Exciton transfer in the optical cycle of α -PTCDA

R. Scholz^a, A. Yu Kobitski^b, I. Vragovic^d, H.P. Wagner^C, D.R.T. Zahn^a, **M. Schreiber**^a

^aInstitut für Physik, Technische Universität Chemnitz ^bAbteilung Biophysik, Universität Ulm ^cDepartment of Physics, University of Cincinnati ^dDepartamento de Fisica Aplicada, Universidad de Alicante

TECHNISCHE UNIVERSITÄT CHEMNITZ

CoPhen04, Dresden, 16 June 2004

PTCDA

3,4,9,10,-Perylene TetraCarboxylic DiAnhydride (C₂₄H₈O₆)

CoPhen04, Dresden, 16 June 2004

Outline

- Motivation: Material, experimental techniques
- Photoluminescence: Early results
- Time-resolved PL results on α -PTCDA single crystals
- Theoretical calculations of excitons in α -PTCDA crystals
 - Monomer: relaxed excited state, resonant Raman
 - Frenkel excitons: absorption, low-temperature PL
 - Time-dependent DFT for molecular dimers:
 - red shift in crystalline phase, slow PL channels
 - Configuration interaction of singles (CIS), Møller-Plesset (MP2) self-trapping of excimer along stack direction

Summary

CoPhen04, Dresden, 16 June 2004

Motivation

PTCDA

prototypic organic material short stacking distance (3.21 Å) large *π*-overlap between stack neighbours grows on most substrates in rather *well-ordered* films absorbs *in the visible* high mobility for organic semiconductors (1 cm²V⁻¹s⁻¹)

- Time-resolved photoluminescence information about *relaxed excited states complementary information* with respect to absorption *thermalization and relaxation* of excitons *PL quenching*: non-radiative recombination channels
- Theory microscopic understanding of energetics and decay times

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

PTCDA crystal structure

3,4,9,10,-Perylene TetraCarboxylic DiAnhydride (C₂₄H₈O₆)

- **Monoclinic structure** \succ
- C_{2h} symmetry space group \geq
- 2 molecules per unit cell \geq
- **α- and** β phases \geq

CoPhen04. Dresden. 16 June 2004

Photoluminescence: Early results

U. Gómez, M. Leonhardt, H. Port, and H.C. Wolf, Chem. Phys. Lett. **268**, 1 (1997) A.Yu. Kobitski, G. Salvan, H.P. Wagner, D.R.T. Zahn, Appl.Surf.Sci. **175-76**, 363 (2001)

Interpretation: R. Scholz, I. Vragović, A.Yu.Kobitiski, G. Salvan, T.U. Kampen, MS, D.R.T.Zahn, Proc. of Int. School of Physics *E. Fermi*, course CXLIX (2001): *Organic nanostructures: Science and applications*, ed. by V.M. Agranovich and G.C. La Rocca

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Experimental set-up

for time-resolved photoluminescence at different temperatures

CoPhen04, Dresden, 16 June 2004

PL components at low temperature

- τ_m is due to *Frenkel excitons* [R. Scholz, et al., phys. stat. sol. (b) **234**, 402 (2002)]
- τ_s is related to *anion-cation pairs* and *excimers* [R.Scholz et al., ICPS26]
- higher temperatures: distinction between three slow PL channels

CoPhen04, Dresden, 16 June 2004

PL spectra at higher temperatures

CoPhen04, Dresden, 16 June 2004

Exciton kinetics: decay times

CoPhen04, Dresden, 16 June 2004

PL recombination scenario in PTCDA

Strategy for microscopic models

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Theory: Monomer

- geometry in relaxed excited state
- linear absorption, resonant Raman

CoPhen04, Dresden, 16 June 2004

Displaced Harmonic Oscillator

Reorganization energy: $\lambda = |\alpha|^2 \hbar \omega = \frac{m\omega^2}{2} q_0^2$

$$\begin{split} H_g = & \frac{p^2}{2m} + \frac{m\omega^2}{2}q^2 \\ H_e = & \frac{p^2}{2m} + \frac{m\omega^2}{2}(q-q_0)^2 \end{split}$$

Transition probability:

$$P(|0_g\rangle \to |n_e\rangle) = P(|0_e\rangle \to |n_g\rangle) = e^{-|\alpha|^2} \frac{(|\alpha|^2)^n}{n!}$$
 Poisson

Stokes Raman: $\sigma_R(E_L) \propto \alpha^2 (\hbar \omega)^2 [1 + n_{th} (\hbar \omega, k_B T)]$

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Geometry of relaxed excited state

Density functional:

Perdew-Burke-Ernzerhof, gradient corrected

Variational basis:

minimal basis of compressed Slater orbitals "Density-Functional Tight-Binding, DFTB" T. Frauenheim. G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, R. Scholz, phys. stat. sol (b) **217**, 41 (2000)

