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Outline
z Electronic structure of graphite.
z Electron-electron interaction in graphene.
z Graphene stacks. Interlayer coupling.
z Electronic structure.
z Interaction effects.
z Disorder. Out of plane conductivity.
z Screening and surfaces.
z Transport in curved graphene sheets.
z Weak antilocalization effects.



Some interesting references

Single layer graphene.
Electrically doped.



And more interesting references

Integer Quantum Hall effect in graphene.



-The conduction band is built up 
from the unpaired π orbitals at the
C atoms.

-The crystal structure is stabilized
by the σ bonds within the plane. 

-The hybridization between π
orbitals in neighbouring planes 
cannot be neglected.

Electronic band structure
J. W. McClure, Phys. Rev. 108, 612 (1957)

Hybridization between in plane nearest neighbours:
Hybridization between out of plane nearest neighbours: 0.3eVγ
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Electronic band structure

The Fermi surface has electron and hole like
pockets at the edges of the Brillouin zone.
The effective masses are small,
The structure is consistent with Shubnikov-de Haas
and photoemission experiments. 

0eff 0.06mm ≈

D. E. Soule, J. W. McClure, and L. B. Smith,  Phys. Rev. 134, 
A454 (1964).
D. Marchand, C. Frétigny, M. Lagües, F. Batallan, Ch. Simon, 
I. Roseman, and R. Pinchaux, Phys. Rev. B 30, 4788 (1984).
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Electronic band structure
R. C. Tatar, and S. Rabii,  Phys. Rev. B 25, 4126 (1982).
J.-C. Charlier, X. Gonze, and J.-P. Michenaud, Phys. Rev. B 43, 4579 (1991).

Graphite is a semimetal.
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A graphene plane. The Dirac equation.
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Dirac equation:



Related systems. C  60

z Threefold coordination
z The curvature is induced by five-fold rings
z There is a family of quasispherical
compounds
z The valence orbitals are derived from π
atomic orbitals.

The Dirac equation on a sphere?



Lattice frustration as a gauge potential.

z A fivefold ring defines a disclination.
z The sublattices are interchanged.
z The Fermi points are also interchanged.
z These transformations can be achieved by 
means of a gauge potential.

J. González, F. G. and M. A. H. Vozmediano, Phys. Rev. Lett. 69, 172 (1992)
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The flux Φ is determined by the total rotation induced by the defect.



Continuum model of the fullerenes.

z Dirac equation on a spherical surface.
z Constant magnetic field (Dirac monopole).

( )
( ) ( )

( )

( )
( ) ( )

( ) ab
F

ba
F

sin
cosli

sin
i

R
v

sin
cosli

sin
i

R
v

Ψ=Ψ






 −
+∂+∂

Ψ=Ψ






 +
+∂−∂

ε
θ
θ

θ

ε
θ
θ

θ

φθ

φθ

2
11

2
11

h

h

( )[ ] ( ) lJllJJ
R
vF

J ≥+−+= 11hε



Coulomb interactions
Non Fermi liquid behavior of quasiparticle lifetimes.

Expts: S. Yu, J. Cao, C. C. Miller, D. A. Mantell, R. J. D. Miller, and Y. Gao, Phys. Rev. Lett. 
76, 483 (1996).

Theory: J. González, F. G., and M. A. H. Vozmediano Phys. Rev. Lett. 77, 3589 (1996)
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Absence of screening.
Perturbation theory leads to logarithmic divergences.
The expansion has similar properties to that for 1D 
metallic systems (Luttinger liquids).
Large coupling constant: e  /v  =2-5
Deviations from Fermi liquid behavior.

v v

screened interaction

Single graphene planes:

Limits of validity:
High energies > 0.3eV.
Neglects electron-phonon interaction.
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Renormalization of the Coulomb interaction.
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z The interaction is marginal in any
dimension (as in QED).
z The interaction is mediated by photons in 
three dimensional space.
z The interaction breaks the Lorentz
invariance of the Dirac equation.



Renormalization of the Coulomb interaction.
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The vortex corrections are finite (to all orders).
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Bare polarizability:

J. González, F. G. and M. A. H. Vozmediano., Nucl. Phys. B 424, 595 (1994)



Renormalization of the Coulomb interaction.
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One loop calculation: 
Renormalization of the
particle residue.
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ΛLowest order RG flow:

The coupling constant goes to zero at low energies.



