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Abstract

This text gives a coarse overview of the physics of strong field ionization and one formalism that

can be used to describe it – the so-called strong-field S-matrix. It also deals with the basics of

the Strong Field Approximation (SFA). The formalism is then used to develop the theory of high

harmonic generation, and crudely extended to multi-electron systems. Much work remains to be

done to go beyond the SFA, and develop consistent theory of HHG in multi-electron systems that

does not rely on the SFA.
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I. BASIC FORMALISM FOR IONIZATION

We shall begin with the single active electron approximation, which has worked extremely

well in atoms driven by low-frequency fields. We will discuss how to include many electrons

later – and this is far from done at the moment.

Moreover, we shall first focus on the ionization part, because it is the key component of

what we need to do for the harmonic project.

The formal solution of the TDSE

i|̇Ψ〉 = Ĥ(t)|Ψ〉 (1)

is

|Ψ(t)〉 = e
−i

R t
ti

Ĥ(τ)dτ |Φi〉 = Û(t, ti)|Φi〉 (2)

Evaluating the exponential operator Û(t, ti) is a tedious task, no easier than solving the

TDSE. However, we will find good use to this formal solution very shortly.

Let us re-write Eq.(1) in a slightly different form,

i|̇Ψ〉 = Ĥ0|Ψ〉+ V̂ |Ψ〉 (3)

What I have done here is broken the full Hamiltonian H into two parts – H = H0 + V .

Often, H0 is taken as the field-free Hamiltonian and V (t) is taken as the interaction with

the laser field, V̂ = −d̂F(t), where d̂ is the dipole operator and F (t) is the electric laser

field. However, I could have broken H into any other pair, for example H = HV + U where

ĤV =
p̂2

2
+ V̂ (t) (4)

describes the interaction of a free electron with the laser field and U is the potential of the

ionic core. The separation of the Hamiltonian H(t) into two parts is known as ’partitioning’

of the Hamiltonian.

Our immediate goal is to relate the solution for the full Hamiltonian H to the solution

for the Hamiltonian H0, the latter presumably known. Let us write the TDSE with the

Hamiltonian H0

i|̇Ψ(0)〉 = Ĥ0|Ψ(0)〉 (5)

Its formal solution is

|Ψ(0)〉 = e−iĤ0t|Ψ(t = 0)〉 = e−iĤ0t|Φi〉 (6)
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where |Φi〉 is the same initial state of the system as above in Eq.2 and the index (0) means

that this solution applies to the Hamiltonian H0.

What is the relationship between Ψ(t) and Ψ(0)(t)? Direct substitution into the TDSE

Eq.(1) shows that its exact solution can be written as

|Ψ(t)〉 = |Ψ(0)(t)〉+ |∆Ψ(t)〉 = e−iĤ0t|Φi〉+ |∆Ψ(t)〉

|∆Ψ(t)〉 = −i

∫ t

ti

dt′e−i
R t

t′ Ĥ(τ)dτ V̂ (t′)e−iĤ0(t′−ti))|Φi〉 (7)

Substituting this into the TDSE shows that it does indeed work.

Let’s be frank: Eq.(7) does not look very inviting. However, it this this general – and

exact – expression where interesting approximations can be explicitly tried, sometimes based

on rigorous math and sometimes based on physical reasoning.

Let us look at the physics behind the expression Eq.(7). The system starts in the state

|Φi〉. During the time-interval before some moment t′ it evolves without interacting with

the laser field, as if the field was not there. This may look weird, but one can’t argue with

the exact expression. Besides, it is very convenient: if the initial state is an eigenstate of

the Hamiltonian H0 with energy Ei, all this evolution does is accumulates the phase due to

the energy, exp[−iEi(t
′ − ti)].

This quiet evolution ends at a moment t′ when the system is kicked by the instantaneous

laser field V (t′). To which state the transition occurs at this moment is anybody’s guess. It

is called a virtual transition and it can go anywhere – the energy conservation law need not

to be satisfied until the interaction is over. The single dipole operator hiding behind V̂ = r̂F

can induce single-photon transitions to the continuum states even when the photon energy

is much less than the binding energy (ionization potential) Ip. Such transitions do not yet

mean that the electron has become free – only that it is transiently populating continuum

states and may become free at some point when (or if) this virtual population becomes real,

that is, satisfying the energy conservation law.

From the moment t′ to the moment of observation t the evolution is under the action of

the full Hamiltonian, including both the laser field and the field-free potential.

At the moment we are going to look at ionization, which means that our final state is

the continuum state. If we are interested to find the transition amplitude from the initial

bound state Φi to some final continuum state Ψf , then the wavefunction must be projected

onto that state. The projection of Ψ(0)(t) onto Ψf is zero, and the transition amplitude afi
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is

afi(t) = 〈Ψf |Ψ(t)〉 = 〈Ψf |∆Ψ(t)〉 =

= −i

∫ t

dt′〈Ψf |e−i
R t

t′ Ĥ(τ)dτV (t′)e−iĤ0(t′−ti))|Φi〉 (8)

Once we decide to take a look at HHG, we will need to use the same amplitudes, as we shall

see later.

This expression is often refereed to as strong-field S-matrix. It is exact. No approxima-

tions have been made yet. Now let’s turn to approximations.

II. THE STRONG FIELD APPROXIMATION

Let us think about the physics of the situation in the strong low frequency field. ”Low

frequency” means ”compared with the characteristic response frequency” of the system –

the inverse of the excitation frequency. For most systems of interest it is in the deep UV, so

that the response time is few atomic units, or about 100 asec. Thus, the interaction with

the IR field would be in the low-frequency regime.

While the electron is in the initial – ground – state, not much is happening until it

manages to escape to the continuum at some t′, which could be pretty much any instant of

time. At this point in time the strong field takes the electron over and it starts to oscillate

in the field, possibly scattering on the parent ion. Can we put this physical picture into

the mathematical terms? Or, rather, can we use this picture to do something to the formal

expressions for the amplitude afi?

Once we realize that the ground state and the continuum are the two main participants

in the dynamics, the plan is rather clear. Indeed, in Eqs.(7,8) first the electron sits in

the ground state until the moment t′, at which point the laser field V (t′) kicks it to the

continuum. Now, while in the continuum, the electron is dominated by the laser field.