Short-range repulsive energy semi-empirical: correct slope for bond length of diamond, C_6H_6 curvature: C-C stretching mode frequencies of C_6H_6

keep *n_{HOMO}=n_{LUMO}=1* fixed

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

OPTICAL PROPERTIES, RESONANT RAMAN

HOMO-LUMO transition \Rightarrow deformation \Rightarrow elongation A_g modes

CoPhen04, Dresden, 16 June 2004

CoPhen04, Dresden, 16 June 2004

Scaling of internal deformation

PTCDA dissolved in dimethyl sulfoxide: $\epsilon(0) = 46$, $\epsilon(\hbar\omega = 0.17 \text{ eV})$ unknown scaling: $\alpha_{\text{eff}}^2 = 1.18 \rightarrow \alpha_{\text{eff}}^2 = 0.76$

broadening: $FWHM = 850 \text{ cm}^{-1}$

PTCDA in quartz glass matrix (H. Fröb): $\epsilon(0) = 3.9, \quad \epsilon(\hbar\omega = 0.17 \text{ eV}) = 1$ no scaling: $\alpha_{\text{eff}}^2 = 1.18$ as calculated

broadening: FWHM = 1500 cm^{-1}

PTCDA crystal:
$$\epsilon_{\parallel}(0) = \epsilon_{\parallel}(\hbar\omega = 0.17 \text{ eV}) = 4.07$$

 $\Rightarrow \text{ assume } \alpha_{\text{eff}}^2 = 1.0$

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Strategy for microscopic models

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Microscopic models for exciton transfer

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Model Hamiltonian

$$H = \sum_{i\alpha\nu} \Delta_{\nu} b^{+}_{i\alpha\nu} b_{i\alpha\nu} + \sum_{i\alpha\nu} \sum_{j\beta\mu} t_{i\alpha\nu;j\beta\mu} b^{+}_{i\alpha\nu} b_{j\beta\mu}$$

- $b_{i\alpha\nu}^+$ creates Frenkel exciton (Pauli-operator)
- $b_{i\alpha\nu}$ annihilates Frenkel exciton
 - in unit cell i
 - on molecule α
 - in vibronic state $|\nu_e\rangle$
- $\Delta_{\nu} \quad \text{transition energy, } \Delta_{\nu} = \Delta_0 + \nu \hbar \omega$ $t_{i\alpha\nu;j\beta\mu} \text{ transfer matrix element}$

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Exciton transfer

due to interaction between HOMO-LUMO transition dipoles

$$< \Box_{HOMO} |er| \Box_{LUMO} > = igoplus_i q_i R_i$$

replace transition dipole by distribution of overlap charges

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Exciton transfer

due to interaction between HOMO-LUMO transition dipoles

$$< \Box_{HOMO} |er| \Box_{LUMO} > = igoplus_i q_i R_i$$

replace transition dipole by distribution of overlap charges

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Related model calculations

single 1-dim stack, Frenkel and CT excitons:

M. Hoffmann, K. Schmidt, T. Fritz, T. Hasche, V.M. Agranovich, and K. Leo, Chem. Phys. **258**, 73 (2000)

two molecules per unit cell, only Frenkel exciton:

absorption: I. Vragović, R. Scholz, M. Schreiber, Europhys. Lett. **57**, 288 (2002) **photoluminescence:** R. Scholz, I. Vragović, A. Yu. Kobitski, M. Schreiber, H.-P. Wagner, and D.R.T. Zahn, phys. stat. sol. (b) **234**, 402 (2002); I. Vragović, RS, PRB **68**, 155202 (2003)

Frenkel and CT excitons, spreading of vibronic cloud: M. Hoffmann and Z.G. Soos, Phys. Rev. B **66**, 024305 (2002)

Frenkel and CT excitons, applied to **electro-absorption**: G. Mazur, P. Petelenz, and M. Slawik, J. Chem. Phys. **118**, 1423 (2003)

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Diagonalization:

Fourier transform to k-space Different points in the Brillouin zone decouple

Optical excitation:

vertical excitation (photon wave vector: k=0) creates Frenkel exciton at Γ -point of Brillouin zone

Transfer matrix elements:

Fourier transform of exciton transfer in real space for optical excitation (Γ -point): sum of all transfer matrix elements

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Transfer matrix elements for absorption

Anisotropic dielectric function

I. Vragović, RS, M. Schreiber, Europhys. Lett. 57, 288 (2002).

CoPhen04, Dresden, 16 June 2004

Optical properties of poly-crystalline thin films

exp (—) A. Djurišić, T. Fritz, and K. Leo, Opt. Commun. 183, 123 (2000).
th (- -) I. Vragović, R.S., M. Schreiber, Europhys. Lett. 57, 288 (2002).

model parameters fitted to extinction coefficient Im[n]

CoPhen04, Dresden, 16 June 2004

Frenkel exciton: optical cycle

CoPhen04, Dresden, 16 June 2004

Frenkel exciton: optical cycle

CoPhen04, Dresden, 16 June 2004

Frenkel exciton: lineshapes

radiative lifetime: $\tau = 13\pm 2$ ns (exp), 13 ns (model)

CoPhen04, Dresden, 16 June 2004

Why is the recombination so slow?

