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Abstract
It was recently discovered that strongly localized eigenstates of a
static electric field exist not only in disordered metal/dielectric
composites [1], but also in small clusters of regular metallic
inclusions embedded in an otherwise uniform dielectric host [2].
Applying these states to a non-static electromagnetic (EM) field
in the quasi-static limit, it was found that the field can be
restricted to have a large amplitude in spatial regions whose
linear size is much smaller than the wavelength. This
ultra-localization of an EM field (actually, the field is mostly
electric—the magnetic field cannot build up a large amplitude
over such a small region of space) is achieved with the help of
surface plasmons in the metallic inclusions: These plasmons
screen the electric field, essentially cancelling it outside the
volume of the quasi-static eigenstate. This phenomenon has been
proposed as the basis for a SPASER device, namely, “surface
plasmon amplification by stimulated emission of radiation”, which
would be a source of strong, coherent EM radiation with a size
that can be much smaller than the wavelength [3].
In this report we will present results for such states which go
beyond the quasi-static approximation. That is necessary in order
to analyze the radiative properties of those states, e.g., the
radiative losses. It is also needed in order to study such states in
the case where the metallic inclusions are not much smaller than
the EM skin depth.
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INTRODUCTION

• “Quasistatic resonances”, also known as

“surface plasmon resonances”, can

sometimes be localized in an extremely

small volume of space.

• Such resonances, if they can be accessed

and/or excited, have the capability of

removing the lower bound restriction on

spatial size of ac electric field. This can

lead to the development of

electromagnetic nano-probes and

SPASERS (surface plasmon amplification

by stimulated emission of radiation).

• The lifetime of these resonances arises

from two different physical phenomena:

(a) Intrinsic dissipation due to imaginary

part of the electric permittivity of the

metal spheres. (b) Radiation losses due to

electromagnetic radiation—this is

neglected in the leading order quasi-static

treatment, but becomes important in

higher order corrections, even when

ka << 1 (a is the linear size of the

resonance).



Quasi-static Resonances
in Two-Constituent Composite Media

• States where a non-zero electric potential

field ϕn(r) can be found in the composite

even though no external field or potential

difference is applied to the system. Such

states can only occur for special negative

values of the electric permittivity ratio

ε1/ε2.

• Example - dipole resonance in a spherical

inclusion:

R

ε

ε2

1

E

The induced dipole moment is

R3 ε1 − ε2

ε1 + 2ε2

The resonance occurs when ε1/ε2 = −2.

• Similar resonances occur for induced

higher multipole moments in a spherical

inclusion.
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First introduced (Bergman 1977) as a basis

for expanding the electric potential φ(r) in a

real composite subject to an external or

volume averaged electric field of amplitude 1

along z, namely ez

φ(r) = z +
∑

n

sn〈ϕn|z〉
s− sn

ϕn(r),

where

s ≡ ε2

ε2 − ε1
,

sn ∈ [0, 1) correspond to the “special (negative,

real) values” (eigenvalues) of ε1/ε2, and

− ε2

sn
〈ϕn|z〉∗ = − ε2

sn
〈z|ϕn〉 = − ε2

snV

∫
dV θ1

∂ϕn

∂z

=
ε2

V

∫
dV


1− θ1

sn


 ∂ϕn

∂z
=

1

Axy

∫

z=const
dxdyDz =

Qn

Axy
.

The last integral will vanish unless ϕn(r)

extends across the entire system all the way

from z = 0 to z = Lz.



• In a periodic microstructure, all the

resonances are Bloch functions, i.e.,

delocalized. However, all the q 6= 0

functions are “dark states” with 〈ϕn|z〉 = 0.

Only the q = 0 functions are “luminous

states” with 〈ϕn|z〉 6= 0.

• In a disordered microstructure the

situation is more complicated:

Ln = “localization length”

fn ≡ V1

V
|〈ϕn|z〉|2 = “oscillator strength”

of the normalized eigenstate ϕn

1− εe

ε2
=

∑

n

fn

s− sn

0 ≤ sn = real < 1;
∑

n
fn = 1



• The actual SP frequencies Ωn satisfy

s(Ωn) = sn and are complex: Ωn = ωn − iγn.

