b), both the frequencies con-
tribute to the transients on an equal footing, and
their detuning gives rise to a broadening of the
RR signal. So, the condition (18b) produces the
e�ective rotational frequency x � xs

1 � xs
2 �

�xs
1 � xs

2�=2. To emphasize this, we use in Tables 3
and 4 the sign � for de®ning X in situation (18a)
and the sign � in situation (18b). That is why the

Table 3

Frequencies and transients in the EC subspace

Transition Top symmetry xC
2 xC

1 DC Transients: type, period

and polarity

DN � 0 General Dj�C � xC� Dj�xC ÿ yC� Dj2�C � 2xC ÿ yC�
Oblate DjX �0 Dj2X J

A � B > C; jDjj � 1:

xC � yC ; Tmax � n=2X
X � C � xC jDjj � 2:

� �A� B�=2 Tmax � n=2X;
Tmin � �2m� 1�=4X

Dj � 0 General ÿDNxC DNyC ÿDN 2yC

Oblate ÿDNX DNX ÿDN 2X H

A � B > C; jDN j � 1:

X � xC � yC � Tmax � n=X;
�xC � yC �=2 � Tmin � �2m� 1�=2X;

�A� B�=2ÿ C K

jDN j � 2:

Tmax � n=4X

Prolate �0 DNX ÿDN 2X K0

A > B � C; jDN j � 1:

xC � 0; Tmax � n=2X;
X � yC � H0

�2Aÿ Bÿ C�=4 jDN j � 2:

Tmax � n=2X;
Tmin � �2m� 1�=4X

Dj � DN General DjC DjxC Dj2C

Prolate DjX �0 Dj2X C

A > B � C; jDjj � 1:

xC � 0;X � C Tmax � n=2X
jDjj � 2:

Tmax � n=2X;
Tmin � �2m� 1�=4X

Planar DjX DjX Dj2X P

X � C � xC � jDjj � 1:

�C � xC �=2 Tmax � n=X;
Tmin � �2m� 1�=2X
jDjj � 2:

Tmax � n=4X
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J- and C-type transients are less severely a�ected
by the variation of rotational constants than their
H- and K-type counterparts.

By comparing Tables 3 and 4 with Table 1 of
paper [5], one noti®es the following major points.
The semiclassical approximation allows one to
derive ``exact'' non-perturbative expressions for
the periods of the J-, H-, and K-type transients. In
Tables 3 and 4, these expressions are marked by

the boldface lettering. The expressions were de-
rived for the ®rst time elsewhere [19±21]. The
symmetric top based formulas for the quantities
are also given in the tables. These simpli®ed for-
mulas are obtained by the substitution of
A�C� by fA� Bg=2�fB� Cg=2� in the exact pro-
late (oblate) symmetric top expressions for the J-,
H-, and K-type transients [5,15,16]. The secular
approximation (12) also gives rise to the same

Table 4

Frequencies and transients in the EA subspace

Transition Top symmetry xA
2 xA

1 DA Transients: type, period,

and polarity

Dj � DN General Dj�Aÿ xA� Dj�yA ÿ xA� Dj2�Aÿ 2xA � yA�
Prolate DjX �0 Dj2X J

A > B � C; jDjj � 1:

xA � yA; Tmax � n=2X
X � Aÿ xA jDjj � 2:

� �B� X �=2 Tmax � n=2X,

Tmin � �2m� 1�=4X

Dj � 0 General ÿDNxA DNyA DN 2yA

Prolate ÿDNX DNX DN 2X H

A > B � C; jDN j � 1:

X � xA � yA � Tmax � n=X;
�xA � yA�=2 � Tmin � �2m� 1�=2X;

Aÿ �B� C�=2 K

jDN j � 2:

Tmax � n=4X

Oblate �0 DNX DN 2X K0

A � B > C; jDN j � 1:

xA � 0; Tmax � n=2X;

X � yA � H0

�Aÿ Bÿ 2C�=4 jDN j � 2:

Tmax � n=2X;

Tmin � �2m� 1�=4X

DN � 0 General DjA ÿDjxA Dj2A

Oblate DjX �0 Dj2X A

A � B > C; jDjj � 1:

xA � 0;X � A Tmax � n=2X
jDjj � 2:

Tmax � n=2X;
Tmin � �2m� 1�=4X

Very prolate DjX DjX Dj2X V

X � A � xA jDjj � 1:

Tmax � n=X;
Tmin � �2m� 1�=2X;

jDjj � 2:

Tmax � n=4X
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results. By expanding the ``exact'' expressions for
the e�ective frequencies near the appropriate
symmetric top limit, one gets

XC � �A� B�=2ÿ Cc �Of�Aÿ B�3g;
XA � �B� C�=2� CA �Of�Bÿ C�3g

�19�

for the J-type transients and

XC � �A� Bÿ 2C ÿ CC�=2�Of�Aÿ B�3g;
XA � �2Aÿ Bÿ C ÿ CA�=2�Of�Bÿ C�3g

�20�

for the K- and H-type transients. Here, the cor-
rections

CC � �Aÿ B�2=f8�Aÿ C�gP 0;

CA � �Bÿ C�2=f8�Aÿ C�gP 0:
�21�

Eq. (19) in conjunction with Eq. (21) con®rms the
well-established fact that the molecular asymmetry
increases the period of the J-type transients for
oblate asymmetric tops and decreases that for
prolate asymmetric tops [12]. In addition, one
recognizes from Eq. (20) that the asymmetry cor-
rections increase the period of the K- and H-type
transients, irrespective of the shape of molecular

tops. Note that the corrections, as well as the
``exact'' expressions for the RR periods given in
Tables 3 and 4, are completely determined by the
rotational constants and are independent of the
temperature. It is of considerable importance to
compare the values of the RR periods predicted by
the symmetric top like formulas and ``exact''
semiclassical ones. The results of this procedure
are depicted in Fig. 1 for the J-type transients and
in Fig. 2 for the K- and H-type transients. It is
surprising that the di�erence between the two ap-
proaches is relatively small, even in the case of
high enough molecular asymmetry. This fact sup-
ports the validity of estimating the periods of the
J-, K- and H-type transients by the implementa-
tion of the symmetric top like formulas. The dif-
ference becomes substantial when the molecule is
far beyond the appropriate symmetric top limit,
where the implementation of both kinds of for-
mulas is questionable. However, since the accuracy
of the RCS in determining rotational constants is
high enough (in GHz, a typical error is 1±10 parts
per thousand [5]), the use of the ``exact'' expres-
sions for the RR periods is preferable. For in-
stance, ¯uorene and ¯uorene±Ar complex are

Fig. 1. The ratio of the ``exact'' and approximate periods of the J-type transients for the (a) EC subspace and (b) EA subspace vs.

rotational constants.
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prolate asymmetric tops and exhibit the J-type
RRs in the EA subspace with the period 943:2� 3:8
and 1138� 3 ps, respectively [16]. The rotational
constants for these molecules, obtained by ®tting
the experimental and simulated RRs, are reported
in columns 1±3 of Table 2 of Ref. [16]. By taking
these rotational constants, one gets for the periods
the following values: 945.9 and 1140.8 ps (sym-
metric top based formulas), 943.5 and 1137.4 ps
(present work, formulas of Table 4). The approach
developed in this work gives excellent agreement
with experimental results, and the di�erences be-
tween the above two means of calculations of pe-
riods, 2.4 and 3.4 ps, are of the order of the
accuracy of measurements.

The analyses of Joireman et al. [18] and ours lead
to identical predictions for the periods of the C- and
A-type transients. It is totally understandable,
since both the approaches rely on the semiclassical
treatment of the asymmetric top rotation. Note
that our consideration also determines the polarity
of the C- and A-type transients (Tables 3 and 4).

A remarkable result of the present analyses is the
prediction of new types of asymmetric top tran-
sients (Tables 3 and 4). The transients labeled as K0-
and H0- are similar to the K- and H-type transients.

The origin of the appearance of these new tran-
sients can be understood by invoking the following
argumentation. As has been mentioned above, the
total rotational space of an asymmetric top is sub-
divided into the EC and EA subspaces. If a molecule
is nearly an oblate (prolate) symmetric top, the bulk
majority of its rotational levels is concentrated in
the EC�EA� subspace, and the subspace EA�EC� has a
very small population. It is in this case that the H-
and K-type transients occur in the EC subspace for
oblate tops and in the EA subspace for prolate ones.
If a molecule is a prolate or oblate asymmetric top,
both EA and EC are considerably populated, and the
K- and H-type transients take place in both
the subspaces. Note however that the polarity of the
K-, H- and K0-, H0-type transients is di�erent. For
instance, the transition with jDN j � 1 in the EC

subspace results in the H- and K0 type transients,
but that with jDN j � 2 results in the K- and H0-type
transients. Analogous conclusions are also correct
for the EA subspace.