monomer radiative lifetime ($\tau = 4 \text{ ns}$) slows down to $\tau = 13 \text{ ns}$

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Strategy for microscopic models

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Time-dependent DFT: Monomer

- Monomer, experimental PTCDA in superfluid He nanodroplets: E₀₀ = 2.60 eV Wewer, Stienkemeier, Phys. Rev. B 67, 125901 (2003)
 PTCDA in DMSO E₀₀ = 2.38 eV (all modes: 2.365 eV) Forrest'97 Frenkel exciton model E₀₀ = 2.18 eV (all modes: 2.125 eV)
- Free molecule E₀₀ = 2.60 eV vs. crystal E₀₀ = 2.125 eV evidence for red-shift in crystalline phase: 0.475 eV
- Monomer, TD-DFT (B3LYP, 3-21G) vertical transition energy: $E_{00} + \lambda = 2.56 \text{ eV}$ estimate for reorganization energy: $\lambda = 0.22 \text{ eV}$ gives $E_{00} = 2.34 \text{ eV}$: underestimate of E_{00} by 0.26 eV

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Dimers: Total energy calculations

binding energy per molecule: Hartree-Fock (HF) B3LYP Møller-Plesset (MP2)

dimer	sites	HF	B3LYP	MP2
coplanar, equivalent (b-axis)	2	- 0.25	- 0.26	- 0.25
coplanar, non-equivalent	4	- 0.20	- 0.23	- 0.25
non-coplanar, equivalent (a)	2	+ 0.21	+ 0.10	- 0.51
non-coplanar, non-equivalent	4	- 0.04	- 0.07	- 0.10
non-coplanar, non-equivalent	4	- 0.01	- 0.02	- 0.01
total	16	- 1.08	- 1.57	- 2.94 eV

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Improved potential along stack

PTCDA dimer 3-21G

benzene dimer

3-21G basis: too low repulsion ⇒ increase by 1.38
3-21G basis: too strong attraction ⇒ reduce by 0.83

CoPhen04, Dresden, 16 June 2004

Dimer calculations: red shift in crystal

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Dimer calculations: slow PL channels

PL: stack excimer: 1.72 eV non-coplanar excimer: 1.93 eV anion-cation stack: 1.67 eV anion-cation pair: 1.78 eV

 \Rightarrow good agreement with observed PL, but TOO SLOW

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Self-trapping of excimer along stack

Method: configuration interaction of singles (CIS), MP2 Stokes shift of excimer: 0.09 eV self-trapping, 0.21 eV internal deformation

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

CoPhen04, Dresden, 16 June 2004

Conclusion

large π -overlap \Rightarrow *large* variety of relaxed excited states

Time-resolved photoluminescence

- low T: Frenkel exciton, radiative decay in 13 ns
- 2 slower CT bands
- excimer dominating at T > 220 K
- efficient activated PL quenching at higher T
- self-trapped precursor states involve a *formation barrier*

Theoretical methods

- k-dispersion of Frenkel exciton
- absorption at Γ -point, minimum at surface of BZ gives PL
- dimer calculations (TD-DFT/B3LYP, CIS, MP2) for self-trapped localized exciton states

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Outlook

Single molecule

- geometry: routine task (HF, DFT, B3LYP)
- transitions: routine task (CIS, TD-DFT)

Inter-molecular transitions (CIS, TD-DFT)

- feasible, energy offsets difficult to assess
- time consuming (N³)
- convergence problems

Inter-molecular binding, adsorbates, doping

- geometry: challenging
- *hierarchy of methods* (HF, DFT, B3LYP (N³), MP2 (ON⁴))
- time-consuming, convergence problems
- transitions: feasible (CIS, TD-DFT)

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Thanks:Igor Vragović (Alicante) DFG
Andrei Yu Kobitski (Ulm) DFG
Georgeta Salvan DIODE
Thorsten U Kampen (FHI Berlin)
Hans-Peter Wagner (Cincinnati)
Dietrich RT Zahn, Reinhard Scholz

EU funded research Training Network DIODE (Contract No.: HPRN-CT-1999-00164)

> Deutsche Forschungsgemeinschaft

DFG

Michael Schreiber

CoPhen04, Dresden, 16 June 2004

Experimental data:

M. Hoffmann, T. Hasche, T. Canzler, K. Leo (TU Dresden) J.A. Schäfer, S. Sloboshanin (TU Ilmenau) S.F. Tautz (IU Bremen) V. Shklover, E. Umbach (Uni Würzburg) M. Sokolowski (Uni Bonn)

H. Fröb (TU Dresden) M. Wewer, F. Stienkemeier (Uni Bielefeld) M.I. Alonso, M. Garriga, J.O. Osso (UA Barcelona)

H. Port (Uni Stuttgart) M. Knupfer (IfW, Dresden)

Density functional tight-binding:

- G. Seifert (TU Dresden)
- D. Porezag, G. Jungnickel, T. Frauenheim (Chemnitz/Paderborn)

Michael Schreiber

CoPhen04, Dresden, 16 June 2004