• For weak relaxation, γn ¿ ωn, one finds

that ωn satisfies an equation Re[s(ωn)] = sn

and that
1

τn
= γn =

Im[s(ωn)]

s′n
, s′n ≡

dRe[s(ω)]

dω

∣∣∣∣∣∣∣
ω=ωn

• Assume a flat, V-shaped inclusion of

metallic Ag embedded in a conventional

dielectric host with εh = 6.6:
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• Physical size of the inclusion is ∼ 100 nm.

• Quasi-static regime is in effect when

retardation is unimportant. This happens

when all microstructural sizes are much

smaller than the wavelength and/or skin

depth.



Interaction of Surface Plasmon (SP)
Field with Matter

See Landau & Lifshitz, Electrodynamics of

Continuous Media:

H =
1

4πT

∫ ∞
−∞

dω

2π

∫
d3r

d[ωε(r, ω)]

dω
E(r, ω) E(r,−ω)

Quantization of SP electric field:

φ(r, t) =
∑

n

√√√√√√
2πh̄ sn

εhs′n
ϕn(r)e−γnt

[
ane

−iωnt+ a†ne
iωnt

]

The Einstein coefficient for stimulated

emission to the state ϕn is given by

An =
4π

3h̄

sn

s′n

|d10|2 pnqn

εhγn

Here d10 is the matrix element for a dipole

transition between two states of an excited

element, e.g., a Quantum Dot. pn is a spatial

overlap factor of the population inversion and

eigenmode intensity,

pn =
∫
[∇ϕn(r)]2[ρ1(r)− ρ0(r)]d

3r

qn is a spectral overlap factor

qn =
∫

F (ω)
[
1 + (ω − ωn)2/γ2

n

]−1
dω

where F (ω) is the normalized-to-1 spectrum

of dipole transitions in the active medium,

close to its fluorescence peak. The Einstein

spontaneous emission coefficient Bn is similar

to An, but the excited state population ρ1

replaces the population inversion ρ1 − ρ0 in

the expression for pn.



The rate equation for the number of surface

plasmons (SP) in the state ϕn is

dNn

dt
= (An − γn) Nn + Bn

The net dimensionless gain is

αn =
An − γn

γn



��n�1.15 eV

�n�12., fn�5.E�3

30

x
30

z

5.E7

En
�0�

�
V
����
m
�

30

x

 

��n�1.18 eV

�n�11., fn�3.E�12

30

x
30

z

7.E7

En
�0�

�
V
����
m
�

30

x

 

��n�1.63 eV

�n�5.7, fn�7.E�14

30

x
30

z

5.E7

En
�0�

�
V
����
m
�

30

x

 

��n�1.56 eV

�n�5.3, fn�1.E�3

30

x
30

z

1.E8

En
�0�

�
V
����
m
�

30

x

 
 
 

(a) (b) 

(c) (d) 

E
n 

(V
/m

) 

E
n 

(V
/m

) 

E
n 

(V
/m

) 

E
n 

(V
/m

) 

310512

eV 15.1
−×==

=

nn

n

,  f�

ω�
1210311

eV 18.1
−×==

=

nn

n

,  f�

ω�

141077.5

eV 63.1
−×==

=

nn

n

,  f�

ω�

 

31013.5

eV 56.1
−×==

=

nn

n

,  f�

ω�

 

x  z x  z

x  z x  z

αn is the enhancement factor due to

stimulated emission of surface plasmons.

fn is the “oscillator strength”, proportional to

the electric dipole moment of the resonance.



CLUSTERS OF NANOSPHERES

• Such clusters, when properly constructed,

have very small quasistatic resonances.

• Can be used to construct an

electromagnetic nano-lens or nano-probe.

• Can perhaps be fabricated by exploiting

forces between nanospheres induced by

placing them in an external static electric

field.



Two-sphere Eigenstates

Note: Instead of cm we could have written µm !!

Note that the resonance at the bottom is well

separated, in frequency, from its nearest

neighbor.



Three-sphere Eigenstates



Scattering Resonances
in Two-Constituent Composite Media

• We assume µ = 1 everywhere, but ε = ε1 or

ε = ε2, depending on the constituent.