Therefore, instead of the exact propagator

exp(−i

∫ t

t′
Ĥ(τ)dτ)

we will use an approximate propagator that includes the laser field fully and exactly but

completely ignores the field-free potential of the system.

afi(t) ∼ −i

∫ t

dt′〈Ψf |e−i
R t

t′ Ĥv(τ)dτV (t′)e−iĤ0(t′−ti))|Φi〉 (9)
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where Hv is given by Eq.(4). This is the essence of the Strong Field Approximation. One

of the main reasons to make such as approximation – completely neglect the atomic (or

molecular) potential in the continuum – is that the propagator for the free electron in the

laser field

UV(t, t′) = e−i
R t

t′ ĤV(τ)dτ (10)

is known exactly. It is called the Volkov propagator. It corresponds to solving the TDSE

for the Hamiltonian HV(t), which in the length gauge is:

Ĥv(t) =
p2

2
+ xF (t) (11)

with x being the polarization direction of the laser field.

A. The Volkov Propagator and the classical connection

To understand how the Volkov propagator acts on the electron in the laser field, let us

see what would it do with the plane wave exp(ikr), which describes the free electron which

has the kinetic momentum k along the laser polarization.

All the free electron does in the laser field is oscillates. Classically, if at time t′ the

electron has kinetic momentum k′ = k(t′) (kinetic momentum k(t′) = mv(t′) is proportional

to the instantaneous velocity), then its kinetic momentum at any other time is

k(t) = k(t′)−A(t′) + A(t) (12)

where A(t) is the vector-potential of the electromagnetic field, which in the dipole approxi-

mation does not depend on spatial coordinate and is related to the electric field of the laser

pulse as F (t) = −Ȧ(t).

Note that

k(t)−A(t) = k(t′)−A(t′) = p = const (13)

The conserved quantity p is called the canonical momentum.

This purely classical picture shows up when we apply the quantum Volkov propagator to

the plane wave with the kinetic momentum k′ at the moment t′:

e−i
R t

t′ ĤV(τ)dτ |k′〉 = e−i
R t

t′ E(τ)dτ |k〉 (14)

5



Here the plane waves |k〉, |k〉 have different momenta related by the Eq.(12), and the instan-

taneous kinetic energy is

E(τ) =
1

2
[k−A(t) + A(τ)]2 =

1

2
[k′ −A(t′) + A(τ)]2

k = k′ −A(t′) + A(t) (15)

In terms of the conserved canonical momentum p, which is also equal to the kinetic

momentum of the electron after the laser field is switched off, the result can be re-written

as

e−i
R t

t′ ĤV(τ)dτ |p + A(t′)〉 = e−i
R t

t′ E(τ)dτ |p + A(t)〉 (16)

Thus, the coordinate part of the wavefunction has been changed, but the temporal phase

added is the same for all coordinates because the interaction (the laser field) is homogeneous.

This is the only reason we could replace the Hamiltonian operator in the exponent with the

energy.

The result above is exact and can be obtained in many ways. Let me now derive it using

the classical action and the semiclassical approach. While this route is not the simplest,

it gives you a very clear feeling for the quantum-classical connection. For simplicity of

notations, let me assume that the motion is one-dimensional, parallel to the laser field

polarization. Generalizing to 3D is easy and is a good exercise.

Our initial condition – the plane wave Ψ(x, t′) ∝ exp(ik′x) at the moment t′ has the nice

semiclassical form Ψ(x, t′) ∝ exp(iS) with the initial condition for the action SF (k′, x, t =

t′, t′) = k′x. So let us look for the solution of the TDSE in the form

Ψ(x, t) = eiSF (k′,x,t,t′)

SF (k′, x, t′, t′) = k′x (17)

The many arguments in SF denote the initial momentum, the initial time, and the coordinate

x at the moment t. The subscript F stands for ’full’ – it stresses that we have full classical

action that depends on initial and running times, coordinates, and momenta. The reason to

use this notation will become clear later, when a part of SF will be denoted as S, following

the tradition that has (unfortunately) entrenched itself in the strong field community and

leads to a lot of confusion when the component S of the full action SF is referred to as the

classical action.

6



Substituting this expression into the TDSE for the free electron in the laser field yields

exact equation for the action

−∂SF

∂t
=

1

2

[
∂SF

∂x

]2

+ xF (t)− i

2

∂2SF

∂x2
(18)

This equation differs from the classical Hamilton-Jacobi (HJ) equation for the action due to

the presence of the last term, which involves the second-order spatial derivative. It coincides

with the HJ equation if this term is equal to zero. This is precisely the case for the potentials

that depend on x linearly, which allows for solutions that also linearly depend on x.

Exact solution of Eq.(18), subject to the initial conditions above, is

SF = k′x + [A(t)− A(t′)]x− 1

2

∫ t

t′
dτ [k′ − A(t′) + A(τ)]

2
= k(t)x− 1

2

∫ t

t′
dτk2(τ) (19)

and is identical to the classical action for the free electron in the laser field.

B. Transition amplitudes in the SFA

Let the system start at the moment ti in the ground state Φi ≡ Φg with the energy

Eg = −Ip (and hence exp(−iĤ0(t
′ − ti)) = exp(+iIp(t

′ − ti)). The amplitude to find the

system with the momentum k at the time t, according to the general equation Eq.(8), is

a(k, t) = −i

∫ t

dt′〈k|e−i
R t

t′ Ĥ(τ)dτV (t′)eiÎp(t′−ti))|Φg〉 (20)

In the SFA, we replace the exact propagator between t′ and t with the Volkov propagator,

a(k, t) = −i

∫ t

dt′〈k|e−i
R t

t′ Ĥv(τ)dτV (t′)eiÎp(t′−ti))|Φg〉 (21)

Now we use the fact that have just learned how to propagate the plane wave in the laser

field, and apply this knowledge to the ’bra’:

〈k|e−i
R t

t′ Ĥv(τ)dτ = e−i
R t

t′ E(τ)dτ 〈k + A(t′)−A(t)| = e−i
R t

t′ E(τ)dτ 〈k(t′)| (22)

with the instantaneous kinetic energy

E(τ) =
1

2
[k−A(t) + A(τ)]2 =

1

2
[k′ −A(t′) + A(τ)]2 (23)

The SFA expression for the amplitude to find the system with the momentum |k〉 at an

instant t becomes

ak(t) = −i

∫ t

ti

dt′e−i
R t

t′ E(τ)dτ+iIp(t′−ti)〈k + A(t′)−A(t)|V (t′)|Φg〉 (24)
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where

E(τ) =
1

2
[k−A(t) + A(τ)]2 (25)

since we have fixed the momentum k at the instant t.

In the literature, the k, t, t′-dependent phase of this integral,

S(t, t′,k) =
1

2

∫ t

t′
dτ [k−A(t) + A(τ)]2 − Ipt

′ (26)

is often referred to as the classical action of the free electron in the laser field. It is a stretch

of the term, since it also includes the −Ipt
′, and misses the coordinate-dependent part. Often

you will find it written in terms of the canonical momentum p = k − A(t), which is the

conserved quantity and will stay unchanged at all times — that’s within the SFA, of course.

