Persistent currents in two dimension: New regimes induced by the interplay between electronic correlations and disorder Zoltán Ádám Németh Jean-Louis Pichard

CEA - Saclay, Service de Physique de l'Etat Condensé

Outline:

- Overview of the strongly correlated 2D electron-gas problem;
- Introduction of the numerical model: few interacting particles on a lattice
- Persistent current maps with disorder

References:

Z.Á. Németh and J.-L. Pichard, Eur. Phys. J. B **45**, 111 (2005) J.-L. Pichard and Z.Á. Németh, J. Phys. IV France **131**, 155 (2005)

Quantum solid state physics

- Fermi: weakly-interacting quantum particles
- Wigner: strongly interacting particles

TWO LENGTH SCALES:

- average interparticle spacing *a*
- Bohr-radius a_B

Dimensionless scaling parameter: $r_s = a/a_B$

Weak interaction limit

• Electrons localized in *k*-space (Fermi liquid behavior).

Strong interaction limit

• Electrons localized in real space (Wigner crystal)

low density limit, $r_s \rightarrow \infty$ $E_0^{Wigner} = \left(\frac{c_1}{r_s} + \frac{c_{3/2}}{r_s^{3/2}} + O\left(r_s^{-2}\right) \left[\times NRy\right]$ quantum zero-point motion $c_1 = -2.21$ $c_{3/2} = 1.63$ W. J. Carr Jr., *Phys. Rev.* **122**, 1437 (1961)

Quantum Monte-Carlo

1.68

Fixed node Monte-Carlo GS energy • polarized method: liquid 1.66 $(E-c_1/r_9)r_8^{-3/2}$ 1.64 solid O Ð B. Tanatar and D. M. Ceperley *PRB* **39**, 5005 (1989) 1.62 unpolarized liquid 1.60 0 20 ŧΟ 60 80 100 120 $\mathbf{r}_{\mathbf{s}}$ rs $r_{\rm s} = 37 \pm 5$

Semiconductor heterostructures

Since the '70s it is possible to fabricate 2D electron gas in semiconductor devices.

Example: quantum point-contact Electron density and r_s are varied through voltage gates.

Unexpected metallic behavior in 2D

In ultra-clean heterostructures: r_s can reach ≈ 40

Observed metallic behavior at intermediate r_s

- S.V. Kravchenko *et al.*, *PRB* **50**, 8039 (1994)
- J. Yoon *et al.*, *PRL* **82**, 1744 (1999)

Hybrid phase in QMC

mixed liquid-solid behavior

H. Falakshahi, X. Waintal: Phys. Rev. Lett. 94, 046801 (2004)

Theory for intermediate r_s Still mainly speculations...

- Andreev-Lifshitz « supersolid » state (relation with He-physics)
- Inhomogeneous phases, stripes and bubbles (*B. Spivak*)

Relation with the physics of high- T_c cuprates and with Hubbard model (high lattice filling, contact interaction).

Lattice model

N spinless fermions on $L \times L$ square lattice with periodic boundary conditions (lattice spacing s): $\mathbf{H} = t \cdot \left(4N \cdot \sum_{\langle i,j \rangle} \hat{c}_i^{+} \hat{c}_j \right) + \frac{U}{2} \cdot \sum_{i \neq j} \frac{\hat{n}_i \hat{n}_j}{d_{ij}} + W \sum_j \varepsilon_j \hat{n}_j$ disorder discrete Laplacian THE r_s AND r_l PARAMETERS: the *t* and *U* parameters of The r_s is $r_s = \frac{a}{a_B} \rightarrow \frac{r_l}{2\sqrt{\pi N}}$ is $U = \frac{e^2}{s}$ $t = \frac{\hbar^2}{2ms^2}$

Persistent current

Longitudinal and transverse currents

•local:
$$j_j^{long}(\Phi) = 2 \operatorname{Im} \left\langle \Psi_0 \middle| c_j^+ c_{j+(1,0)} e^{2\pi i \Phi/L} \middle| \Psi_0 \right\rangle$$

•total:
$$I_{long} = \frac{1}{L} \sum_{j} j_{j}^{long} \sim \Delta E_{0}(\Phi) = E_{0}(\Phi = 0) - E_{0}(\Phi)$$

Transverse current is analogous.