However, the most important is the prediction
of new kinds of transients for planar molecules
(Table 3, the P-transients). The point is that
the great majority of aromatic species is more or
less planar, so that this fact is of considerable

Fig. 2. Same as in Fig. 1 but for the H- and K-type transients.
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signi®cance for applications. It should be empha-
sized that the transients obey the same selection
rules as the C-ones. In addition, the periods of
these transients are nearly those as for the C-type
ones. Moreover, if a molecule is rigorously planar
�IA � IB � IC; C � AB=�A� B�� the periods are
identically the same �X � C�. It is in this case that
the C- and P-type transients di�er only by their
polarity. This observation should be taken into
account while interpreting the experimental tran-
sients for nearly planar molecules, because the
observed C-type transients can actually be the
P-type ones and vice versa. Such a misinterpreta-
tion will not result in signi®cant errors, since the
periods of both the transients are nearly the same,
but the polarity of the transients helps one in their
correct identifying. In connection with this, it is
interesting that aromatic molecules are frequently
both prolate and planar. It is the consequence of
the present analysis that, if a molecule is planar
with a good accuracy and only approximately
prolate, the P-type transients will appear instead of
the C-type ones. Indeed, if a molecule is strictly
planar, than xC

1 � xC
2 � C. So, the requirement

xC
1 � C; xC

2 � 0, which is necessary for arising the
C-type transients, is not obeyed even for highly
prolate (but planar) tops. This fact appears to
account for the polarity of the observed transients
with the period 1=4C for planar tops (see e.g.,
Figs. 3b, c, 5, 6, and 8 of paper [18]). The tran-
sients depicted in these ®gures were identi®ed as
the C-type ones, but their sign constant polarity
and period, according to Table 3, correspond to
the P-type transients with jDjj � 2. The molecules
that are not planar exhibit the sign alternating
transients (see e.g. Fig. 3a of paper [18]). The
transients can be identi®ed with the C-type tran-
sients corresponding to jDjj � 2. If a molecule is
prolate but only roughly planar, the C- and P-type
transients are in a competition. For jDjj � 2, the
maxima and minima of the transients at
t � �2n� 1�=4C will approximately reconcile each
other, so that the maxima at t � n=2C will only
survive. This will result in the e�ective doubling of
the RR period. Of course, the above arguments
should largely be considered as speculations be-
cause a more accurate analysis, based on the rig-
orous calculation of quantum OCFs, is required.

Also, the V-type transients are predicted for very
prolate molecules, for which A� B;C (Table 4).

Up to this point, no discussion has been made
of the relative intensity of various kinds of tran-
sients. A cursory analyses of expression (9) shows
that the RR intensities are determined by the val-
ues of the pertinent Clebsch±Gordan coe�cients
(one can use the high j asymptotic expressions for
these coe�cients [36]), and by the values of ei-
genfunctions f J

KN which are also calculable semi-
classically [28±30]. The inspection of the
corresponding formulas allows one to draw the
following conclusion. Let the quantum numbers N
and j (and therefore rotational energy E�N ; j�) be
®xed. Then, if a molecule rotates nearly around its
highest (smallest) moment of inertia, the highest
value of f J

KN corresponds to that of Kmax, for which
the di�erence jB2

j ÿ �Bÿ C�K2
max ÿ E�N ; j�j (jA2

jÿ
�Aÿ C�K2

max ÿ E�N ; j�j) is minimal. The further K
is from Kmax, the smaller are f J

KN . For those N
corresponding to the minimal and maximal values
of the rotational energy, one can roughly state that
f J

KmaxN � 1 and f J
KN � 0 for K 6� Kmax. In several

cases, these observations allow one to ®gure out
some qualitative estimations for the intensities of
transients. For instance, one might expect an in-
tense J-type transients in the EC�EA� subspace for
oblate (prolate) species with the dipole moments
directed along the C(A) axis. However, the most
reliable and accurate way for determining the in-
tensities is to calculate quantum asymmetric top
OCF (9). Of course, one can perform totally
semiclassical calculation of this OCF, but the
procedure of ®nding semiclassical eigenvectors f J

KN
appears to be more complicated and time con-
suming than a direct diagonalization of matrices
HJ

K1K2
. The comment also pertains to the problem

of establishing the ``line shapes'' for various tran-
sients. The advantage of the semiclassical ap-
proach stems mainly from its enabling one to
arrive at analytical expressions for the periods of
the transients and to determine their polarity.

