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Abstract

Effect of collisions is investigated on the photofragment anisotropy decay. We restrict ourselves to studying linear
fragments, and no rotational predissociation is assumed. Photoproducts are produced with a nonequilibrium rotational
distribution, basically due to the applied torque and the parent molecule rotation. A kinetic equation, describing rotational
relaxation of linear fragments under nonequilibrium conditions, is derived and solved for angular momentum correlation

Ž . Ž .functions CFs , rotational energy CFs, and also orientational CFs OCFs . The characteristic decay times for the angular
momentum and rotational energy CFs are shown to be insensitive to the mechanism of the photofragmentation. On the
contrary, OCF of the second rank, that completely determines anisotropy of the photoproduct emission, is demonstrated to
be very sensitive to peculiarities of the dissociation process and collision dynamics. This is confirmed by comparison of the

wcalculated photoproduct anisotropies with experimental M. Volk, S. Gnanakaran, E. Gooding, Y. Kholodenko, N. Pugliano,
Ž . x wR.M. Hochstrasser, J. Phys. Chem. A 101 1997 638 and simulated I. Benjamin, U. Banin, S. Ruhman, J. Chem. Phys. 98

Ž . x1993 8337 ones. The fragment ensemble is proved to retain some memory about its initial nonequilibrium distribution.
This pertains not only to the short time behavior for the anisotropy, but also for its long time decay. Therefore, the study of
the polarization response of the ensemble of photoproducts allows one to know about features of the photofragmentation
dynamics, and also to get information about peculiarities of collisions of fragments with buffer medium species. q 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Ensemble of products produced through the
photofragmentation of an ensemble of parent mole-
cules is rotationally and orientationally anisotropic
w x1,2 . Schematically, this anisotropy has both optical
and dynamic origin. The former is due to the fact
that the probability of absorption andror emission of

) Corresponding author. Fax: q7-375-0172-840-030; E-mail:
1sfm@imaph.bas-net.by

™™ ™2Ž .light is proportional to e m , with e being the light
™polarization and m being the transition dipole mo-

ment. The latter is a direct consequence of the
observation that rotational excitation of fragments is
determined by the parent molecule geometry and
peculiarities of the dissociation process. That is why
the investigation of the anisotropy of the photo-
product emission allows one to know about the
photofragmentation mechanism in considerable de-
tail. Traditionally, experimental and theoretical ef-
forts were directed to studying the steady state ani-
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w xsotropy, both for diatomic 1–17 and polyatomic
w x18,19 fragments. The advent of the femtosecond
polarization spectroscopy made it possible to moni-

wtor the fragment anisotropy decay in real time 20–
x Ž22 . However, these experiments both in the steady

.state and in the time domain have been performed
in the gas phase under collision free conditions,
where the main source of the anisotropy decay is due
to the free rotation of products. On the other hand, a
collisional environment is a natural medium for the
majority of photoreactions, including those of biolog-

w xical significance 23–25 . Recently, a number of
w x‘real time’ measurements 24–32 and computer sim-

w xulations 23,33–36 was reported, where the anisot-
ropy decay of diatomic photoproducts was studied in
the condensed phase.

Evidently, intermolecular collisions destroy the
initially produced nonequilibrium distribution. So,
the natural question arises: ‘Whether is it possible to
extract information about the photofragmentation dy-
namics by monitoring the photoproduct anisotropy
decay, or a few collisions are enough to maintain an
equilibrium distribution so that the observed data
reflect orientational relaxation under equilibrium
conditions?’ On the other hand, our knowledge about
rotational and orientational relaxation in gases and
liquids is due to the numerous spectroscopic experi-
ments and computer simulations. The great bulk of
these studies was carried out under equilibrium con-

w xditions 37–41 . Fragments produced through the
photolysis of parent molecules have a nonequilib-
rium, nonthermal rotational distribution. So, the study
of the relaxation of such nonequilibrim distribution
to an equilibrium one will provide us with a crucial
test for a collision model invoked for the description
of intermolecular collisions.

The present work is aimed at presenting a rela-
tively simple model for the description of the photo-
product anisotropy decay due to intermolecular colli-
sions. The model contains a few parameters with a
clear-cut physical meaning. This makes it convenient
enough for the interpretation of results of experi-
ments and simulations. We restrict ourselves to
studying linear parent and product molecules, that
mimics dissociation of a triatomic molecule into a
diatomic and an atom. The photofragment distribu-
tion over angular momenta is derived in Section 2.
The kinetic equations governing the collisional relax-

ation of the nonequilibrium distribution are intro-
duced in Section 3 and solved for the angular mo-
mentum, rotational energy correlation functions
Ž . Ž .CFs , and orientational CFs OCFs of the second
rank. The obtained results are discussed in Section 4,
where our theoretical predictions are tested against

w xexperimental results 31 and computer simulations
w x34 . In Section 5, which is the Conclusion, the
essence of the work is summarized.

Note that the rotational predissociation is ignored
in the subsequent analyses. This assumption is obeyed
quite well for at least dissociation of a number of

w xtriatomics 20–22,26–36 . If necessary, predissocia-
tion can also be included into consideration by an
appropriate generalization of the results of papers
w x42 to collisional environments.