In this case the phase will look like

S(t, t′,p) =
1

2

∫ t

t′
dτ [p + A(τ)]2 − Ipt

′ (27)

In terms of action and the canonical momentum p, the SFA transition amplitude is

ap(t) = −i

∫ t

dt′e−iS(t,t′,p)−iIpti〈p + A(t′)|V (t′)|g〉 (28)

In future, if and when you come across such expressions, pay special attention to the meaning

of the momentum – is it canonical or kinetic.

Eqs.(24,28) are intuitive and clear. The electron sits in the ground state until t′ when it

makes (at this point still virtual) transition to the continuum. Then the electron moves in

the laser field, converting the virtual transition into real and oscillating – as the free electron

should. It accumulates the phase given by the integral of its instantaneous energy E(τ),

performed between the moment of birth t′ and the moment of observation t. The electron

finishes with the canonical momentum p, which dictates the initial kinetic momentum that

the electron populates at t′, k = p + A(t′).

There are several major problems with this result, all stemming from the main approxi-

mation of the theory - to neglect the effect of the Coulomb potential.

(1) During the transition to the continuum the electron will be liberated differently if

we include its interaction with the atomic core. After all, if it has to tunnel through the

barrier, the shape of this barrier is important – and it is heavily affected by the binding

potential. Thus, the ionization amplitude will be different. This problem can be corrected

by incorporating the effect of the Coulomb tail into the electron action.
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(2) The propagation in the continuum is also different: the electron not only oscillates

in the laser field, it can also scatter off the atomic core. This is not present in the SFA

formalism, but can be included additionally: The SFA result can be considered as the first

term in a perturbative expansion, with the atomic potential being a perturbation. The

corresponding new terms are often referred to as SFA2, and have been derived and analyzed

by M. Lewenstein et al, see Ref.[1].

(3) The Volkov propagator is sensitive to the gauge. The one in these notes is written in

the length gauge. In the velocity gauge where V̂ = p̂A+A2/2 the plane wave state |p〉 with

canonical momentum p stays the same between t′ and t. Physically, this is simply because

in the velocity gauge p refers to canonical, not kinetic momentum, and in the laser field the

canonical momentum of the free electron is a constant of motion. This does not lead to any

problems in the exact theory - i.e. if the electron was indeed free at all times. But in the

approximate theory this is not the case - the initial field-free ground state is not a state of

the free electron. The result is that SFA is not gauge invariant, which is bad news for a

theory.

However, the good news is that the gauge problem directly affects only the pre-exponential

terms in the amplitude, and keeps the major piece – which is the fast oscillating exponent

– intact. So with the exponential part we are more-or-less safe, at least as far as gauges go.

(4) Finally, by using the plane waves as continuum states, we have selected a basis which

is not orthogonal to the initial state of the system. In other words, in addition to all other

problems our basis set is also overcomplete: it includes all plane waves that already make up

a complete basis plus the extra state. The pre-exponential factor which include the bound-

free transition matrix elements suffers greatly – but the key exponential dependence stays

the same.

To summarize, SFA is wrong in so many ways that it violates every rule in the theory

book. But the physical picture that stands behind it is intuitive, clear, and compelling. As

a result, the SFA is used very widely, and it works very well for gaining qualitative and –

with proper modifications along the lines described first in Ref. [2] and further developed

by [3] – even quantitative insight into the physics of intense laser-matter interaction.
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III. STRONG-FIELD IONIZATION: EXPONENTIAL VS POWER LAW

Let us now use it to look at the dynamics of strong-field ionization, and see how expo-

nential dependence on the laser field strength typical for tunnelling turns into a power law

dependence commonly associated with multi-photon ionization.

Up to the global phase factor eiIp(t−ti) the SFA probability amplitude of populating the

field-free continuum state labelled by the canonical momentum |p〉 is

ap(t) = −i

∫ t

dt′e−iS(t,t′,p)〈p + A(t′)|V (t′)|g〉

S(t, t′,p) =
1

2

∫ t

t′
dτ [p + A(τ)]2 + Ip(t− t′) (29)

Let us assume that the field is linearly polarized, F cos ωt. Then the vector-potential is

A‖ = −F

ω
sin ωt = −v0 sin ωt

A⊥ = 0 (30)

Then, keeping only exponential accuracy, we obtain

a(p, t) ∼
∫ t

−∞
dt′ exp(−iS(p, t, t′)) (31)

where

S(p, t, t′) =

(
Ip +

1

2
p2
⊥

)
(t− t′) +

+
1

2

∫ t

t′
dτ

[
p‖ − v0 sin ωτ

]2
(32)

is commonly refereed to in the literature as the action integral (even though, rigorously

speaking, it is not quite that), v‖ and v⊥ are the velocity components parallel and perpen-

dicular to F and v0 = F/ω is the velocity amplitude of electron oscillations.

You already see that having non-zero perpendicular momenta is like increasing Ip. Hence,

for now p⊥ can be set to zero. If we are interested in the probabilities of populating non-zero

p⊥, all we need to do is take the formula for p⊥ = 0 and replace Ip with Ip + p2
⊥/2.

This expression is the standard SFA expression for the ionization amplitudes. The next

step is to evaluate the integral.
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A. The saddle point approximation and the classical connection

To evaluate the integral, we need to understand what does the phase S(p, t, t′) in this

integral do. The best way to approach this is to re-write S in terms of dimensionless

variables: let us pull v0 out of the brackets of Eq.(32), and also introduce phase φ = ωτ as

a new dimensionless integration variable:

S(p, t, t′) =
Ip

ω
(ωt− ωt′) +

v2
0

2ω

∫ ωt

ωt′
dφ [u− sin φ]2 (33)

where the dimensionless momentum is u = p‖/v0.

We see that there are two important parameters in the phase – N = Ip/ω and

v2
0

2ω
= 2

Up

ω
= 2Z (34)

where Up = F2/4ω2 is the ponderomotive energy – the laser-cycle-average kinetic energy of

the oscillating electron, and Z is known as the Reiss parameter. The number N = Ip/ω tells

us roughly how many photons are required for ionization.

In strong low-frequency fields both parameters are very large, meaning that the phase

is changing very rapidly with time. For example, at intensities around 1014W/cm2 and for

w = 1.56eV, which corresponds to the laser wavelength of 800nm, the characteristic value

of the second term in the phase, over one laser cycle, is about 10 π, which is a very large

phase change over one laser cycle.

This is very good news. If the phase is large and oscillates quickly, we can use the

saddle-point method to calculate the integral.