Persistent currents with disorder

- Effects of an infinitesimal disorder: new lattice perturbative regime
 - Ballistic motion
 - Coulomb Guided Stripes
 - Localization if the Wigner crystal

Strong interaction, lattice regimes

Can be relevant in real materials e.g. Cobalt-oxides

 $(Na_{x}CoO_{2})$

- effective mass: $m^*/m = 175$
- relative dielectric constant: $\varepsilon_r = 20$
- lattice spacing s = 2.85 Å
- carrier density depends on Na⁺ concentration

Lemmens et al., cond-mat/0309186

Lattice perturbation theory when $t \rightarrow 0$ Example: the persistent current

 $H = t \cdot \left(4N \cdot \sum_{\langle i,j \rangle} c_i^{+} c_j \right) + \frac{U}{2} \cdot \sum_{i \neq j} \frac{n_i n_j}{d_{ij}}$ $E(\Phi = 0) = -2t_{eff} \left(\cos K_x + \cos K_y \right)$ $E\left(\Phi = \frac{\Phi_0}{2} \right) = -2t_{eff} \left(\cos \left(K_x + \frac{N\pi}{L} \right) + \cos K_y \right)$ $I_{lattice} \sim \left| E(\Phi = 0) - E\left(\Phi = \frac{\Phi_0}{2} \right) \right| \approx t_{eff} \frac{9\pi^2}{L^2}$

where *teff* describes the rigid hopping of the three particle « molecule »

$$t_{eff} = \frac{1296}{49} \frac{t^3 L^6}{U^2 \pi^2}$$

Ballsitic motion (BWM)

Effective Hamiltonian:

Coulomb Guided Stripes (CGS)

Disorder correction in the effective Hamiltonian:

N=3 L=9 W=1 t=1 U=1000

current of a collective motion

transverse current:
$$I_{trans} = I_{long}$$

Localized Wigner Molceule (LWM)

Standard perturbation therory:

$$I_{long} \sim \Delta E_0(\Phi) \sim \frac{t^L L^{3L-3} \cos(2\pi\Phi)}{U^{L-1}}$$

current of independent particles

$$N=3 L=6 W=20 t=1 U=1000$$

transverse current: $I_{trans} = 0$

Numerical check of the different regimes

Phase diagram for weak disorder

In case of long-range interaction, lattice models without disorder exhibit a latice-continuum transition.

Continuum perturbation theory when $r_s \rightarrow \infty$ Zero point motion in the vibrating mode of the molecule

$$\mathbf{H} \approx -\frac{\hbar^2}{2m} \left(\nabla_1^2 + \nabla_2^2 + \nabla_3^2 \right) + E_{el} + \mathbf{X} \hat{\mathbf{M}} \mathbf{X} \Rightarrow$$

$$H \approx -\frac{\hbar^{2}}{2m} \sum_{\alpha=1}^{6} \frac{\partial^{2}}{\partial \chi_{\alpha}^{2}} + E_{el} + 10 B(\chi_{3}^{2} + \chi_{4}^{2}) + 4B(\chi_{5}^{2} + \chi_{6}^{2})$$

where $B = \frac{\sqrt{6}}{24} \frac{e^2 \pi}{D^3}$ Long

Longitudinal modes Transverse modes

2nd order expansion around equilibrium

$$E_{\mathbf{K}=0} = E_{el} + \hbar (\omega_L + \omega_T) \qquad \qquad \omega_L = \sqrt{\frac{20 B}{m}} \qquad \qquad \omega_T = \sqrt{\frac{8B}{m}}$$

Limit for the zero point motion

100 r

10

 $F_2(r_1)$

N = 3

10

 E_0 : ground state energy F_N : scaling function Example: Lattice behavior: Three spinless fermions on $L \times L$ lattice $E_0 - E_{el} = 4Nt$ L = 18L = 15L = 12Harmonic vibration of the L=9solid in the continuum: L = 6 $F_3 = 0.2327 \sqrt{r_1}$ \mathbf{r}_1 100 1000 10000

$$r_l = UL/t$$

Persistent currents with disorder

Do we see similar thing with disorder?

- Effect of an intermediate disorder in the continuum limit:
 - Coulomb guided stripes
 - Level crossing and supersolid behavior

Crossover regime Disconnected current and density *N*=3 *L*=9 *W*=1 *t*=1 *U*=15 *N*=3 *L*=9 *W*=1 *t*=1 *U*=7 Legett's rule: 1D motion diamagnetic means even number of particles Sign of supersolid

Level crossing & strong disorder

Phase diagram (N=3)

Conclusion

- In the presence of a weak disorder, we have identified for large *U/t* three lattice regimes, characterized by different power-law decays as a function of *U*, *t* and *W*, *L*, *N*.
- The physics of the continuum is also affected by disorder (signatures of the supersolid).