2. Photoproduct angular momentum distribution

We consider the photofragmentation dynamics in
the reaction AqhÕ™Bqproducts under the fol-

w xlowing assumptions 19,22,42–46 :
Ø molecules A and B are rigid tops,
Ø photofragmentation proceeds instantaneously,
Ø classical mechanics is an adequate description of

the process.
The most crucial assumption here is that concern-

ing the promptness of the photofragmentation. It
fulfils quite well on the time scale of molecular
rotation. Indeed, a characteristic time for the rota-

' 'tional reorientation t f IrkT f1.1 IrT ps. Herer
˚2I is the main moment of inertia in a.u. A , and T is

the rotational temperature in kelvins. So, at a room
temperature, t falls normally into the picosecondr

time region. On the other hand, the photofragmenta-
tion time was estimated to be as small as 50–200 fs
w x20–22,26–36 . There exist two basic sources for the
rotational excitation of photoproducts, viz. the torque
due to the rapture of chemical bonds and the parent
molecule rotation. By using the assumptions men-
tioned above and the angular momentum conserva-
tion low one can establish the following relationship
between the parent and product angular momenta
w x19,22,42–46 :

™ ™ ™

J sGJ qD . 1Ž .B A
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Here the first summand describes mapping of the
parent angular momentum into the product one, and
the second summand is merely the additional angular
momentum ascribed by the product due to the torque.
Explicitly,

G s I R J I , 2Ž . Ž .ab B ,a ab A ,b

with I and I being the main moments of inertiaB,a A,b
Ž .of molecules A and B, R J being the matrix ofab

rotation from the frame of the main moments of
inertia of B to that of A, and J are the pertinent

™ ™ŽEuler angles. While the direction of D is known D

is conventionally assumed to be pointed along the
.direction of the ruptured bond , one can invoke the

™

energy balance to estimate the magnitude of D, as it
w xis conventionally done in the impulsive models 22 .

Being specialized to the case when A and B are
linear rotors with their axes being parallel to each

Ž . Ž .other Js0 , Eq. 1 reduces to

™ ™ ™

J s I rI J qD , 3Ž . Ž .B B A A

™ ™ ™

where J , J ,D are the two-dimensional vectors. ByB A

assuming that the parent molecules possess a Boltz-
mann equilibrium distribution at the temperature T A,
one arrives at the following distribution over the
photofragment angular momenta:

2
™ ™ ™

r J s hrp exp yh J yD ,Ž .ž / ž /0 B B½ 5
h' I r 2kT I 2 , 4Ž .Ž .A A B

Ž w x.compare with Refs. 47–49 . This is evidently a
Gaussian but not a Boltzmann distribution. It is

™ ™

centered in the vicinity of J sD. For the furtherB
Ž .implementation of distribution 4 one should invoke

symmetry arguments. While a triatomic molecule
dissociates from a bent configuration, a diatomic
fragment is produced with an additional angular

™

momentum D, either due to the applied torque or the
recoil of a heavy atom. In any case, there is no

™

preferential orientation of D in the photoproduct
Ž .frame. Therefore, Eq. 4 should be averaged over all
™

possible directions of D. This can immediately be
done by introducing the polar coordinates

J sJ cos w , J sJ sin w ;x J y J

D sD cos w , D sD sin w . 5Ž .x D y D

Ž .and integrating Eq. 4 over w :D

2p ™y1
r J s 2p dw r JŽ . Ž . Ž .H0 D 0

0

s hrp I 2h JD exp yh J 2 qD2 ,� 4Ž . Ž . Ž .0

6Ž .

where

k2` z r4Ž .
I z s 7Ž . Ž .Ý0 2k!Ž .ks0

is the modified Bessel function. This is the distribu-
tion which is implemented in all the subsequent

™

< <calculations. It depends only on J and is centered
near JsD. Hereafter, the subscript B, denoting the
fragment angular momenta, is omitted for brevity.

3. Rotational and orientational CFs

The standard kinetic equation for describing rota-
tional motion of linear molecules reads as follows
w x40,50,51 :

™ ™™ ™ˆy1E r J ,V ,t sy i I J J V qz r J ,V ,tŽ .Ž . Ž .½ 5t B c

™ ™™ ™X X X<qz d J T J J r J ,V ,t . 8Ž .Ž .H Ž .c

™ Ž .Here J is the two-dimensional angular momentum
in the molecular frame, the Euler angles V specify
orientation of the molecular frame with respect to the

™Ž̂ .laboratory one, J V is the angular momentum op-
erator in the molecular frame, and z is the collisionc

frequency. To describe the collision dynamics we
w xchose the Keilson–Storer kernel 52 :

y1™™X 2<T J J s 2p I kT 1ygŽ .Ž . B eq

=
2

™ ™Xexp y Jyg Jž /½
2r 2 I kT 1yg , 9Ž .Ž .B eq 5

Ž .with T being the equilibrium rotational tempera-eq

ture of the buffer medium. It is evident that generally
T /T . The parameter y1FgF1 specifies theeq A

™™ ™ ™X XŽ < . Ž .collision process. When gs1, T J J ™d JyJ ,
Ž .the angular momentum is conserved, and Eq. 8
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reduces to the free rotor Liouville equation. Provided
that gs0, intermolecular interactions are so strong
that a single collision is enough to establish a Boltz-

™™ ™XŽ < . Ž .mann equilibrium distribution: T J J ™r Jeq

™ ™y1 2r J s 2p I kT exp yJ r 2 I kT .Ž . Ž .Ž . ½ 5eq B eq B eq

10Ž .

