Spontaneous Spin Polarization in Quantum Wires

Why ask this question at all ...

Quantum Wires

- GaAs/AlGaAs heterostucture
 - \rightarrow 2D electron gas
- depletion of the 2D electron gas by gates
 → quasi-1D channel

n-AlGaAs

parabolic confining potential
 → subband structure

change chemical potential with gate voltage

Motivation

Why ask this question at all ...

- <u>Theory:</u> conductance quantization $G = k \cdot G_0$ (*k* integer) where $G_0 = 2 \frac{e^2}{h}$ spin degeneracy
- current = electron charge × electron density × electron velocity

$$= \operatorname{density} \operatorname{of} \operatorname{states} \times (\mu_{\mathrm{R}} - \mu_{\mathrm{L}})$$

$$I = e \times \nu eV \times v_{F}$$

$$= e \times 2 \frac{1}{hv_{F}} eV \times v_{F} = 2 \frac{e^{2}}{h} V$$

• conductance: $G = \partial I / \partial V$

Berggren & Pepper, Physics World 2002

Motivation

Why ask this question at all ...

- <u>Theory:</u> conductance quantization $G = k \cdot G_0$ (*k* integer) where $G_0 = 2 \frac{e^2}{h}$ f ______ spin degeneracy
- Experiment I:

Berggren & Pepper, Physics World 2002

Motivation

Why ask this question at all ...

• Experiment II:

conductance anomalies at low density

- additional structure at $0.7 G_0$ (short wires) or $0.5 G_0$ (long wires)
- see e.g. Thomas *et al.*, Phys. Rev. B **61**, R13365 (2000)

spontaneous spin polarization?

BUT ...

Lieb-Mattis theorem

In 1D, the ground state of an interacting electron system possesses minimal spin.

E. Lieb and D. Mattis, Phys. Rev. **125**, 164 (1962).

QUANTUM WIRE:

not a purely one-dimensional system ...

• parabolic confining potential:

no interactions _____ strong interactions?

Summary I

Can the ground state of the electron system in a quantum wire be ferromagnetic?

 YES - for sufficiently strong interactions, there is a range of electron densities, where the electrons form a zig-zag Wigner crystal and the spin interactions due to 3-particle ring exchange make the system ferromagnetic

Europhys. Lett. 74, 679 (2006)

Outline

- low density strong interaction Wigner crystal
- structure of the crystal in a parabolic confining potential
- spin interactions
- numerical methods & results
- phase diagram \rightarrow 4-particle ring exchange
- What about experiment?
- conclusions & outlook

Quantum wires at low density: Wigner crystal

• at low electron densities $n_{\rm e}$,

interaction energy (~ n_e) dominates over kinetic energy (~ n_e^2) \Rightarrow formation of (classical) Wigner crystal

Coulomb interaction:

• confining potential:

$$V_{\text{int}} = \frac{e^2}{\epsilon} \sum_{i < j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \qquad \qquad V_{\text{conf}} = \frac{1}{2} m \Omega^2 \sum_i y_i^2$$

• formation of zig-zag chain favorable when V_{int} of order V_{conf}

$$M_{e}M_{e}M_{e}M_{e}M_{e}$$
• minimize $E(d) = \frac{e^{2}}{\epsilon} \sum_{j=1}^{\infty} \frac{1}{\sqrt{\frac{1}{n_{e}^{2}}(2j-1)^{2}+d^{2}}} + \frac{1}{2}m\Omega^{2}\left(\frac{d}{2}\right)^{2}$

with respect to distance d between rows

Zig-zag chain

• $V_{\text{int}}(r_0) = V_{\text{conf}}(r_0) \equiv E_0 \Rightarrow \text{ characteristic length scale } r_0$

$$r_0 = \left(\frac{2e^2}{\epsilon m \Omega^2}\right)^{1/3}$$

• dimensionless density $v = n_e r_0$

structure ✓spin properties ?

