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Summary
• There are robust and distinct topological classes 

of time-reversal invariant band insulators in two 
and three dimensions, when spin-orbit 
interactions are taken into account.

• The important distinction between these classes 
has a Z2 character.

• One physical consequence is the existence of 
protected edge/surface states. 

• There are many open questions, including some 
localization problems



Quantum Hall Effect
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• Low temperature, observe plateaus:

2DEG’s in GaAs, Si, graphene (!)
In large B field.

B

• QHE (especially integer) is robust
- Hall resistance Rxy is quantized even in very messy 
samples with dirty edges, not so high mobility.



Why is QHE so stable?

• Edge states

- No backscattering:
- Edge states cannot localize

• Question: why are the edge states there at all?
- We are lucky that for some simple models we can 
calculate the edge spectrum
- c.f. FQHE: no simple non-interacting picture.

localized



Topology of IQHE
• TKKN: Kubo formula for Hall conductivity gives 
integer topological invariant (Chern number):

- w/o time-reversal, bands are generally non-degenerate.

• How to understand/interpret this?
- Adiabatic Berry phase

- Gauge “symmetry”

flux
Not zero 
because phase 
is multivalued

BZ



How many topological classes?
• In ideal band theory, can define one TKKN integer 
per band

- Are there really this many different types of insulators? 
Could be even though only total integer is related to σxy

• NO! Real insulator has impurities and interactions
- Useful to consider edge states:

impurities



“Semiclassical” Spin Hall Effect
• Idea: “opposite” Hall effects for opposite spins

- In a metal: semiclassical dynamics

More generally 

• It does exist! At least spin accumulation.
- Theory complex: intrinsic/extrinsic…

Kato et 
al, 2004

• Spin non-conservation = trouble?
- no unique definition of spin current
- boundary effects may be subtle



Quantum Spin Hall Effect

• A naïve view: same as before but in an insulator
-If spin is conserved, clearly need edge states to transport 
spin current
-Since spin is not conserved in general, the edge states 
are more fundamental than spin Hall effect.

• Better name: Z2 topological insulator

Kane,Mele, 2004

• Graphene (Kane/Mele)

Zhang, Nagaosa, Murakami, Bernevig



Edge State Stability

• Time-reversal symmetry is sufficient to prevent 
backscattering!

- (Kane and Mele, 2004; Xu and Moore, 2006; Wu, 
Bernevig, and Zhang, 2006)

T:

Kramer’s pair

• Strong enough interactions and/or impurities
- Edge states gapped/localized
- Time-reversal spontaneously broken at edge.

More than 1 pair is not protected



Bulk Topology

• Chern numbers?
- Time reversal:

Chern number vanishes for each band.

• Different starting points:
-Conserved Sz model: define “spin Chern number”
-Inversion symmetric model: 2-fold degenerate bands
-Only T-invariant model

• However, there is some Z2 structure instead
-Kane+Mele 2005: Pfaffian = zero counting
-Roy 2005: band-touching picture
-J.Moore+LB 2006: relation to Chern numbers+3d story



Avoiding T-reversal cancellation

• 2d BZ is a torus

Coordinates along 
RLV directions:

0 π

0

π

• Bloch states at k + -k are not indepdent
• Independent states of a band found in 

“Effective BZ” (EBZ)
• Cancellation comes from adding “flux” from 

EBZ and its T-conjugate
- Why not just integrate Berry curvature in EBZ?

EBZ



Closing the EBZ
• Problem: the EBZ is “cylindrical”: not closed

-No quantization of Berry curvature

• Solution: “contract” the EBZ to a closed sphere 
(or torus)

• Arbitrary extension of 
H(k) (or Bloch states) 
preserving T-identifications

-Chern number does depend 
on this “contraction”
-But evenness/oddness of 
Chern number is preserved!

Two contractions differ by a “sphere”
• Z2 invariant: x=(-1)C



3D bulk topology
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3D EBZ Periodic 2-tori like 2d BZ

2d “cylindrical” EBZs

• 2 Z2 invariants

• 2 Z2 invariants

+

= 4 Z2 invariants
(16 “phases”)

• a more symmetric counting:
x0=± 1, x1=± 1 etc.

z0 z1



Robustness and Phases
• 8 of 16 “phases” are not robust

- Can be realized by stacking 2d QSH systems

Disorder can 
backscatter 
between 
layers

• Qualitatively distinct:
• Fu/Kane/Mele: x0x1=+1: “Weak Topological Insulators”



3D topological insulator

• Fu/Kane/Mele model (2006):

i jd1
d2

diamond lattice

e.g.

δ=0: 3 3D Dirac points
δ>0: topological insulator
δ<0: “WTI”=trivial insulator

• with appropriate sign 
convention:

cond-mat/0607699 
(Our paper: cond-mat/0607314) 



Surface States
• “Domain wall fermions” (c.f. Lattice gauge theory)

trivial insulator
(WTI)

topological insulator

mX mY,mz>0
x1

• chiral Dirac fermion:



“Topological metal”

• 2d Fermi surfaceμ

• Dirac point generates 
Berry phase of π for Fermi 
surface

• The surface must be metallic



Question 1

• What is a material????
– No “exotic” requirements!
– Can search amongst insulators with 

“substantial spin orbit”
• n.b. even GaAs has 0.34eV=3400K “spin orbit”

splitting (split-off band)
– Understanding of bulk topological structure 

enables theoretical search by first principles 
techniques

– Perhaps elemental Bi is “close” to being a 
topological insulator (actually semi-metal)?

Murakami
Fu et al



Question 2

• What is a smoking gun?
– Surface state could be accidental
– Photoemission in principle can determine 

even/odd number of surface Dirac points 
(ugly)

– Suggestion (vague): response to non-
magnetic impurities?  

• This is related to localization questions



Question 3
• Localization transition at surface?

– Weak disorder: symplectic class ⇒ anti-
localization

– Strong disorder: clearly can localize
• But due to Kramer’s structure, this must break T-

reversal: i.e. accompanied by spontaneous surface 
magnetism

• Guess: strong non-magnetic impurity creates local 
moment?

– Two scenarios:
• Direct transition from metal to magnetic insulator

– Universality class? Different from “usual” symplectic
transition?

• Intermediate magnetic metal phase?



Question 4

• Bulk transition
– For clean system, direct transition from 

topological to trivial insulator is described by a 
single massless 3+1-dimensional Dirac 
fermion

– Two disorder scenarios
• Direct transition.  Strange insulator-insulator critical 

point?
• Intermediate metallic phase.  Two metal-insulator 

transitions.  Are they the same?
– N.B. in 2D QSH, numerical evidence 

(Nagaosa et al) for new universality class



Summary
• There are robust and distinct topological classes 

of time-reversal invariant band insulators in two 
and three dimensions, when spin-orbit 
interactions are taken into account.

• The important distinction between these classes 
has a Z2 character.

• One physical consequence is the existence of 
protected edge/surface states. 

• There are many open questions, including some 
localization problems
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