™™ ™ ™X XŽ < . Ž .By letting gsy1, one gets T J J ™d JqJ ,
so that the angular momentum is reversed due to a

Ž . Ž .collision. Eq. 8 with kernel 9 contains, as a
Ž . w xspecial case, the J-diffusion model gs0 40,50,53

Žand the rotational Fokker–Planck equation z ™c
Ž . . w x`,g™1, z 1yg ™n sconst 40,50,51,53 . Ifc J

0FgF1 the Keilson–Storer model interpolates
smoothly between these two models, and generalizes
the approaches to the description of the preferential
reorientation of the angular momentum in the course
of collisions. The Keilson–Storer kernel obeys the
detailed balance conditions

™™ ™ ™ ™ ™X X X< <T J J r J sT J J r J . 11Ž .Ž . Ž .Ž . Ž .eq eq

The requirement ensures relaxation of an arbitrary
Ž .initial distribution to the equilibrium one 10 . Ki-

Ž . Ž .netic Eq. 8 with the Keilson–Storer kernel 9 has
extensively been studied in the literature in case of

™Ž .an equilibrium initial conditions, i.e., r J,V ,ts0
™Ž . w xsr J 40,54,55 . However, the photogragmenta-eq

tion process manifests itself in the nonequilibrium
™ ™Ž . Ž . Ž .initial conditions 6 , i.e., r J,V ,ts0 sr J . To0

calculate the rotational and orientational CFs under
these nonequilibrium conditions is the goal of the
present section.

Ž .By simply multiplying Eq. 8 by J and J J ,a a b

one can immediately calculate the angular momen-
tum and rotational energy CFs:

™ ™ ™2² : ² :� 4J 0 J t sexp yn t J ,Ž . Ž . J

™2 2 y1² :J sD qh ; 12Ž .

™ ™ ™ ™2 2 2 2² : ² : ² : ² :� 4J t s J qexp yn t J y JŽ . eqž /E

13Ž .

™ ™ ™ ™2 2 2 2² : ² :² : � 4J 0 J t s J J qexp yn tŽ . Ž . eq E

=
™ ™ ™4 2 2² : ² :² :J y J J ,eqž /

14Ž .
™ ™4 y2 y1 2 4 2² : ² :J s2h q4h D qD , J s2 I kT ;eq B eq

n 'ty1 sz 1yg , n 'ty1 sz 1yg 2 .Ž . Ž .J J c E E c

15Ž .
So, the angular momentum and rotational energy
CFs exhibit simple exponential damping with the

Ž .decay times t and t 15 , identically as in case ofJ E
w xan equilibrium initial distribution 40 . So the charac-

teristic decay times are not sensitive to the mecha-
nism of the photofragmentation. Only the averaged

™

values of even moments of J do depend on h and
D. On the contrary, as it is demonstrated below,
OCFs are very sensitive to the peculiarities of the
dissociation process.

OCFs are defined as follows:

™ ™j jG t ' d J G J ,tŽ . Ž .Hk n k n

j
j j² :' D yV 0 D V t ,Ž . Ž .Ž . Ž .Ý k m m n

msyj

16Ž .
j Ž .where D V are the Wigner D-functions. Underm n

w xthe certain assumptions 18–35 , anisotropy of the
photoproduct emission is determined by the second
rank OCF:

™ ™2² :r t s2r5 P m 0 m tŽ . Ž . Ž .Ž .1 2

2
™ ™2 2 2s2r5 D ym G t D m ,Ž .Ž . Ž .Ý 0 k 1 k l l0 2

k , lsy2

17Ž .
™ ™with m and m being the unit vectors along the1 2

pump and probe transitions. On inserting definition
Ž . Ž .16 into Eq. 8 , one arrives at the following kinetic
equation for OCFs:

j
™ ™™ ™ ™j j j jE G J ,t syi J J G J ,t yz G J ,tŽ . Ž . Ž .Ýt k l k m ml c k l

msyj

™ ™™ ™X X j<qz HdJ T J J G J ,t , 18Ž .Ž .Ž .c k l

™j jG J ,ts0 s r J d . 19Ž . Ž .Ž .k l 0 k l
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Here

j j j (J "J sd j" l j. lq1 ,Ž . Ž .x ,k l y ,k l k , l .1

J j sd j ,y jFk ,lF j , 20Ž .z ,k l k l

are the matrix elements of the angular momentum
operators over the D-functions. Hereafter, dimen-
sionless variables are used throughout the article:
time is measured in units I rkT and angular( B eq

momenta in I kT . In these new variables( B eq

h' I T r 2T I ,Ž .A eq A B

™ ™y1 2r J ' 2p exp yJ r2 . 21Ž . Ž .Ž . Ž .eq

Ž . Ž .Eq. 18 with nonequilibrium distribution 19 can
Žeasily be solved analytically in the rarefied gas z sc

. Ž .0 and in the diffusive z 41 limit. In the formerc

case, one should merely average the free linear rotor
w xOCF 56

j
™j j jF J ,t s d ypr2 d pr2Ž . Ž .Ž . Ýk n k m m n

msyj

=exp yiw nyk y im Jt . 22Ž . Ž .� 4j

Ž . Žover the nonequilibrium distribution 6 see also
w x.Refs. 20–22 . The result reads

z s0´G j t sG j t d j ,Ž . Ž .c k l k k l

`2j jG t s d pr2 q Jd Jr JŽ . Ž . Ž .Ž . Hk 00 0
0

=

j
2jd pr2 cos m Jt . 23Ž . Ž . Ž .Ž .Ý m k

ms1

w xBy applying the projection operator technique 57,58
Ž .to Eq. 18 , one finds that in the diffusion limit the

wstandard small angle rotational diffusion 40,50–
x55,57,58 takes place, irrespectively of the particular