Spin interactions in a Wigner crystal

- to a first approximation, spins do not interact ...
- BUT:

weak tunneling through Coulomb barrier

Exchanges in a zig-zag chain I

1D chain: (AF) nearest-neighbor exchange

see poster of **Revaz Ramazashvili**: Exchange coupling in a one-dimensional Wigner crystal

- zig-zag chain:
 - in addition, next-nearest neighbor exchange

Frustrated Heisenberg spin chain

$$H_P = \frac{1}{2} \sum_{j} \left[J_1 P_{j \, j+1} + J_2 P_{j \, j+2} \right]$$

use $P_{ij} = \frac{1}{2} + 2\mathbf{S}_i \mathbf{S}_j$

- spin Hamiltonian: $H = \sum_{j} (J_1 \mathbf{S}_j \mathbf{S}_{j+1} + J_2 \mathbf{S}_j \mathbf{S}_{j+2})$ next-nearest neighbor exchange J_2 causes frustration
- phase diagram

[Majumdar & Ghosh, Haldane, Eggert, White & Affleck, Hamada et al., Allen et al., Itoi & Qin, ...]

 $J_2 < 0.24...J_1$: weak frustration \rightarrow the groundstate is antiferromagnetic

 $J_2 > 0.24...J_1$: strong frustration \rightarrow the ground state is dimerized

dimerization $d = \langle \mathbf{S}_{i}(\mathbf{S}_{i-1} - \mathbf{S}_{i+1}) \rangle$

Exchanges in a zig-zag chain II

- **1D chain**: (AF) nearest-neighbor exchange
- zig-zag chain:
 - in addition, next-nearest neighbor exchange

- increase distance between rows \rightarrow equilateral configuration

	\rightarrow	RING	EXCHANGES
--	---------------	------	------------------

cf. 2D Wigner crystal:

(Roger 84, Bernu, Candido & Ceperley 01, Voelker & Chakravarty 01, ...)

MPI-PKS Dresden - August 8, 2006

Ring exchanges

- cyclic exchange of *l* particles: $P_{j_1 \dots j_l} = P_{j_1 j_2} P_{j_2 j_3} \dots P_{j_{l-1} j_l}$
- ring exchange of even number of particles: antiferromagnetic ring exchange of odd number of particles: ferromagnetic (Thouless 1965) j+1 j+3
- Hamiltonian: $H_P = \frac{1}{2} \sum_{j} [J_1 P_{j\,j+1} + J_2 P_{j\,j+2} - J_3 (P_{j\,j+1\,j+2} + P_{j+2\,j+1\,j}) + J_4 (P_{j\,j+1\,j+3\,j+2} + P_{j+2\,j+3\,j+1\,j}) - \dots]$

Frustrated Heisenberg spin chain + 3-particle ring exchange

 $H_P = \frac{1}{2} \sum_{j} \left[J_1 P_{j\,j+1} + J_2 P_{j\,j+2} - J_3 (P_{j\,j+1} P_{j+1\,j+2} + P_{j+2\,j+1} P_{j+1\,j}) \right]$

- nearest neighbor exchange: $\tilde{J}_1 = J_1 2J_3$
- next-nearest neighbor exchange: $\tilde{J}_2 = J_2 J_3$
- spin Hamiltonian:

$$H = \sum_{j} (\widetilde{J}_{1} \mathbf{S}_{j} \mathbf{S}_{j+1} + \widetilde{J}_{2} \mathbf{S}_{j} \mathbf{S}_{j+2})$$

phase diagram

[Majumdar & Ghosh, Haldane, Eggert, White & Affleck, Hamada *et al.*, Allen *et al.*, Itoi & Qin, ...]

Computation of exchange constants

• strength of interactions is characterized by

$$r_{\Omega} = \frac{r_0}{a_B} = 2 \left(\frac{me^4}{2\hbar^2 \epsilon^2} \frac{1}{\hbar\Omega} \right)^{2/3}$$

(where a_B Bohr's radius \approx 100 Å in GaAs)

- use WKB at $r_{\Omega} \gg 1$ [note: $r_{\rm s} \sim r_{\Omega}/\nu$]
- imaginary-time action $S = \hbar \eta \sqrt{r_{\Omega}}$ with $\eta[\{\mathbf{r}_{j}(\tau)\}] = \int_{-\infty}^{\infty} d\tau \left[\sum_{j} \left(\frac{\dot{\mathbf{r}}_{j}^{2}}{2} + y_{j}^{2} \right) + \sum_{j < i} \frac{1}{|\mathbf{r}_{j} - \mathbf{r}_{i}|} \right]$ confinement interaction