The saddle-point method proceeds as follows. First, one looks for the values of the

integration variable t′ where the phase of the integrand is stationary, that is, the derivative

with respect to t′ is zero. In our case we have

S(p, t, t′) = Ip(t− t′) +
v2

0

2

∫ t

t′
dτ [u− sin ωτ ]2

∂S(p, t, t′)

∂t′
= −Ip −

v2
0

2
[u− sin ωt′]

2
= 0 (35)

Solving this equation is the key component of the calculation, and we will turn to it shortly.

Once we find the stationary point t′in which satisfies the above equation, we can move to the

second step. (In case you are wondering about the sub-script ’in’, hold on a bit).
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To make notations simpler, I will drop the arguments p and t from S(p, t, t′), keeping

only t′. The second step of the calculation is to expand exp(−iS(t′)) in Taylor series around

the stationary phase point t′in. Since the first derivative w.r.t t′ at this point is zero, the

second derivative S ′′ is kept and the integral becomes∫
dt′e−iS(t′) ' e−iS(t′in)

∫
dt′e−i

S′′(t′in)

2
(t′−t′in)2 (36)

Now one uses the fact that the phase changes quickly and changes a lot. Hence, the integral

converges quickly and the limits of integration with respect to ξ = t′ − t′in in the vicinity of

the stationary point are extended to ±∞. The integral is then well-known, and the answer

is ∫
dt′e−iS(t′) ' e−iS(t′in)

√
2π/iS ′′(t′in) (37)

The pre-exponential factor is not important at this stage, since we have already dropped

many pre-exponential terms when writing the amplitude as in Eq.(29). Moreover, the pre-

exponential term one finds in the SFA is always quantitatively wrong. It is the exponential

dependence that gives the qualitative insight we are looking for.

There could be many stationary phase points, and one needs to sum the contributions

from all of them, so the full answer is∫
dt′e−iS(t′) ∼

∑
t′in

e−iS(t′in) (38)

Each stationary phase point corresponds to an ionization burst that leads to the specific

final momentum u (in dimensionless units) at the detector.

The phase S(t′in) has real and imaginary parts, so let us write

S(p, t, t′in) = ReS(p, t, t′in)− iσ(p, t, t′in) (39)

In a long laser pulse where all cycles are the same, different stationary points t′in separated

by an integer number of laser cycles yield the same imaginary part. Thus, the sum of the

contributions of all stationary points to the total ionization amplitude is:

a(p, t) ∝ e−σ(p)
∑
t′in

exp [−iReS(p, t, t′in)] (40)

In a long laser pulse, where many cycles are the same, and many ionization bursts are

identical, the interference of many stationary phase points separated by an integer number
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of laser cycles leads to minima and maxima in the electron spectra. Since the ionization

bursts repeat every laser cycle, they form a train of electronic wavepackets with the laser

cycle being the ’repetition rate’ in the train. In the energy domain, this train leads to peaks

separated by the photon energy. The maxima are nothing but the above threshold ionization

(ATI) peaks.

Now, having understood the time-domain picture of strong-field ionization for many laser

cycles, let us finally turn to the contribution from a single stationary point, i.e. from a single

ionization burst that produces electrons with the canonical momentum p = v0u. To find the

ionization rate for each value of p = v0u, we will need to do as follows.

First, we need to solve the stationary point equation

v2
0

2
[u− sin ωt′]

2
= −Ip

[u− sin ωt′]
2

= − Ip

2Up

= −γ2 (41)

where γ is the Keldysh parameter, and find the stationary point t′in. It is clear that the

solutions of this equation are complex-valued: no real-valued t′ can give negative square,

and we should look for the complex solutions t′in = t′out + iτT .

Second, we need to calculate the value of the phase S at this point, and then find the

imaginary part of this phase σ(p) which will give us the corresponding rate,

Γ(p) ∝ e−2σ(p) (42)

This expression is written with only exponential accuracy, and it is a standard semi-classical

expression for the transmission probability – but written for the time-dependent and not for

the time-independent problem.

What is the meaning of Eq.(41) and these complex times? The left-hand side of the

equation is the kinetic energy of the electron. The kinetic energy has negative value when

the particle enters the classically forbidden region as it tunnels from the binding potential

well through the barrier created by the oscillating electric field.

Appropriately, the velocity under the barrier is imaginary,

u− sin ωt′ = ±iγ (43)

Since the motion under the barrier occurs with imaginary velocity, it must proceed in imag-

inary time, so that the product of velocity and time (distance) has a chance of being real,
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or at least having a growing real part, allowing the electron to come out of the barrier. The

associated semiclassical trajectory enters the classically forbidden region at t′in = t′out + iτT .

As we move along the imaginary time axis from t′ = t′in = t′out + iτT towards t′ = t′out on the

real time axis, decreasing the imaginary part from iτT to zero and keeping the real part t′out

fixed, the associated electron trajectory

x(t′) =

∫ t′

t′in

dτv0[u− sin ωτ ] (44)

evolves towards the exit point from the barrier. Which of the two signs on the left hand side

of Eq.(43) should we take? The decision must ensure that the semiclassical transmission

amplitude exp(−σ(p)) is exponentially small and not exponentially large, dictating that τT

is positive, and hence we write

u− sin[ωt′out + iωτT ] = −iγ (45)

Eq.(45) can be solved for any u, but for the moment I will limit the discussion to u = 0.

The reason is simple: these values dominate the overall ionization rate, integrated over all

u = p/v0. Indeed, we will see very quickly that for u = 0 the complex time t′in = t′out+iτT has

tout = 0. Thus, for u = 0 the electron emerges from the classically forbidden region, where it

has been travelling in complex (imaginary) time, at the maxima of the instantaneous electric

field F cos ωtout = F. This is precisely when the strong-field ionization is peaked. Thus, the

rate for u = 0 corresponds to the rate at the peaks of the field, and it will dominate the total,

cycle-averaged, ionization rate. With exponential accuracy, this is all we need to know.

Our equation becomes

sin ω(iτT ) = iγ (46)

or

sinh(ωτT ) = γ (47)

Remembering that

sinh(ωτT ) ≡ eωτT − e−ωτT

2
(48)

and denoting exp(ωτT ) = z, we find the quadratic equation

z − 1

z
= 2γ (49)
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with the solution

z = γ +
√

γ2 + 1

ωτT = ln[γ +
√

γ2 + 1] (50)

Let us now look at the two limits of this expression. For γ � 1 we have

τT =
γ

ω
(51)

This expression gives a clear meaning to the γ parameter in terms of the so-called ’tunnelling

time’ τT : small γ mean that during tunnelling the barrier has no time to oscillate: ωτT � 1.

