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Organization

• Reversehistorical approach.

• “Experimental”talk.

• See cond-mat/0606160.

• [Reminded of ancient Greek theater festivals.]
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This is a glass talk, so we need this diagram

↑
F (~x)

~x →
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However, we will mostly see this

↑
F (x)

x →
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How Computer Scientists Taught Physicists to Be Lazy

Physicists want:low E, long t, largeλ behavior of complex,
heterogeneoussystems, e.g., random magnets, superconductors with dirt.

• The ground state (or even partition fn.Z) can often be computedvery quickly,
even whenthe physical system hasmany local minima andextremelyslow
dynamics.

• This speed can be exploited in models withquenched disorder

– to preciselystudyphase transitions

– to study the effects ofperturbations

– to answerqualitativequestions (e.g., # of states)

• Warning: some reasonable physical systems have no known fast algorithms
for all cases. These correspond to NP-hard problems.
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To study materials, learn computer science

Rather informally:

• A decision problemis one for which one replies yes/no for a given input.

• The setP consists of decision problems that can be solved in time bounded
by a polynomialNk in the problem lengthN . “Tractable”.

• The setNP (“nondeterministic polynomial”) consists of decision problems
for which “yes” answers can beverifiedin time polynomial inN .
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P and NP

Example decision problem instance:

Can you find a train itinerary from Trieste to Dresden that takes less
than 15 hours?

[Shortest path problem is inP .]

P ⊂ NP , but we don’t know ifP = NP .



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Which problems are tractable?
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How accurate for P?

AS EXACT AS YOUR INPUT:

* The algorithmsexpand the configuration space.
* The “rough landscape” issmooth and downhill∗ in this

space.
* At the “bottom”, translate back to a physical solution,

. . . which isguaranteed to be theexactg.s.

• The combinatorial math and particular rep’ns are often unfamil-
iar to physicists.

• But we are used to imaginary time for QM, e.g.
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The Cover to the Program

[Collection “courtesy” of T. Giamarchi]
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Inspiration

• Statics of surfaces pinned by disorder

– Domain walls in random magnets, contact lines on a rough
surface, vortex lines in superconductor, electron world lines
in a space AND time dependent potential, periodic scalar
fields, e.g., vortex-free superconductors.

• “Simplest” finite-d glassy phases (?)

– Elastic, no plastic rearrangements.
– At low T , disorder is irrelevant. . .

∗ Theme of dramatic tension: elasticity v. disorder

• Characterize by roughness,w ∼ Lζ , energy fluctuations∼ Lθ.
Statics are preliminary to

– barriers to equilibration
– dynamics (creep or sliding) in disordered background.
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Plot Summary

The effective long wavelength pinning potential ford < 4 interface is
universal (depends on symmetries of pinning potential).

⇒Find fixed points for force-force correlation functions∆(u).
⇒Quantitatively confirm shape of∆(u).

• First evidence forcuspat zerou (20 yrs)

• “Chaos”(sensitivity to disorder)

• Universal amplitudes.
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Production Crew

P. Le Doussal, K. Wiese, AAM, and 100 1GHz processors.
⇒C++ code to findexact ground statefor discrete interfacesu(x) in dimensions
d = 1, 2, 3, 4, . . . with

• User-defined lattices.

• Choice of disorder correlations, corresponding to

– Random field (RB):〈[U(u′, x′)− U(u, x)]2〉 = |u− u′|δ(x− x′)

– Random bond (RF):〈[U(u′, x′)− U(u, x)]2〉 = e−|u−u′|δ(x− x′)

– Periodic pinning (RP):〈[U(u′, x′) − U(u, x)]2〉 = sin[ 2π(u−u′)
P ]δ(x −

x′)

• Add in a moving harmonic well to the disorder [P. Le Doussal].