Ž .form of distribution 19 :

z 41´G j t sG j t d j ,Ž . Ž .c k l k k l

G j t sexp ytt j jq1 yk 2 . 24Ž . Ž . Ž .� 4Ž .k J

The result is quite obvious, since angular momenta
Ž .are quick variables in the diffusion limit t <1 .J

So, any anisotropic distribution over angular mo-
menta relaxes to a Boltzmann distribution on the
time scale characteristic of molecular reorientation

`
j jt ' d tG t , 25Ž . Ž .Hk k

0

because in the diffusion limit

y1j 2t s t j jq1 yk 41 . 26Ž . Ž .� 4Ž .k J

This expression is known as the Hubbard relation
w x39,40,50–55,57–59 . So, in the diffusion limit, all
the information concerning the photofragmentation
dynamics is lost.

We further restrict ourselves to the calculation of
™ ™the second rank OCF for m and m pointing along1 2

the axis of the linear photofragment, because such a
situation is of a considerable practical significance
w x20–36 . In this case

r t s2r5G2 t . 27Ž . Ž . Ž .00

Ž . 2 Ž .The solution of Eq. 18 for G t in case of an00

arbitrary collision frequency z is quite complicatedc
Ž .task see Appendix . The final result is however

rather simple and compact: the Fourier image of the
OCF can be calculated according to the following
three-term recurrence relations for coefficients b :m

`
2 2˜ � 4G v ' d texp yiv t G tŽ . Ž .H00 00

0

's 1q2 6 b riv , 28Ž .Ž .0

16 mq2Ž .
bmq 1

smq 1

8mq10 8mq6
y q qz bm m½ 5s smq 1 m

'4m 6 z zmq 1 m
q b sy y , 29Ž .my 1 ½ 5s 2 s sm mq1 m

where the explicit expressions for coefficients
Ž . Ž .s ,ß ,z are given by Eq. A13 and A15 . Them m m

˜2 Ž .calculation of G v from such recursive relations00
Žis very effective and rapidly convergent routine see

w x .Ref. 60 for general discussion . In order to get
2 Ž .G t in the time domain, the inverse Fourier trans-00

form must also be performed numerically. While
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Ž .equilibrium initial conditions 10 are assumed, z 'm
Ž .d , and recursive formulas 29 can be solved inm0

terms of a continued fraction. The result generalizes
w xthe approach developed by Sack 54 for the calcula-

tion of the first order OCF.

4. Results and discussion

In the present approach, the rotational motion of
fragments is governed by the following four parame-
ters: n , g , h, and D. The first two parametersJ

specify dynamics of collisions of fragments and
buffer species, and the last two parameters reflect the
photofragmentation dynamics. The time dependen-

2 Ž .cies of G t for various values of these parameters00

are presented in Figs. 1 and 2. The solid curves
correspond to the equilibrium ensemble of linear
rotors. Under the collision free conditions n <1J

Ž .and in case of the large applied torque D41 ,
Ž .OCFs 23 evidently reduce to

G1 t scos Dt , G2 t s 1q3cos 2 Dt r4 .Ž . Ž . Ž . Ž .Ž .00 00

30Ž .
These functions are periodic with the period II j s
2p : jD, js1,2. When D41, the short time behav-

Fig. 1. Time development of the second rank OCF, n s1. SolidJ
Ž .lines are used for hs0.5, Ds0 equilibrium conditions , dashed

lines for hs2, Ds0, dotted lines for hs2, Ds3. In the
vicinity of the point ts1.5, from top to bottom, the curves
correspond to g sy0.9, g s0, and g s1.

Fig. 2. Same as in Fig. 1 but for n s5.J

ior for OCFs is determined by the applied torque,
Ž .and peculiarities of the collision dynamics n ,g areJ

of minor importance, because it is no time for colli-
sions to completely destroy these oscillations. So, a
few characteristic periodic features are transparently

Ž 2 .seen in the dotted curves Ds3, II f1.05 . It
should be pointed out that the inverse proportionality
of the oscillation period II j and the OCF rank j is
accidental, because it holds true for js1,2 only. For
instance, when js3 and D41

G3 t s 5cos 3Dt q3cos Dt r8 . 31� 4Ž . Ž . Ž . Ž .00

Evidently, II 3 s2prD.
Additional angular momentum D manifests itself

˜2 Ž .characteristically in the OCF spectra, viz. G v00
Ž .possesses a pronounced far wing shoulder Fig. 3 .

In polar liquids, the very similar feature is a direct
consequence of the librational motion of a molecule
in the cage of its nearest neighbors, and the fre-
quency corresponding to this shoulder is a character-

w xistic librational frequency 40,61–64 . In our case, as
Ž . jit is evident from Eq. 30 , v f jD, js1,2. So,max

examining OCFs both in the time and frequency
domain allows one to estimate the additional angular
momentum D. However, the procedure must be
carried out with some caution. The point is that one
must be sure that D41. What is actually a criterion
for fulfilling this strong inequality, depends, among
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Fig. 3. Fourier spectrum of the second rank OCF, n s1. SolidJ
Ž .lines are used for hs0.5, Ds0 equilibrium conditions , dashed

Ž .lines for hs2, Ds0, dotted lines for hs2, Ds3. 1 stands
Ž . Ž .for g sy0.9, 2 for g s0, and 3 for g s1.

other things, on the collision dynamics. This state-
ment is immediately illustrated by Figs. 1–3. Indeed,

Žin case of gsy0.9 angular momentum reorienting
. Ž .collisions and gs0 strong collisions one observes

oscillations of the OCFs with the period II 2 sprD

Ž .Figs. 1 and 2 and maximums of the OCF spectra at
2 Ž . Žv s2 D Fig. 3 . However for gs1 weak colli-max

.sions the oscillation periods and maximums of spec-
Žtra are shifted from the values given above Figs.