Once we found the stationary phase point, we can now calculate the corresponding action

integral:

S(p, t, t′) = Ip(t− iτT ) +
v2

0

2

∫ 0

iτT

dτ [sin ωτ ]2 +
v2

0

2

∫ t

0

dτ [sin ωτ ]2 (52)

We note that by introducing the new integration variable τ = iξ the integral term can be

re-written as ∫ 0

iτT

dτ [sin ωτ ]2 = i

∫ τT

0

dξ sinh2(ωξ) (53)

and hence the imaginary part σ = −ImS is

σ = IpτT −
F2

2ω2

∫ τT

0

dξ sinh2(ωξ) (54)

Once we calculate the remaining integral, we find that in the limit γ � 1 we get exact

analogue of a DC tunnelling exponent:

Γ ∝ exp

[
−4

3
IpτT

]
= exp

[
−2

3

[2Ip]
3/2

F

]
(55)

Let us now look at the opposite limit of very large γ � 1. The integral we need to

calculate and the imaginary part of the action are given by the same general expression as

before,

σ = IpτT −
F2

2ω2

∫ τT

0

dξ sinh2(ωξ) (56)

but now

τT =
1

ω
ln[γ +

√
γ2 + 1] ≈ 1

ω
ln(2γ) (57)
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Calculating the integral, we find that in the limit γ � 1 the ionization rate is given by

the expression familiar from the time-dependent perturbation theory for the multi-photon

ionization process:

Γ ∝ F2Ip/ω ∝ IIp/ω (58)

If we do the calculation for the general case of arbitrary γ, we can obtain a general

expression for the ionization rate

Γ ∝ exp

[
−F2

ω3

[(
γ2 +

1

2

)
ωτT −

1

4
sinh(2ωτT )

]]
(59)

where ωτT = ln[γ +
√

γ2 + 1] = Arcsh(γ).

IV. SEMICLASSICAL PICTURE OF HIGH HARMONIC GENERATION

Now let us see how the SFA theory can be applied to such highly non-perturbative

phenomenon as the generation of very high harmonics of intense incident radiation.

First, let us recall where these harmonics come from. For an experimentalist, they come

from a little gas jet sitting in a vacuum chamber and irradiated by a laser. For a theorist,

harmonics come from the Fourier components of laser-induced polarization P (t) in the gas,

P(t) = n0d(t) = n0〈Ψ(t)|d|Ψ(t)〉 (60)

where n0 is the number density. All we need is Ψ(t), the wavefunction we already know

from the SFA theory:

Ψ(t) = ag(t)|Φg〉+

∫
dk|k〉ak (61)

where |g〉 is the ground state.

In terms of the continuum amplitudes for different kinetic momenta k, the expression for

the dipole can be re-written as

d(t) =

∫
dk〈Φg|d|k〉ak(t) + c.c. (62)

There is no need to assume SFA in this expression – k are simply states with asymptotic

momentum k at the detector.

Now, using the SFA expressions for the amplitudes ak(t), and assuming that the ionization

is not too strong and hence most of the amplitude always resides in the ground state, hence

16



ag ≈ exp[+iIp(t− ti)], we get

d(t) = −i

∫ t

dt′
∫

dk〈Φg|d|k〉e−i
R t

t′ E(t′′)dt′′−iIp(t−t′)

F cos ωt′〈k + A(t′)−A(t)|d|Φg〉+ c.c. (63)

This rather lengthy and cumbersome expression can be simplified quite a bit if we do

three things:

(1) recall that the pre-exponential factors are wrong anyway and drop them;

(2) recall that the exponential dependence on k is quadratic and hence the integral over dk

is from a Gaussian function;

(3) recall that the integrals from Gaussians, even with very involved quadratic expressions,

can be easily performed once we find the points at which the phase of the exponent is

stationary with respect to all the integration variables.

Before doing that, I will add a third integral into this already involved expression. I want

a specific Fourier component of the dipole, at a frequency Ω:

d(Ω) ∼ −i

∫
dt

∫ t

dt′
∫

dk

e−i
R t

t′ E(t′′)dt′′−iIp(t−t′)+iΩt〈k + A(t′)−A(t)|dF cos ωt′|Φg〉 (64)

where I dropped all matrix elements, and also left only the positive Ω part of the spectrum.

This d(Ω) is the harmonic response of single atom.

The triple integral (actually, five-fold is you count that there are three integrals over the

momentum) is very transparent and logical. The electron can be promoted to the continuum

at any time t′ – thus the integral over t′. It can emit a photon with frequency Ω at any

moment t – thus the integral over t. In principle, it can be in any state |k〉 at the moment

of emission – thus the integral over dk. The exp(+iΩt) corresponds to the emission of the

photon Ω, while the rest of the phase is related to the electron absorbing (changing) energy

while moving in the continuum. The energy is measured from the ground state (thus the

Ip) part, which is logical since the harmonic emission concludes in the ground state.

Let us look at the phase in this integral: is it fast oscillating or not? If the phase

accumulation is many π over one cycle of the driving field, that would be fast. This is

indeed the case when

Up = F2/4ω2 � ω (65)
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where Up is the so-called ponderomotive energy – the average energy of free electron oscil-

lations in the laser field. Since the phase

Θ (t, t′, p) =

∫ t

t′
E(τ)dτ + Ip(t− t′)− Ωt

=

∫ t

t′
dτ

1

2
[p + A(τ)−A(t)]2 + Ip(t− t′)− Ωt (66)

is oscillating fast, let us look for its stationary points. The phase depends on all three

integration variables. Hence, we have to find first derivatives with respect to all these three

variables and find those points where all are equal to zero. Calculating the partial derivatives

of Θ, we obtain the following conditions:∫ t

t′
dτ [k + A(τ)−A(t)] = 0

1

2
[k + A(t′)−A(t)]2 + Ip = 0

1

2
k2 + Ip = Ω (67)

These equations can be re-written in a very transparent form:

x(t) = x(t′)

1

2
k2(t′) + Ip = 0

1

2
k2(t) + Ip = Ω (68)

The first condition says that, in order to emit the photon, the electron must come back

to the same spot from where it left as it started to tunnel out. Making a very reasonable

assumption that the electron departed from the core, we see that the electron must come

back to the same core of the same parent ion, after oscillating in the laser field.

The second condition is already familiar to us. It cannot be satisfied classically, and

describes tunnelling. The corresponding moment t′ = t′in is the moment when the electron

enters the classically forbidden region, just like in the case of ionization which we have

considered above. Its imaginary part τT determines the tunneling time, and its real part t′out

is determined by the condition

k(tout) = k(t) + A(tout)−A(t) ≈ 0 (69)

in the limit of large Up, when γ2 ≡ Ip/2Up � 1.
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The third condition is nothing but the energy conservation law for the emission of the

harmonic photon Ω.