Numerical results I

• exchange constants:

$$J_l = J_l^* \exp\left[-\eta_l \sqrt{r_\Omega}\right]$$

 solve equations of motion for various exchange processes numerically

nearest

 and next-nearest
 neighbor
 as well as
 3-, 4-, 5-, 6-,
 and 7-particle
 ring exchanges

Numerical results II

• "spectators" participate in exchange process

 12 spectators included on either side of the exchanging particles

Numerical results II

Numerical results II

• dominant exchange: $J_1 \rightarrow J_3 \rightarrow J_4$

Heisenberg spin chain with nearest and next-nearest neighbor exchange

• 4-particle ring exchange generates 4-spin interaction:

 $H_4 \sim (\mathbf{S}_j \mathbf{S}_{j+1}) (\mathbf{S}_{j+2} \mathbf{S}_{j+3}) + (\mathbf{S}_j \mathbf{S}_{j+2}) (\mathbf{S}_{j+1} \mathbf{S}_{j+3}) - (\mathbf{S}_j \mathbf{S}_{j+3}) (\mathbf{S}_{j+1} \mathbf{S}_{j+2})$

Screened interaction

• exact diagonalization of short chains: total spin of the ground state

• MEAN FIELD:
$$(\mathbf{S}_k \mathbf{S}_l)(\mathbf{S}_m \mathbf{S}_n)$$

 $\rightarrow \frac{1}{2}(\langle \mathbf{S}_k \mathbf{S}_l \rangle \mathbf{S}_m \mathbf{S}_n + \mathbf{S}_k \mathbf{S}_l \langle \mathbf{S}_m \mathbf{S}_n \rangle)$
 $\rightarrow \frac{1}{4}(\mathbf{S}_k \mathbf{S}_l + \mathbf{S}_m \mathbf{S}_n)$

near the ferromagnetic phase

MF exchange constants:

$$J_1^{MF} = J_1 - 2J_3 + 2J_4$$
$$J_2^{MF} = J_2 - J_3 + 2J_4$$

• wave function overlaps

- wave function overlaps: identify different phases by comparing with known results for $J_4 = 0$

• wave function overlaps: identify different phases by comparing with known results for $J_4 = 0$

8

8

• phase diagram (PRELIMINARY)

• phase diagram (PRELIMINARY)

What about experiment? Are quantum wires ferromagnetic?

- Are interactions in realistic quantum wires strong enough?
- ``strength of interaction'' controlled by confining potential:

$$r_{\Omega} \propto \Omega^{-2/3}$$
 and $r_{\Omega} \propto m^{2/3}$

2 types of quantum wires:

- cleaved-edge overgrowth: steep confining potential $-r_{\Omega} < 1$
- split gate:

2D hole gas in GaAs: $r_{\Omega} > 40$!

(Klochan *et al*., cond-mat/0607509)

shallow confining potential $-r_{\Omega} > 1$ (e.g. Thomas *et al.*, Phys. Rev. B **61**, R13365 (2000): $r_{\Omega} = 3 - 6$)

Experiment: 1D holes

Prefactors

• exchange constants:

 $J_{l} = J_{l}^{*} \exp\left[-\eta_{l}\sqrt{r_{\Omega}}\right] \text{ where } J_{l}^{*} = \frac{e^{2}}{\epsilon a_{B}}m_{l}F_{l}\left(\frac{\eta_{l}}{2\pi}\right)^{1/2}r_{\Omega}^{-5/4}$

(Gaussian fluctuations around classical exchange path)

"Phase diagram" I

• ground state spin using the results for the 24-site chain

"Phase diagram" II

Conclusions & Outlook

A ferromagnetic ground state in quantum wires is possible at strong enough interactions. The interactions induce deviations from one-dimensionality and lead to ferromagnetism in a certain range of electron densities.

Conclusions & Outlook

• 4-particle ring exchange dominant at large densities

TO DO ...

EXPERIMENT:

• ideal devices to observe spontaneous spin polarization: split-gate wires with widely separated gates \Rightarrow shallow confining potential \Rightarrow large r_{Ω} ... holes?

THEORY:

- further explore zig-zag chains with 4-particle ring exchange
- conductance? (Does ferromagnetism lead to $G = 0.5 G_{\theta}$?)