.1–3 . To put it differently, if the transmitted torque
is not high enough, a complex interplay between
dissociation and relaxation results in more sophisti-
cated behavior for OCFs. So, one should actually
perform fitting of experimental and theoretical
curves, to be convinced that oscillations of OCFs are
indeed due to the transmitted angular momentum D.

While the primarily origin of the fragment rota-
Ž .tion is that of the parent molecules D<1 , orienta-

tional relaxation can considerably slow down: ac-
Ž .cording to Eq. 3 , the product angular momentum is

y1r2 Žscaled by the factor h the dimensionless quan-
Ž . Ž ..tity h' I T r 2T I is introduced in Eq. 21 .A eq A B

2 y1r2(² :For example, J sh . So, when the parent
molecules are considerably more massive than the

Ž .product ones I 4 I or when T 4T , the prod-A B eq A

uct angular momentum is quite small. This is the
reason of the orientational relaxation slowing down
Ž .compare solid and dotted curves in Figs. 1 and 2 .

w xBy the method described in Refs. 55,65 , starting
Ž .from Eq. A7 one can conveniently calculate the

first few terms of the Tailor expansion for OCF:

G j t s1y j jq1 1y2z t 2r2!Ž . Ž . Ž .00 1

w x 3q j jq1 n 1y2z 2qg t r3!Ž . Ž .J 1

qO t 4 32Ž . Ž .
y`-z s1r2y1r 4h yD2r4 F1r2 . 32XŽ . Ž .1

It is well known from the analysis of the orienta-
tional relaxation under equilibrium conditions that
the coefficient near t 2 in the Tailor expansion for
OCFs of colliding molecules coincides with that for
OCFs of free rotors, reflecting thereby that a molecule
rotates freely at a short enough time interval after a

w x 3collision 37–40 . The coefficient near t is com-
pletely determined by the angular momentum relax-

w xation frequency n 40,55 . Further, provided that nJ J

is fixed, the higher is the angular momentum reorien-
Ž .tation due to a collision the closer is g to y1 the

w xslower is orientational relaxation 55,65 . These ex-
Ž .pectations are certainly confirmed by Eq. 32 being

Žspecialized to equilibrium conditions hs1r2, Ds
.0, z s0 , see also Figs. 1 and 2, solid curves. When1

Ž .nonequilibrium initial conditions 6 are presumed,
the situation is very different. On explicitly rewriting

Ž .Eq. 32 as

G j t s1y j jq1 hy1 qD2 t 2 , 4qO t 3Ž . Ž . Ž .Ž .00

33Ž .

one sees that there exists no free rotor initial behav-
ior. However, the rank dependence of the term is
essentially the same as in case of a free rotor, so that

y1 2(the quantity h qD r2 can be regarded as theŽ .
effective photofragment temperature. When h in-

Ž .creases ‘rotational cooling’ orientational relaxation
slows down. When D increases the initial decay

Ž .hastens Figs. 1 and 2 . Further, by considering the
Ž .third term in Eq. 32 it is possible to infer the

Ž .following observations. In case of no torque Ds0
and h)1r2, one can state that the higher is the
angular momentum collisional reorientation, the

Žslower runs orientational relaxation Figs. 1 and 2,
.dotted lines . On the contrary, when the torque is
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high enough, the opposite situation occurs: the greater
Žis g the closer molecular rotation resembles the

. ŽFokker–Planck limit the greater is OCF Figs. 1 and
.2, dashed lines . For an ensemble of rotors under

Ž .equilibrium conditions hs1r2,Ds0,z s0 , the1
Ž w x.third and also the fourth 55 term in Tailor expan-

sion of OCF is essentially independent of the colli-
sion efficiency g . Summarizing, one can characterize
the short time behavior for OCF as a competition

Ž .between ‘reality’ intermolecular collisions and
Ž .‘memory’ dynamics of the photofragmentation . It

is remarkable and very helpful for practical applica-
tions that the peculiarities of the photofragmentation
manifest themselves markedly not only at a short but

Žalso at the long time behavior for OCFs compare
the corresponding solid, dotted, and dashed curves in

.Figs. 1 and 2 .
The long time behavior for OCFs transparently

manifests itself in the orientational relaxation times
Ž . jORTs t , because these quantities are defined ask

Žintegrals of OCFs over the entire time domain Eq.
Ž ..25 . In fact, ORTs can be regarded as anisotropy
dephasing times. It is a popular procedure to investi-
gate t j vs. the angular momentum relaxation time tk J
w x40,53,59 or, that is equivalent, vs. the angular
momentum relaxation frequency n 'ty1. For equi-J J

librium ensembles, it is a direct consequence of the
above analyses for OCFs that the less is g the more

j Ž .is t Fig. 4 . The distinction between ORTs corre-k

sponding to different g is more pronounced in the
dilute gas limit. Due to the universal Hubbard rela-