So now we have a simple classical physical picture emerging from the five-fold integral.

This picture is of an electron tunnelling out and appearing in the continuum at some time

tout. It emerges from under the barrier with nearly zero velocity. Then it moves in the

laser field until it comes back to the same parent ion. Here its instantaneous kinetic energy

k2(t)/2 is converted into the photon by recombining into the ground state. The photon

energy is Ω = p2(t)/2 + Ip.

The most important result that follows from the classical equations and its quantum

counterpart for harmonic generation is that the maximum electron energy at the return

scales with Up as 3.17Up. One can easily check it by taking different possible moments of

birth tout, setting classical initial conditions to zero (both position and velocity) and finding

the instantaneous kinetic energy at the moment of return t, defined as the moment when

the electron coordinate is equal to zero again. The upper limit on the energy at the moment

of return implies that classically harmonic spectra cannot extend beyond the cut-off at

Ip + 3.17Up. Quantum mechanically, harmonics at higher energies are still possible - but

require complex t to satisfy the energy conservation law. As the stationary phase point for

t-integral moves into the complex plane, the contribution dies out exponentially.

Turning back to the quantum analysis, once we know the stationary phase points that

satisfy the equations above, we can easily find the answer for the full integral. In the limit

γ2 < 1, the five-fold integral reduces to the product of three amplitudes for ionization

(tunnelling), propagation, and recombination:

d(Ω) ∝ Arec(t(Ω))Aprop(tout(t) → t)Aion(tin → tout(t)) (70)

This factorized form of the expression for the induced dipole d(Ω) appears as a natural

consequence of the saddle point method, which implies that the result is proportional to the

integrand taken at the stationary point. The ionization amplitude is given by the imaginary

part of the phase, exp(−σ), just like for ionization. It corresponds to time-integral for the

phase S(k, t, t′) from t′ = tin to tout. The propagation amplitude arises from the momentum

integral and depends on t, t′. It contains the next component of the factor exp(−iS(k, t, t′)),

which corresponds to the integral from t′ = tout to t. It also contains the factor (t− tin)
−3/2,

which describes the spreading of the continuum wavepacket and results from integration over
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the momenta k. The recombination amplitude is given by the transition dipole between the

continuum state with momentum k(t) and the ground state.

V. BEYOND THE SFA AND SINGLE ACTIVE ELECTRON

The Strong Field Approximation (SFA) has many drawbacks and ”wrongs” that fly right

into the face of any rigorous quantum theory, and it continues to amaze me that one of

the key original papers – that by L. V. Keldysh from 1965 [5] – was published in such a

puritan and picky Soviet journal as the Journal of Experimental and Theoretical Physics.

Fortunately, the SFA gets most of the basic physics right, providing excellent basis for

understanding the fundamentals of strong-field processes. Moreover, it can be modified and

turned into a quantitatively accurate theory, see [2, 3, 13]

Importantly, the SFA allows us to see simple classical pictures that underlie the seemingly

very complex strong-field dynamics. This classical picture is due to P. Corkum and F. Brunel

[16, 17], and it was pre-dated by the quantum insight developed by M. Kuchiev [14] and

by the key numerical results of K. Schafer, J. Krause and K. Kulander [15]. By now, the

new students in the field begin with the simple classical picture, taking it for granted. It

is, however, important to know how this picture emerged from the combination of quantum

and classical analysis and the experimental results. I strongly recommend to begin with the

papers of F. Brunel [17] and M. Kuchiev [14] and K. Schafer et al [15], then turning to the

seminal paper by P. Corkum.

In addition to the SFA [5–9], more accurate and versatile but technically more complicated

approach has been developed in the 60-th by V. S. Popov, A. M. Perelomov and M. V.

Terent’ev – the so-called PPT theory [10, 11]. Finally, I must mention the effective range

theory (ERT) of M. Frolov, N. Manakov, and A. Starace [12], which grew out of the earlier

work of L. Rapoport, N. Manakov, and B. Zon. It is essentially exact for the short-range

binding potentials (such as those of negative ions). It also shows that the PPT theory, when

applied to the short-range potentials, is almost exact – the only thing it is missing is the

Stark shift of the ground state. Unlike the SFA, the ERT and the PPT are gauge-invariant.

The insight gained from these theories is instrumental in turning the highly approximate

SFA models into quantitatively accurate. The corresponding ideas were suggested in [2]

and very successively used by T. Brabec, F. Krausz, and V. Yakovlev already in late 90-th
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and early 2000 to describe experiments on high harmonic generation and the production

of attosecond pulses in atomic gases (see e.g. [13]). The version known as the quantita-

tive rescattering theory, developed by C. D. Lin, T. Morishita and co-workers (probably

without knowing about the work of T. Brabec and co-workers a decade earlier) has been

very successful in describing many aspects of strong-field experiments in molecules [3]. It

shows how well one can do when armed with clear understanding of the basic underlying

physical mechanisms. For example, in case of high harmonic generation, the approximate

SFA expression can be turned into quantitatively accurate by substituting correct ionization

amplitudes and proper recombination dipoles, which take into account the structure of the

atom or the molecule.

VI. HHG DIPOLE FOR MANY ELECTRONS, INCLUDING LASER-INDUCED

DYNAMICS IN THE IONIC CORE BETWEEN IONIZATION AND RECOMBI-

NATION

In multielectron systems there are multiple ways of energy sharing between the liber-

ated electron and ion left behind. The ion can be left in its ground or excited electronic

states. On the formal language these options correspond to different ionization channels.

Multiple ionization channels give raise to multiple HHG channels: the returning electron

recombines with the ion in the ground or excited state. Multiple HHG channels present

different pathways connecting the same initial and final state - ground state of the neutral

system - via different electronic states of the ion (see Fig.??). Thus, high harmonic emission

in multielectron systems results from multichannel interference [? ], i.e. the interference of

harmonic lights emitted in each channel. These interference naturally records multielectron

dynamics excited upon ionization and probed by recombination [? ]. How important are

these multiple channels? How hard it is to excite the ion upon strong field ionization?

In strong-field ionization is exponentially sensitive to the ionization potential Ip, sug-

gesting that after ionization the molecular ion is left in its ground electronic state (electron

removal from highest occupied molecular orbital (HOMO) in the Hartree-Fock picture).

However, multiple ionization channels can be very important in molecules due to geometry

of molecular orbitals and proximity of excited electronic states in the ion to the ground

state.
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The formalism described above in sections 1.1-1.7 is essentially a single-channel picture

of HHG. Therefore, it can easily be extended to multiple channels.