It is to be pointed out that the classi®cation
of the RRs is not exhausted by the contents of
Tables 3 and 4. These tables appear to contain
description of the most intense RRs. However, by
considering the transitions obeying di�erent se-
lection rules (i.e. di�erent values of DN and Dj),
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one can discover some additional transients. In
doing so, one should keep in mind that the higher
is jDN j, the less intense are the transients (for the
second rank symmetric top OCFs jDNmaxj � 2).
For instance, Table 3 can be supplemented by the
RRs corresponding to DN � 2;Dj � 1 for planar
tops. In this case, C � xC;X � �xC � yC�; xC

2

� 0; xC
1 � X; DC � ÿX, and Tmax � n=2X. Table 4

can be supplemented by the transients corre-
sponding to DN � ÿDj for very prolate tops
(A� B;C). In this case, A � xA � yA; and
X � �xA � yA� � 2A; xA

2 � xA
1 � DjX; DA � 2DjX.

So, for jDjj � 1; Tmax � n=2X and for
jDjj � 2; Tmax � n=4X. These new transients are
sign constant. However, the question about the
intensity of these, as well as other possible tran-
sients, deserves additional investigation.

On concluding this section, it is pertinent to
remark that, throughout the article, the axis of the
highest moment of inertia is taken as the quanti-
zation axis. One arrives at the very similar results
by choosing the axis of the smallest moment of
inertia to be the quantization axis. In this case,
all the results and conclusions, in particular in
Tables 3 and 4, remain unchanged. The only dif-
ference is that the states with the smallest rota-
tional energy correspond to nearly zero projection
of the angular momentum on the quantization
axis, and the states with the highest rotational
energy correspond to the maximal absolute value
of the projection of the angular momentum on the
quantization axis [28±30]. If one takes the axis of
the intermediate moment of inertia to be the
quantization axis, the situation is very di�erent in
the sense that there are no states for which the
angular momentum is approximately pointed
along the quantization axis [28±30]. This directly
corresponds to instability of the rotation of a
classical asymmetric top around its axis of the in-
termediate moment of inertia. External perturba-
tions can however stabilize molecular rotation
around its intermediate moment of inertia [37].

5. Conclusion

Qualitatively, an asymmetric top undergoes two
kinds of precessions, with frequencies that are

complicatedly dependent on quantum numbers
and rotational constants. To state simply, one
expects the onset of the RRs when the two fre-
quencies are collapsed into a single e�ective fre-
quency, that depends linearly on a quantum
number. There are two groups of situations that
meet the criterion. First, a molecule can approxi-
mately have a higher symmetry (nearly a spherical
top, or nearly a linear rotor, or nearly a symmetric
top, or nearly a planar top). Second, a molecule
can be an asymmetric top, rotating nearly around
its axes of the smallest or highest moment of in-
ertia (the axis of the intermediate moment of in-
ertia must be disregarded since rotation around it
is unstable). It is in these cases a complicated ro-
tation of an asymmetric top approximately re-
duces to one-dimensional rotation exhibiting the
RRs.

In this paper, the above qualitative expectations
are put on reliable mathematical grounds. The
semiclassical approach to the description of the
asymmetric top rotation is invoked to the analyses
of the RRs. This allows us to perform a complete
analysis and classi®cation of the RRs for colli-
sionless asymmetric top molecules. More speci®-
cally, ``exact'' non-perturbative expressions are
derived for the periods of the J-, H-, and K-type
transients. These formulas automatically account
for the phenomenon of increasing the period of the
J-type transients for oblate asymmetric tops and
decreasing that for prolate asymmetric tops in
parallel with increase of molecular asymmetry [16].
The asymmetry corrections are demonstrated to
magnify the period of the K- and H-type tran-
sients, irrespective of the form of molecular top.
The polarity of the A- and C-transients is estab-
lished. New kinds of transients, that are designated
as H0, K0, P, and V, are predicted and character-
ized by their periods and polarity. The most im-
portant of these are the P-type transients arising
for planar molecules. Our main ®ndings are sum-
marized in Tables 3 and 4, that generalize Table 1
of Ref. [5]. The establishing of new kinds of
transients is not only of purely theoretical signi®-
cance. The point is that a molecule has, in general,
three di�erent main moments of inertia. The
transients of di�erent types possess, as a rule, dif-
ferent periods. The latter are uniquely determined
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by the main moments of inertia. So, one generally
requires to measure three di�erent transients for
identifying molecular moments of inertia, and the
characterization of new kinds of RRs is very
helpful in this respect. In conclusion, we note that
the semiclassical approach can be applied to the
study of the in¯uence of molecular ¯exibility and
external ®elds on the periods of the RRs. The work
on these topics is currently in progress.
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