Ž .tions 26 , ORTs in the hindered rotation limit are
independent of g and completely determined by t J
Ž .Fig. 4 . A very similar behavior is established when
the bulk part of the fragment rotational excitation is

Ždue to the parent molecule rotation Fig. 4, dotted
. Ž .curves . In the dilute gas limit n F1 , these ORTsJ

are less than equilibrium ORTs. While n increases,J
Ž .the opposite behavior is observed Fig. 4 . So, high

enough values of ORTs in the hindered rotation limit
could be indicative not only of a substantial angular
momentum collisional reorientation, but also of ‘ro-
tational cooling’. When a substantial torque is im-
parted on the fragment, an inverse situation takes
place. The so calculated ORTs are greater than equi-
librium ORTs in the dilute gas limit. If n increases,J

the torque manifests itself in a considerable reduc-
Ž .tion of the ORT value Fig. 4 . When collisions do

Fig. 4. The second rank ORT vs. n . Solid lines are used forJ
Ž .hs0.5, Ds0 equilibrium conditions , dashed lines for hs2,

Ds0, dotted lines for hs2, Ds3. In the vicinity of the point
n s1, from top to bottom, the curves correspond to g sy0.9,J

g s0, and g s1.

Žnot reverse the photoproduct angular momentum g

. Ž .G0 and n ;1 intermediate densities ORTs areJ

tangibly less than their equilibrium counterparts.
Moreover, the ORTs values turn out to be signifi-
cantly less then the minimal values of ORTs under
equilibrium conditions, that correspond to the
Fokker–Planck limit of molecular collisions
w x40,55,66,67 . So, the photofragmentation consider-
ably expands the ‘corridor’ of the allowed values of
ORTs as compared with that for equilibrium condi-

w xtions 40,67 .
Now we shall try to apply the developed approach

to the interpretation of the experimental data of the
Hocstrasser’s group on dissociation of HgI in2

w xethanol for 270-nm pump and 490-nm probe 30,31 .
First, we fit the results of the equilibrium molecular
dynamics simulations for diatomic HgI at 300 K
Ž .t s1.5 ps . As it is described above, we choose ther

angular momentum relaxation frequency n s3.5 toJ

ensure the short time coincidence of the simulated
and calculated OCFs. After so doing, we vary g to
adjust the curves at latter times. The results are
depicted in Fig. 5, where gsy0.93 is seen to

Žprovide excellent coincidence of the OCFs all the
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Fig. 5. Comparison of the calculated and simulated anisotropy
Ž . Ž .decays for HgI. 1 for experimental measurements; 2 for equi-

librium molecular dynamics simulations at 300 K. Curves 3–6
Ž .correspond to hs0.5, Ds0, n s3.5. 3 stands for g sy0.999;J

Ž . Ž . Ž .4 for g sy0.93; 5 for g s0; 6 for g s1. Curves 7–10
Ž .correspond to hs0.5, Ds0, n s1. 7 stands for g sy0.99;J

Ž . Ž . Ž .8 for g sy0.9; 9 for g s0; 10 for g s1. Curves 1 and 2 are
w xtaken from Ref. 31 .

2 Ž . .calculated OCFs are scaled to yield G 0 s0.16 .00

This value of g corresponds to a considerable reori-
entation of the angular momentum due to a collision.
This fact is indicative of the quasilibrational charac-
ter of the molecular rotation in liquids, that is con-
firmed by a number of computer simulations, includ-

w xing those reported in 30,31 . It is very important for
the further analyses, that we were unable to perform
the above mentioned fitting procedure for HgI pro-
duced through the photofragmentation of HgI .2

While trying to fit experimental HgI anisotropy by
equilibrium Keilson–Storer OCFs, we can provide

Ž .the short time at tF1 resembles of the curves
Ž .n s1 , but further we evidently fail to achieve a fitJ

of theoretical and experimental curves by varying g

Ž .Fig. 5 . It is our opinion, that this is an indication of
the fact that photoproducts retain their memory of
the initially nonequilibrium distribution over angular
momenta, despite of quite frequent collisions with
buffer spices. To confirm this observation, we at-
tempted to adjust experimental anisotropies by
nonequilibrium Keilson–Storer OCFs. For the exper-

w ximent described in 30,31 one should assume that
T sT , so that the dimensionless parameter h iseq A

entirely determined by the ratio of the parent and

Fig. 6. Comparison of the calculated and experimental anisotropy
Ž . Ž .decays for HgI. 1 for experimental measurements; 2 for equi-

librium molecular dynamics simulations at 300 K. Curves 3–5
Ž . Ž .correspond to n s3.5, Ds1.4; 3 g sy0.99, 4 g sy0.9,J

Ž . w x5 g s1. Curves 1 and 2 are taken from Ref. 31 .