• We also assume that ε2 is real and

positive, and that the ε1 material fills up a

limited region in space—all the rest is ε2

material. Nothing is assumed regarding

ε1, which can be either positive or

negative or complex.

• Scattering resonances are monochromatic

eigenstates of the wave equation for

E(r, t) ≡ E(r)e−iωt which are outgoing waves

only:

−∇ × (∇× E) + k2E = uk2θ1E

k2 ≡ ε2
ω2

c2
> 0

The eigenvalue u ≡ 1− ε1

ε2
is usually complex

θ1(r) =





1 for r inside ε1 material

0 for r inside ε2 material



Eigenstates of isolated sphere

TE states: E
(M)
lmn(r) = f

(M)
ln (r)Xlm(Ω),

TM states: E
(E)
lmn(r) = i

k[1−u
(E)
ln θ(a−r)]

[∇× f
(E)
ln (r)Xlm(Ω)],

where

Xlm(Ω) ≡ LYlm(Ω)

l(l + 1)
; L ≡ r×∇

is a vector spherical harmonic, n is a “radial

quantum number”, and f
(M)
ln (r), f

(E)
ln (r) are the

radial eigenfunctions. The radial functions

have the following form for both cases F = M

and F = E:

f
(F )
ln (r) =





A
(F )
ln jl[kr(1− u

(F )
ln )1/2] for r < a,

B
(F )
ln h

(1)
l (kr) for r > a,

where jl and h
(1)
l are spherical Bessel

functions. The eigenvalues u
(F )
ln , as well as the

coefficients A
(F )
ln , B

(F )
ln , are determined by

continuity conditions at r = a. Note that

θ(a− r) is the usual one-dimensional step

function for the radial coordinate with origin

at the sphere center.



Equations for the eigenvalues

x
(F )
ln ≡ ka

(
1− u

(F )
ln

)1/2
,

xjl−1(x)

jl(x)

∣∣∣∣∣∣∣
x=x

(M)
ln

=
xh

(1)
l−1(x)

h
(1)
l (x)

∣∣∣∣∣∣∣∣
x=ka

,



jl−1(x)

xjl(x)
− l

x2



x=x

(E)
ln

=



h

(1)
l−1(x)

xh
(1)
l (x)

− l

x2



x=ka

.

When ka ¿ 1, we get:

u
(M)
ln ≈

(
xl−1,n

ka

)2
+ i 2(ka)2l−1

[(2l−1)!!]2
l ≥ 1; n ≥ 1,

u
(E)
ln=0 ≈ 2l+1

l + i(l+1)(ka)2l+1

[l(2l−1)!!]2
l ≥ 1,

u
(E)
ln ≈ −

(
xl,n

ka

)2
+ i 2(ka)2l+1

[l(2l−1)!!]2
l ≥ 1; n ≥ 1.

Here xl,n, n = 1, 2 . . . are the zeros of jl(x).

Note that when ka → 0, the only eigenstates

which survive are E
(E)
lmn=0, which become the

quasi-static or surface plasmon resonances.

All the other eigenstates have eigenvalues u
(F )
ln

that tend to ±∞—they cannot be approached

by the value of u ≡ 1− ε1/ε2 in any real

composite medium.



The physical meaning of Im(u
(F )
ln )

Since we assumed that ε2 is real and positive,

a nonzero value for Im(u
(F )
ln ) entails a nonzero

value for Im(ε1) = −ε2Im(u
(F )
ln ) which has the

wrong sign !!

This is due to the fact that the eigenstate

radiates EM waves, therefore the sphere must

generate (create) energy at a rate that

compensates for the radiative losses, in order

for the field to be an eigenfunction with a

strictly periodic dependence on t. Thus,

Im(ε1) is proportional to the rate of energy

loss by radiation, while Re(ε1) is proportional

to the energy stored by the electric field

inside the sphere. Therefore, the radiative

lifetime of the eigenstate τ
(F )
ln ) is given by

1

ωτ
(F )
ln

=

∣∣∣∣∣∣∣∣

Im(u
(F )
ln )

Re(u
(F )
ln − 1)

∣∣∣∣∣∣∣∣
.