C. L. Kane and E. J. Mele, Phys. Rev. Lett. 93, 
197402 (2004)

The electronic self energy due to the long range
Coulomb interaction modifies the dependence
of the gap on the radius in semiconducting
nanotubes.

Experimental consequences?

A. Lanzara et al, unpublished.

The combined effects of disorder and electron-
electron interactions lead to a non monotonous
dependence of the quasiparticle lifetime on
disorder.



Renormalization of the Coulomb interaction.

= + + +RPA summation:

J. González, F. G. and M. A. H. Vozmediano, Phys. Rev. B 59, R2474 (1999)
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RG flow equation:
( which can be analytically
extended to g > 1)

The coupling constant always flows to zero at low energies.



D.V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001).

Compensation between low density of states and unscreened interaction

Stoner criterium:
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For sufficiently large couplings, a charge density wave phase is induced

Non perturbative phase transitions.



In plane interactions reduce the
interlayer coupling.
Similar effect as in the cuprate
superconductors.

t

Interchain hopping in Luttinger liquids

See also:

C.L. Kane and M.P.A. Fisher, Phys. Rev. Lett. 68, 1220 (1992)

X.G. Wen, Phys. Rev. B 42, 6623 (1990).
F. G. and G. Zimanyi, Phys. Rev. B 47, 501 (1993).
S. Chakravarty and P.W. Anderson, Phys. Rev. Lett. 72, 3859 (1994).
J.M.P. Carmelo, P.D. Sacramento, and F. G., Phys. Rev. B 55, 7565 (1987)
A.H. Castro-Neto and F. G., Phys. Rev. Lett. 80, 4040 (1998).

Extended hopping

Local hopping

Interlayer hopping
M. A. H. Vozmediano, M. P. López-Sancho, and F. G., Phys. Rev. Lett. 89, 166401 (2002); ibid, 
Phys. Rev. B 68, 195122 (2003). 



Exchange instability in graphene.
N. M. R. Peres, F. G. and A. H. Castro Neto, Phys. Rev. B 72, 174406 (2005)
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Kinetic energy Exchange energy

The exchange energy favors a ferromagnetic ground state.
This instability is expected in a low density 2DEG.



Exchange instability in graphene.

The instability requires too high
coupling values.

The instability is enhanced in the
presence of disorder (neglecting
localized states).

The interband exchange energy
increases.
The intraband exchange energy
decreases.
There is a competition between
the two effects.



The graphene bilayer.
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Bilayer. Electronic structure.
E. McCann and V. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006)

⊥

≈
t

kvF

k

22
r

rε



The graphene bilayer.
J. Nilsson, A. H. Castro Neto, N. M. R. Peres,  and F. G. Phys. Rev. B 73, 214418 (2006)
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Long range exchange interaction: Ferromagnetism
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Short range Hubbard repulsion: Antiferromagnetism

Similar effects expected in bulk graphite

The intraband exchange energy increases.
The interband energy (proportional to the overlap
between spinors) decreases.
The problem resembles closely a dilute 2DEG.



Graphene multilayers.
Electronic structure and stacking order.

z The bands of a trilayer with Bernal stacking are equivalent to those of a 
bilayer and a single layer superimposed.
z The bands of a bilayer with rhombohedral stacking show an incipient
surface state.



Graphene multilayers.

The hamiltonian for each value of the
parallel momentum defines a one
dimensional tight binding model.
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Graphene multilayers.
Bulk and surface density of states.

The low energy electronic states have
vanishing amplitude on the atoms
connected to the neighboring layers.



Graphene multilayers.
Surface states.
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z Surface states can be induced near stacking defects.

z Projected density of states:
a) Bernal stacking (121212…)
b) Rhombohedral stacking (123123…)



Graphene multilayers.
Some experimental results.



Conductance channels. Graphene multilayers.
N. M. R. Peres, A. H. Castro Neto and F. G. ,Phys. Rev. B 73, 195411 (2006)

N. M. R. Peres, A. H. Castro Neto, and F. G., Phys. Rev. B 73, 241403  (2006). 
F. G., A. H. Castro Neto and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006), and to be published.

Landau levels associated to the Dirac equation can 
be observed in multilayers, or for special
stackings, 123123123…



Graphene multilayers.