Ž .product moments of inertia: hs1729r 2=529 s
1.63. In a trial to fit the experimental anisotropy one
is allowed to vary n , g and D. The results of thisJ

procedure are depicted in Figs. 6 and 7. By taking
Ž .n s3.5 as in the case of equilibrium conditionsJ

experimental anisotropies are fitted reasonably well
Ž .by gsy0.99, Ds1.4 Fig. 6 . However, a better

Ž .fit one gets for n s8, gsy0.99, Ds2 Fig. 7 .J

Note that the measured anisotropy exhibits a small
scale oscillations that originate from the vibrational
modulation of the interatomic length. These oscilla-

Fig. 7. Same as in Fig. 6 but for n s8, Ds2.J
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tions certainly can not be reproduced within the
assumption that the fragment is a rigid body. Such a
large scale scatter of parameters n and D is ex-J

. Ž .plained by formulas 32 and 33 . A simultaneous
increase of n and D does not result in alternationsJ

of the short time decay for the OCF. So the fitting
procedure should be carried out more carefully.
Nonetheless, a high degree of the angular momentum
reorientation should be stressed, because it is the
same for both sets of fitting parameters. Note that the
values of parameters h and D, that are used here to

w xadjust the experimental results 30,31 , differ
w xmarkedly from those determined in 22 for the same

reaction under collisionless conditions. Evident ex-
planations for this discrepancy are as follows. First,

w xnonequilibrium distribution 17 is distinguished from
GaussŽ . �ŽŽ .the shifted Gaussian r J ; exp J y J r0 0

.24 w xD used in 22 , where J and D were taken asJ 0 J

high as 80 and 90, respectively. Second, the influ-
ence of the surrounding molecules can show itself in
a significant alternation of the parameters. Third, and
by all means the most important reason is that the

w xauthors of paper 22 performed averaging of the free
Ž . ` Ž .rotor OCF 22 either over H Jd Jr J . . . or over0 eq

` GaussŽ . Ž . GaussŽ .H d Jr J . . . Both Jr J and r J reach0 0 eq 0

their maxima at some J /0, that allows one tomax
w xreproduce the observed anisotropy deep 22 . So J ,0

that is the analogue of our D, can not be regarded as
the transferred angular momentum, because just the
same behavior for the anisotropy decay can be mod-

Ž .eled by an equilibrium distribution Jr J , i.e.,eq

with J '0. According to the present analyses, the0
` Ž .averaging should be done over H Jd Jr J . . . It is0 0

in this case D can be considered as the transmitted
angular momentum.

The results of the comparison of the present
theory and computer simulations of the reaction Iy

3
y w xqhn™ I q I in ethanol at 295 K 34 are presented2

in Fig. 8. In this case T sT , t s1.5 ps, andeq A r

h'2. The equilibrium OCF for Iy is satisfactory2

fitted by the equilibrium Keilson–Storer OCF with
n s10.3, gsy0.96. The behavior for the iodineJ

ion OCF after the photofragmentation is reasonably
well adjusted by the curve corresponding to the same
collision parameters n s10.3, gsy0.96, and theJ

acquired angular momentum Ds1.7. So, one can
conclude that the collision dynamics is relatively

Ž .insensitive to the photofragmentation n ,g , whileJ

Fig. 8. Comparison of the calculated and simulated anisotropy
y Ž . y Ž . ydecays for I . 1 I equilibrated in ethanol at 295 K; 2 I in2 2 2

ethanol following Iy photodissociation. Curves 3–7 correspond3
Ž . Ž . Ž .to n s10.3, hs1r2, Ds0. 3 g sy0.99; 4 g sy0.96; 5J

Ž . Ž .g sy0.8; 6 g s0; 7 g s1. Curves 8–11 correspond to
Ž . Ž . Ž .n s10.3, hs2, g sy0.96. 8 Ds0; 9 Ds1.7; 10 Ds3,J

Ž . w x11 Ds4. Curves 1 and 2 are taken from Ref. 34 .

the latter manifests itself through the nonequilibrium
Ž . w xinitial conditions h and D . In Fig. 1 of paper 34 ,

the time relaxation of the rotational energy is de-
picted. The dependence was found to be nearly time
independent, that was indicative of
™ ™2 2² : ² :J f J , 34Ž .eq

Ž Ž ..see Eq. 13 . It is a direct consequence of the
Ž .present analyses, that the requirement 34 is not a

manifestation of the fact that Iy is produced with an2

equilibrium distribution. Indeed, by invoking explicit
Ž . Ž .formulas 14 , one finds that Eq. 34 is obeyed for

2 y1 ŽD f2yh . It is only in the case hs1r2 I sA
. Ž .I , in fact, no dissociation takes place Eq. 34B

Ž .results in Ds0. Otherwise, Eq. 34 predicts D/0.
For hs2, one obtains Ds1.2. This is in the order
of magnitude in a correspondence with the value of
D used for the fitting of the simulated OCFs.

Of course, we can not definitely ascertain that the
dynamic parameters n , g and D listed above are theJ

‘actual’ parameters for the HgI qhn™HgIq I and2

Iyqhn™ Iyq I reactions. However, the main find-3 2
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ing of the present work is that the photoproduct
anisotropy decay in collisional environments does
contain information both of the photofragmentation
and collision dynamics, which can be extracted by an
appropriate theoretical analysis.