We first introduce the Hamiltonian of an N-electron neutral molecule interacting with a

laser field:

HN = TN
e + V N

C + V N
ee + V N

l , (71)

V N
C =

i=N∑
m,i=1

1/|Rm − ri|, (72)

V N
ee =

N∑
i6=j

1/|ri − rj|, (73)

V N
l =

∑
i

E(t) · ri. (74)

Here the nuclei are frozen at their equilibrium positions Rm, index m enumerates the nuclei,

superscript N indicates the number of electrons involved, TN
e is electron kinetic energy

operator, V N
C describes the Coulomb potential of the nuclei, V N

ee describes the electron-

electron interaction, and V N
l describes the interaction with the laser field. We will also

use the Hamiltonian of the ion in the laser field HN−1 and the Hamiltonian of an electron

He interacting with the laser field, the nuclei, and the (N − 1) electrons of the ion, He =

HN −HN−1. The exact solution of the Schroedinger equation for N-electron wave-function

of the molecule, which is initially in the ground electronic state ΨN
g (r):

i
∂

∂t
ΨN(r, t) = HNΨN(r, t), (75)

ΨN(r, t = 0) = ΨN
g (r) (76)

can be written as [? ]

ΨN(r, t) = −i

∫ t

0

dt′UN(t, t′)V N
l (t′)UN

0 (t′, 0)ΨN
g (r) + UN

0 (t, 0)ΨN
g (r). (77)

Here the N-electron propagators UN
0 and UN are determined by i∂UN

0 /∂t = HN
0 UN

0 , where

HN
0 is the field-free Hamiltonian of the molecule HN

0 = HN − V N
l and i∂UN/∂t = HNUN ,

is a full propagator. The harmonic dipole is

D(t) = −i〈UN
0 (t, 0)Ψg(r)|r|

∫ t

0

dt′UN(t, t′)V N
l (t′)UN

0 (t′, 0)ΨN
g (r)〉+ cc. (78)

Just like in one-electron case, the propagation without the laser field can be easily solved

if the energy |Eg| and the wave-function of the initial state of a neutral molecule or an atom
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FIG. 1: Left panel: Subcycle dynamics in the N+
2 ion aligned at θ = 50o to the laser field polar-

ization: populations of the field-free ionic states X (blue), A (red), and B (green) in I=0.8 1014

W/cm2, 800 nm laser field. Right panel: Electronic states of N+
2 ion.

FIG. 2: Left panel: Diagonal channel in HHG, associated with ionization from and recombination

to the same orbital. Right panel: Cross-channel in HHG associated with ionization from and

recombination to different orbitals. This channel is due to real excitations induced by the laser

field between ionization and recombination.

are known:

UN
0 (t, 0)Ψg(r) = e−iEgt′Ψg(r), (79)

The full propagation UN(t, t′) is just as hard as the solution of the original equation (??) with

the multielectron Hamiltonian (??). To simplify the analysis we will make the following two

approximations. First, we will neglect the correlations between the electrons in the ion and

in the liberated electron after ionization. In this case the full propagator factorizes into two

independent parts describing the evolution of the continuum electron and the evolution of the

ion in the laser field between ionization and recombination: UN(t, t′) ' UN−1(t, t′)Ue(t, t′).

Second, we will keep the analysis at the level of the SFA for the continuum electron, just

like we did in the single electron case considered above: Ue(t, t′) ' Ue
V (t, t′). These two

approximations can be further improved by including electron-electron correlations pertur-

batively [? ] and using the eikonal-Volkov states [? ] for the continuum electron. These

states include the laser field fully, the interaction of continuum electron with the core in the

eikonal approximation and the coupling between them [? ].

Just like in one-electron formalism considered above, we will introduce identity resolved

on the momentum states of continuum electron and electronic states of the ion [? ]

I =

∫
dk

∑
n

A|n(N−1) ⊗ pn
t 〉〈 n(N−1) ⊗ pn

t |A, (80)

The harmonic dipole reduces to

D(t) = −i

∫ t

0

dt′
∫

dp〈eiEg(t−t′)Ψg(r)|r|UN−1(t, t′)|n(N−1)〉Ue
V (t, t′)|pt〉

×〈pn
t n

(N−1)|V N
l (t′)|ΨN

g (r)〉+ cc. (81)
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The laser-induced dynamics of bound states of the ion is described by the propagator

UN−1(t, t′)|n(N−1)〉. It can be easily solved if the dipole couplings dnm between these states

and the eigen energies Em of all essential states are known. The time-dependent ampli-

tude amn(t) of excitation from state n at moment t′ to state m at the moment t given by

amn(t) = 〈m(N−1)|UN−1(t, t′)|n(N−1)〉 is a solution of the equation:

dAn

dt
= [H + V(t)] An, (82)

where H =


E1 0 0

0 E2 0

0 0 E3

 is the Hamiltonian of the ion, including several (three in the

present case) ionic states, V(t) =


0 V12 V13

V21 0 V23

V31 V32 0

 is the matrix describing coupling between

the different essential states, Vnm = dnmF (t) and An =


a1n(t)

a2n(t)

a3n(t)

 is the vector representing

the amplitudes of laser induced excitations of all the essential states starting from state n.

Introducing the channel specific Dyson orbital ΨD
n (r) ≡ 〈n(N−1)|ΨN

g (r)〉 we can re-write

the multielectron dipole Dmn corresponding to leaving the ion in the state n after ionization

and recombination into the state m in the form very similar to one -electron dipole:

Dmn(t) = −i

∫ t

0

dt′
∫

dmpd∗(p + A(t))amn(t)e−iS(p,t,t′)E(t′)dn(p + A(t′)), (83)

dn(p + A(t)) ≡ 〈ei(p+A(t))r|r|ΨD
n (r)〉, (84)

S(p, t, t′) ≡ 1

2

∫ t

t′
(p +A(τ))2dτ + Ip(t− t′). (85)

Total harmonic signal results from coherent superposition of dipoles associated with each

ionization-recombination channel:

D(t) =
∑
mn

Dn(t) (86)

note that substantial subcycle transitions (Fig.??) corresponding to laser-induced dynamics

of the ion between ionization and recombination have crucial impact on harmonic radiation.

They lead to the appearance of the cross-channels in HHG (off-diagonal channels Dmn in
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equation (??)) since the state of the ion changes between the ionization and recombination.

These channels are substantial in high harmonic generation from N2 molecules [? ].

In recent HHG literature the language of molecular orbitals arising in the Hartree-Fock

picture is often used. Loosely speaking removing electron from the highest occupied molec-

ular orbital (HOMO) creates the ion in the ground state and removing electron from lower

lying orbital (e.g. HOMO1, HOMO−2) creates the ion in the excited state. Electron removal

from an orbital, creates a hole in this orbital. Laser induced dynamics in the ion can move

the hole between the orbitals between ionization and recombination (Fig.??).