Uharmonic[u(x)] =
m2

2
(u− v)2

Simulation uses rolling disorder and can incrementally findv → v + δv.
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The Play

Act 1: Random field pinning,D = 2+1 interface,m2 = 0.1, L×W =
20× 20, δv = 0.04, 100 steps.
Act 2: Same interface, butm2 = 0.01
Act 3: Back to scene 1, but highlights:avalanches/droplets.
Act 4: Theshocking events from scene 2.
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Critics: quantify? context?
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2 = 0.02
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Theory - Functional Renormalization Group

FRG seems to be a controlled verifiable approach to manifolds in a disordered po-
tential.

• Belowd = 4,∞ number of relevant operators and metastability.

• Writing 〈[V`(u, ~x)−V`(0,~0)]2〉 = −2R`(u)δ(~x), D. S. Fisher (1986) derived
flow equations, using∆(u) = −R′′(u),

d∆(u)
d`

= (ε− 4ζ)∆(u) + ζu∆′(u) +
1
2

[∆′′(u)]2 −∆′′(u)∆′′(0)

• Non-analytic fixed points:∆(u), force-force correlations,
have acuspatu = 0.
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Relevance

R(u) and its derivatives⇒ the physical picture of pinned interfaces:

• Fisher, Narayan, Balents; Balents, Bouchaud, Mezard (1986-
1996): sequence of scalloped potentials [singularity inR(u)]
due to hopping between metastable states, suggestive connec-
tions to Burgers equation.

• Le Doussal, recently: scallops derived from harmonic well +
disorder; precise connection to Burgers equation.

• Fixed points for flow ofR(u) gives exponentζ for roughness,
etc.

• Finite drive, changing disorder [”chaos”], and temperatureround
out the singularityat different scales [zero pinning force∆′′′(0)].
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Measured correlations vs. 1-loop predictions

• Compute fixed point: large enoughL, small enough
m, so that

∆̃[m(v − v′)ζ ] = mε−4ζ−d[v′ − 〈u(v′)〉][v − 〈u(v)〉]

is converged.

• Rescale toY (u) = ∆̃(u)/∆̃(0) and scalez = umζ to
get

∫
Y = 1 (RF),

∫
Y 2 = 1(RB).
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Measured correlations vs. 1-loop predictions
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Residuals, RF
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Whereone formof the2-loop prediction isY (z) = Y1(z) + (4− d)Y2(z)
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Residuals, RB
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Whereone formof the2-loop prediction isY (z) = Y1(z) + (4− d)Y2(z)
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RP: crossover from RB to RP
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General prediction:Y (z) is a parabola with zero mean (i.e.,6(z − 1
2 )2 − 1

2 ).
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“Chaos” (sensitivity to disorder)

Recent predictions by P. Le Doussal [PRL96, 235702 (2006)] for correlations

∆12(y) = 〈[v + y − u1(v + y)][v − u2(v)]〉

between samples with disordersU1andU2, with difference measured byδ.
We can check this - shapes of curves (1 adjustable parameter).
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Chaos
Normalized∆12(y), fixed perturbation
δ

∆12(0)/∆11(0), varying δ [parameter
free ratio]
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Functional Burgers Equation

d = 0: particle in a singleV (u) given by a random walk +m
2

2
(u−v)2.

Exact correspondencebetweenv − 〈u〉 and velocity in Burgers equa-
tion, givent → m−2, V → v − 〈u〉, ν → t: jumps in〈u〉 areshocks
in 1D decaying Burgers equation.

∂tV + V ∂xV = ν∂2
xV

Functional equation: formally similar.
Consequences:
In a single sample, see coalescence of jumps as decreasem2.
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Sequence ofm2 in a single sample
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Sequence ofm2 in a single sample
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Sequence ofm2 in a single sample
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Highlights & Sequels

• Can precisely studydisordered systems.

• Confirmed predictionfor nonanalytic form for pinned manifolds:
linear cuspsin force-force correlator∆(u) [20 years ago].

• One-loop calculation appears to be unreasonably good, butnot
the full storyfor RF, RB; RP shows expected exact parabola.

• Supportsexponent values, validates approach,physical picture.

• Functionaldecaying Burgers eqn.for v − u(x).