In this paper, no attempt was made to fit
anisotropies of CO fragments produced through pho-

w xtodissociation from heme 23–25 , since external
confining potentials contribute significantly into the
fragment dynamics and result in an appreciable retar-
dation of the fragment reorientation. We merely
would like to point out that, in principle, a consider-
able slowing down of the fragment rotation can have

Ž .not only a static origin confining potentials , but
Ž Ž ..also a dynamic origin I 4 I , see Eq. 3 .A B

5. Conclusion

In this paper, a simple approach is developed for
the investigation of the photofragment anisotropy
decay. The approach treats the photofragmentation as
an instantaneous process, which produces photo-
products with a nonequilibrium rotational distribu-
tion which father relaxes to an equilibrium due to
collisions of fragments with buffer species. The the-

Ž .ory presented here can and should be further im-
proved to a more realistic description of the

Žphotofragmentation dynamics predissociation, cage
.effects and of the fragment rotational dynamics

Ž .non-Markovian effects . However, the main result
of the present analyses can be formulated as follows.
The time evolution of the photoproduct anisotropy is
very sensitive both to the collision and photofrag-
mentation dynamics. This is pertain not only to the
short time behavior for the anisotropy, but also for
its long time decay.
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Appendix A

Ž .In order to solve Eq. 17 subjected to initial
Ž .condition 18 , it is convenient to introduce the

Fourier transformed function

`
™ ™ ™

™ ™j 2 jH u ,t sexp u r2 d Jexp yiuJ G J ,t ,� 4 � 4Ž . Ž .Hk l k l
y`

A1Ž .

Ž w x.compare with 54,55,65 . Evidently,

G j t 'H j 0,t . A2Ž . Ž . Ž .k l k l

Ž .On taking the Fourier transformation of Eq. 17 , one
gets

j
™

™ ™ ™j j j
™E H u ,t s E yu J H u ,tŽ . Ž .Ž .Ýt k l u k m lm

msyj

™ ™j jyz H u ,t qz H g u ,t . A3Ž . Ž .Ž .c k l c k l

The initial condition for this equation reads

™j 2 jH u ,0 sexp 2hy1 u r4h J uD d ,� 4Ž . Ž . Ž .k l 0 k l

A4Ž .

Ž . Ž . Ž .where J z s I i z is the Bessel function. Eq. A4o o

evidently depends only upon the magnitude of vector
™u, but not upon its direction. Keeping this fact in
mind, it is convenient to introduce the polar coordi-
nates

u sucosw , u susinw . A5Ž .x u y u

After so doing, one can immediately verify that

™j j jH u ,t sexp yiw ky l h u ,t ,h u ,t� 4Ž . Ž . Ž . Ž .k l u k l k l

'h j u ,t , A6Ž . Ž .ykyl

Ž Ž .to establish these identities, the explicit form 19 of
.the matrix elements over D-functions was used . On

Ž . Ž .inserting A6 into A3 , one finds

jE h u ,t s l k E q 1" ky lŽ . Ž . Ž .ŽÝt k l " u
"

ruyu h j u ,t yz h j u ,tŽ . Ž .. k "1, l c k l

qz h j g u ,t , A7Ž . Ž .c k l

(l k s j.k j"kq1 ,Ž . Ž . Ž ."

™j j j jh u ,0 'H u ,0 , G t 'h 0,t . A8Ž . Ž . Ž . Ž . Ž .k l k l k l k l
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Ž .On taking the Fourier transformation of Eq. A7
over the time variable, one arrives at the equivalent
equation

j ˜ jyh u ,0 q iv h u ,vŽ . Ž .k l k l

s l k E q 1" ky lŽ . Ž .ŽÝ " u
"

˜ j ˜ jruyu h u ,v yz h u ,vŽ . Ž .. k "1, l c k l

˜ jqz h g u ,v , A9Ž . Ž .c k l

where

`
j j˜ � 4h u ,v ' d texp yiv t h u ,t . A10Ž . Ž . Ž .Hk l k l

0

˜2 ˜2Ž . Ž . Ž .In order to solve Eq. A9 for h 0,v 'G v ,00 00

one should put ls0 and seek for the solution in the
following form:

`

2 2 mh̃ u ,v s a u rm! ,Ž . Ý00 m
ms0

`

2 2 mq1 2˜ ˜h u ,v s b u rm!,h u ,vŽ . Ž .Ý10 m 00
ms0

`

2 ms c u rm! . A11Ž .Ý m
ms0

Further, one should note that

h2 u ,0 sd 2 exp 2hy1 u2r4h J uD� 4Ž . Ž . Ž .k 0 k 0 0

`

2 2 nsd z u rn! ,Ýk 0 n
ns0

n
lnyl 2z s 2hy1 r4h yD r4Ž . Ž .Ýn

ls0

=
n!

. A12Ž .2l! ny l !Ž . Ž .
Ž .Actually, better by far is to use, instead of Eq. A12 ,

the recursive formulas

8a nq4ayb z y4a 2zŽ . n ny1
z s , z s1,nq1 024 nq1Ž .
z saybr4,1

a'1r2y1r 4h ,bsD2 . A13Ž . Ž .
Ž .Eq. 13 are immediately derivable from the differen-

Ž .tial equation for the Bessel function J x . Now oneo

Ž . Ž .can insert Eq. A11 into A9 to get the following
system for coefficients a , b , c :m m m

'yz s 6 2 mq1 b ymb ys a ,� 4Ž .m m my1 m m

' � 40s 6 r2 2 a ya q2 mq2Ž .Ž . mq 1 m

4r mq1 c yc yß b ,Ž . mq 1 m m m

0s2mb ymb ys c . A14Ž .m my1 m m

Here

s ' ivqz 1yg 2 m , ß ' ivqz 1yg 2 mq1 .Ž . Ž .m c m c

A15Ž .

By excluding a , c from this system, one ob-m m
Ž .tains Eq. 28 . By utilizing the procedure described

˜ jŽ . Ž .above, one can also solve Eq. A9 for h 0,v 'k k
˜ j Ž .G v with an arbitrary j and k.k k
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