Double-dot quantum ratchet driven by an independent quantum point contact

Vadim Khrapay

LMU Munich, Germany

present address: ISSP RAS, Chernogolovka, Russia

Classical "ratchet and a powl"

Spatial asymmetry is not enough for directed motion, if thermal equilibrum is preserved

Smoluchowski (1912)

At $T_1 \neq T_2$ the direction of motion depends upon the sign of asymmetry

Feynman (1960)

Intro. Lateral nanostructures. Quantum point contact

Gates' electric field allows to tune the transverse energy quantization inside a 1D channel

van Wees et al. and Wharam et al. (1988)

Intro. Quantum dot (QD)

(b)

Charge quantization on an almost isolated island

Intro. Quantum dot (QD)

Coulomb Blockade

Fluctuations of electron number on a QD is impossible at low temperature, because of the Coulomb interaction. QD is isolating.

Conductance oscillations

lifting a blockade:

 $E(N+1)-E(N)=\mu$

Shechter (198?)

Intro. Double Quantum Dot

For current to flow the Coulomb blockade should be lifted in both serially coupled QD's

Intro. Double Quantum Dot

Intro. Photon-assisted tunnelling in DQD

Inelastic transitions between the states localized in different dots give rise to a current in DQD, in the absence of potential difference between the leads.

Resonant microwave photon absorption: $hv=\Delta$

Experiment. Nanostructure

GaAs/AlGaAs heterostructure

2D layer - 90 nm benief the surface

 N_{s} = 2.8x10¹¹ cm⁻²

 μ =1.4x10⁶ cm²/Vs

- Metallic gates (e-beam lytho)
- 2 independent electric circuits
- dc measurement
- T_{el}< 150 mK

Experiment. Characterization.

- QDs: Coulomb energy $E_c \approx 1.5 \text{ meV}$
 - DQD: $t_0 \approx 0.1 \ \mu eV$; Γ_R , $\Gamma_L \approx 40 \ \mu eV$
 - QPC: subband splitting ≈ 4 meV
 1D channel onset width ≈ 1 meV

Experiment. Inelastic tunnelling?

Experiment. Inelastic tunnelling!

DQD analogous to a Quantum Ratchet

Experiment. Excitation spectroscopy.

Experiment. Dependence on the QPC transmission

Experiment. Dependence on the QPC bias voltage

QPC: ratchet excitation mechanism

Maximal effect next to the bottom of 1D subbands of QPC, i.e. at T≠1 (R≠0)

Occupation number fluctuations are important!

- HF voltage-fluctuations on a QPC caused by shot noise?
 V_{ONSET}=|V_{QPC}|-|∆|/e No energy-(frequency-) dependence of the threshold observed!
 Blanter and Büttiker '00
- Relaxation of electrons inside a 1D channel?

Occupation number fluctuations could increase the relaxation rate inside a 1D channel

Alternatively: Photons? 1D plasmons?

Wide energy-window for fluctuations

J. N. L. Connor, Mol. Phys. 15, 37 (1968); W. H. Miller, J. Chem. Phys. 48, 1651 (1968).

Concluding

- Novel dynamic interaction phenomenon between the QPC and DQD
- Resonant energy absorption makes the DQD equivalent to a nonadiabatic quantum ratchet
- Occupation number fluctuations in the QPC channel are responsible for ratchet energization

Coauthors

LMU

Jorg P. Kotthaus

Stefan Ludwig

Uni Regensburg:

H.P. Tranitz and W. Wegscheider

Acknowledgements

A.W. Holleitner

F. Wilhelm

V.T. Dolgopolov

A. Khaetskii

http://www.humboldt-foundation.de

Non-ratchet phenomenon observed

Nongaussian electromagnetic fluctuations?

Non-ratchet phenomenon observed

Nongaussian electromagnetic fluctuations?

Current in the double dot as a function of QPC transmission.

Δ= -450 μeV

Observed about all the triple points