Similar considerations show that the

dissipative lifetime, due to generation of

Joule heat by the field in the actual physical

composite, is given by

1

ωτdiss
=

∣∣∣∣∣∣∣

Im(ε1)

Re(ε1)

∣∣∣∣∣∣∣

if the size of the metal particle is much less

than the exponential decay length in it.

The total resultant lifetime τ of the excited

resonance state is given by

1

τ
=

1

τ
(F )
ln

+
1

τdiss
.

It is useful to have quantitative estimates of

both terms in this expression.



Lifetime of an electric field
around an isolated sphere

Using the measured values of Re(ε) and Im(ε)

for metallic silver at h̄ω = 1.14 eV or

λ = 1.07 µm, we get

1

ωτdiss
≈ 0.01; τdiss ≈ 60 fs.

A comparable value for 1/(ωτ
(E)
l=1,n=0) is

obtained when ka = 0.22. This would require a

sphere radius of a = 37 nm, which is somewhat

larger than the exponential decay length

(skin depth) in metallic silver δ ≈ 22 nm..



A more comfortable sphere radius is obtained

if we consider a quasi-static quadrupole

eigenstate. In order to get a comparable

value for 1/(ωτ
(E)
l=2,n=0) we then need to have

ka = 0.71. This would require a sphere radius

of a = 120 nm. Since this is considerably

greater than the decay length, the dissipative

lifetime will be smaller than the previous

estimate by a factor of order δ/a (because the

Joule heat is generated only in a surface layer

of the sphere whose area is ≈ 4πa2 and

thickness is ≈ δ, while the energy is stored

also in a volume of the surrounding material

of order a3). Therefore we expect

1

ωτdiss
≈ 0.002.

Thus, for a silver sphere of radius a = 120 nm

and an l = 2 quasi-static eigenstate, the

radiative lifetime of 60 fs at λ = 1.07 µm

(ν ≈ 3× 1014 Hz), is about 5 times shorter than

the dissipative lifetime, but 20 times longer

than the period of the oscillating field.



Cluster of spheres

Of course, in order to have a strongly

localized quasi-static eigenstate, we need to

use not a single sphere, but a small cluster of

spheres, with sizes and spacings chosen

appropriately. The real part of the cluster

eigenvalue will then be quite different from

any of those of the isolated spheres, due to

the non-weak electrical interactions between

different spheres. However, as long as ka ¿ 1,

the imaginary part of the cluster eigenvalue

will be approximately given by a weighted

average of the isolated sphere values. The

weights are determined by the expansion

coefficients of the cluster eigenstate in terms

of the isolated sphere eigenstates, and these

can be either positive or negative.



The importance of symmetry

If the cluster has the symmetry of reflection

through a point, which we can take to be the

origin, then every eigenstate has a definite

parity. Even eigenstates will have a vanishing

dipole moment, i.e., the l = 1 (dipolar)

eigenstates of the isolated spheres will make

cancelling contributions to the overall dipole

moment. In this case the relatively large

dipolar contributions to the imaginary part of

the cluster eigenvalue will also cancel. The

contributions from higher multipole states

are much smaller, as shown by our

calculation of the quadrupole contribution.



SUMMARY and CONCLUSIONS

• The radiative lifetime of scattering

eigenstates of an isolated sphere was

discussed, particularly for the most

interesting case of the nearly quasi-static

eigenstates in the case of a very small

sphere with a ¿ λ.

• For a cluster of spheres, it is important

that the microgeometry have reflection

symmetry through a point in order to

allow even eigenstates with vanishing

electric dipole moment and much longer

radiative lifetime.

• A radiative lifetime that is comparable to

the dissipative lifetime is achievable in the

l = 2 resonance of an Ag metal sphere of

radius 0.037 µm at a light wavelength of

1.07 µm in vacuum. The total lifetime is

then about 10 times greater than the

period 1/ν of the oscillating EM field.

• For an Ag metal sphere of radius 0.12 µm,

the lifetime of that state is mainly due to

radiative losses and is about 20 times

greater than the period of the oscillating

field.