Fermi surface. Extremal orbits.

z The Fermi surface, to lowest approximation, contains a regular orbit, 
and a Dirac orbit.

I. A. Luk´vanchuk and Y. Kopelevich,  cond-mat/0609037, and
Phys. Rev. Lett. 93, 166402 (2004).



( ) ( )
( ) 











+−
++

≡ −
⊥

⊥
⊥ 0

0
,|| dik

yxF

dik
yxF

z

z

etikkv
etikkv

kkH

xk
yk

zk

Graphene multilayers.
Rhombohedral graphite.

z The hamiltonian of rhombohedral graphite is
made up of a set of Dirac equations, one for each
value of kz.
z There are surface states at the top and bottom
layers of rhombohedral graphite.



Graphene multilayers.
Landau levels.K
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K’

There is a n=0 Landau level derived
from valley K at one surface, while the
corresponding n=0 Landau level from
valley K’ is at the opposite surface 
(valley filtering).
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The Landau levels in a rhombohedral
stack are quasi two dimensional.



Graphene multilayers.
Rhomobohedral stacking. Landau levels.

z The Landau levels of rhombohedral graphite are quasi two dimensional.



Graphene multilayers.
Disorder. Conductivity.

J. Nilsson, A. H. Castro Neto, F. G., and N. M. R. Peres,  cond-mat/0604106

The out of plane current requires the passage of
the electrons through atoms with a semimetallic
density of states.

z The in plane conductivity saturates at a value
independent of the number of carriers.
z The out of plane conductivity is insulating.

( )( )∑ ++
⊥⊥ +−=

||

||1||2||2||1
sin2

k
kAkAkAkA cccckedJ



Graphene multilayers.
Induced charge at surfaces.
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Electrostatic potential

See also E. McCann,  cond-mat/0608221
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Graphene multilayers.
Induced charge at surfaces.
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The decay of the charge into the bulk can be calculated
analytically:

Interlayer transitions
only lead to
anomalous, quasi
insulating screening.43
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Graphene multilayers.
Induced charge in multilayers.

The charge distribution near a 
neutral surface shows a slow decay, 
and oscillations with period equal ro
the interlayer distance.

The charge oscillations persist in 
doped multilayers.
Metallic screening localizes most of
the charge within 3-4 layers.



Curvature and weak (anti)localization.
A. Morpurgo and F. G.,  cond-mat/0603789.

See also: S. V. Mozorov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. Jiang, and A. K. Geim,  cond-mat/0603826
E. McCann, .K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, cond-mat/0604015   

z Smooth disorder should lead to antilocalization effects in graphene, H. 
Suzuura and T. Ando, Phys. Rev. Lett. 89, 266603 (2002).
z Neither localization nor antilocalization effects have been observed.

Antilocalization due to negative interference
(Berry’s phase).

On a curved surface, the accumulated
rotation along a closed path is not π.
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Curvature and weak (anti)localization.

Effective gauge field:
z Local rotations of the lattice axes.
z Topological defects: disclinations
(pentagons,  heptagons), dislocations. Scattering at boundaries

M. V. Berry, and R. J. Mondragon, Proc. R. Soc. Lond. A 
412, 53 (1987).

Inequivalence between sublattices (mass
term).

Other effects.

dk
vτ

1
F
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d: distance between dislocations.

F. G., J. González, and M. A. H. Vozmediano, Phys. Rev. B 59, 134421 (2001)



z Interaction effects can be important in multilayered
systems. 
z The electronic structure depends on the stacking order. 
Valley filtering occurs in a magnetic field.
z Quasi two dimensional behavior can be found when
stacking defects are present.

z Undoped graphite surfaces can show insulating behavior.
z Induced charge has oscillations from layer to layer.
z Screening in doped multilayers leads to a charge
distribution localized in 3-4 layers.

z Diffusion in curved surfaces suppress weak
antilocalization effects.

Conclusions

J. Nilsson, A. H. Castro Neto, N. M. R. Peres,  and F. G. Phys. Rev. B 73, 214418 (2006)
F. G., A. H. Castro Neto and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006)
J. Nilsson, A. H. Castro Neto, F. G., and N. M. R. Peres,  cond-mat/0604106

A. Morpurgo and F. G.,  cond-mat/0603789.