VII. THE MULTICHANNEL MODEL OF HHG

The application of the saddle point method in each channel leads to the following half-

cycle dipole:

Dj
mn(t) = am

rec(ps, t)a
mn
prop(t, ti)a

n
ion(ps, ti), (87)

an
ion(ps, ti) =

(2π)1/2

S ′′ti,ti
e−iS(ps,t′i,ti)E(ti)dn(ps + A(ti)), (88)

amn
prop(t, ti) =

(2π)3/2

(t− ti)3/2
e−iS(ps,t,t′i)amn(t), (89)

am
rec =

(2π)1/2

S ′′tr,tr

d∗m(ps + A(t)). (90)

Here we have considered the dipole on the real axis. Note that the propagation amplitude

is modified to include the laser -induced dynamics in the ion amn(t). Now once we have

factorized the dipole we can use improved amplitudes for each step.

Improving ionization. the improved ionization amplitude can be taken from semi-

analytical and/or numerical approaches. The improved ionization amplitude consists of two

parts:

ãn
ion(ps, ti) = Rlm(Ip, F )e−iS(ps,t′i,ti). (91)

the exponent describes the sub-cycle dynamics of strong-field ionization, the pre-factor

Rlm(Ip, F ) describes the influence of the core potential and shape of the initial state on

the ionization rate.

Improving propagation. The most important modification of the propagation ampli-

tude is due to the presence of nodal planes in bound states of molecular systems. The nodal
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planes leave the imprints on electron wave-packet after ionization and thus the shape of

the returning wave-packet will also change affecting recombination. Below we describe the

simple way of including the nodal planes.

Improving recombination. Recombination step can be significantly improved beyond

the SFA, if one uses the recombination dipoles d∗m(ps + A(t)) calculated using ab-initio

approaches, such as Schwinger variational method [? ] or R-matrix [? ]. Refs[? ] use the

eikonal approximation for continuum states to obtain the improved dipoles.

How to introduce depletion?

The full dipole for a specific channel dmn(t) obtains as the sum over different half-cycles

and the harmonic spectrum results from the FFT of the full dipole dmn(Nω):

dmn(t) =
∑

j

Dj
mn(t), (92)

dmn(Nω) =

∫
dte−(Nω)tdmn(t)eiNωt. (93)
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Theory of Intense Laser Matter Interaction. Lecture I
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This Lecture gives a general outline of the problems we will look at.

INTRODUCTION

The purpose of these lectures is to provide a brief in-
troduction into the methods and ideas in the theory of
intense laser-atom and laser molecule interaction. The
land of intense laser-matter interaction is vast, and I will
explore but a small corner of it.

Let us start by deciding upon the observables of inter-
est. For this particular course, these include:

1. Light induced polarization and the properties of
light emitted by molecules interacting with the
strong laser field;

2. Products of laser-induced ionization: electrons,
ions, molecular fragments, final states of the ions
and the survived neutrals.

When it comes to electrons, we could be interested
in their energy and angle-resolved spectra: how many
electrons with a given energy fly in a given direction?

When it comes to molecular ions, we are interested in
their quantity, energies, and – if ionization breaks the
molecule into many different pieces (fragments) – the
composition of those fragments. For example, let us take
a molecule such as HCl and ionize it, making HCl+. We
may be interested in finding out how many intact HCl+

we have made, and how many of the ions broke into H+

and Cl, or into H and Cl+, in which direction these frag-
ments went, and with what energy.

In this short course I will only cover few bits and pieces
related to these questions, and the discussion will be
weighted rather heavily towards the theory of the dy-
namics associated with laser-induced polarization, which
is responsible for the high harmonic generation.

POLARIZATION

Why are we interested in laser induced polarization?
Because it tells us about how the charges move in the
system. The polarization induced in the medium is
P(t) = Nd(t), where N is the number density and
the dipole moment d(t) = qr(t) describes the motion
of charges. Here r(t) is the trajectory of the charge de-
noted by q. The dipole moment is the laser-induced mi-
croscopic polarization of an individual atom or molecule,
and it tells us about the response of the charges in this
atom or molecule to the external field.

Fourier transform P(Ω) describes nonlinear response
of the medium at various frequencies. Taken, say, at
Ω = 3ωL, it ultimately leads to third harmonic genera-
tion in the medium. Measuring these harmonics, as well
as all other emission which comes out of the medium –
the amplitudes, phases, and polarizations – can help us
to fully characterize P(Ω) and, through its Fourier trans-
form, P (t) = Nd(t). This will tell us a lot about how
the charges move in molecules and atoms interacting with
the laser fields.

Emission of radiation means that the system is giving
back some energy it has absorbed from the laser field.
What is the origin of this emission?

Instantaneous energy (kinetic plus potential) can go
down when the binding potential of the system and the
laser field conspire to reduce the excitation of the system.
In this case we are dealing with stimulated emission. Just
as stimulated absorption, it is a natural part of system’s
dynamics. This stimulated emission can only occur at
the frequency of the simulating field – the driving laser
field.

But what if the driven system emits light at frequen-
cies which are very different from that of the driving
laser field? Textbooks on classical electrodynamics teach
us that accelerated charge, whose motion is described
by d(t), emits radiation. Only for a harmonic oscillator
d(t) will contain the frequencies identical to that of the
driving field. Typically, the Fourier transform of d(t) will
include frequencies which are very different from that of
the driving field.

This emission cannot be stimulated in the standard
quantum-mechanical sense, since there are no external
laser fields acting at the frequencies other than the fun-
damental frequency ωL. Thus, we have to conclude that
this emission is spontaneous, even though it is induced by
the laser field. But this spontaneous emission is very dif-
ferent from the conventional spontaneous emission which
is not coherent from atom to atom, or from a molecule
to another molecule. The emission we are dealing with,
being induced and controlled by the common external
driving force, has a well-defined phase for various atoms,
and is coherent from one atom to another.

There are many examples of such coherent spontaneous
emission, from Dicke super-radiance to photon echoes
and other coherent emissions of light, which can be gen-
erated by the coherently excited medium long after the
inducing laser pulses have left the interaction volume.

As long as the laser field is described classically, dealing
with spontaneous emission requires an eclectic approach
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– no matter whether an atom or a molecule is described
classically or quantum mechanically.

One relies on the classical description of emission by
an oscillating dipole d(t):

W (t) =
2

3c3
|d̈(t)|2 (1)

Here W is the total energy emitted by a dipole per unit
time, in all angles – that is, the power of emission. If
we want the emission spectrum, all we need is to Fourier
transform the acceleration:

W(Ω) =
2

3c3

∣∣∣∣∫ dteiΩt d̈(t)
∣∣∣∣2 =

2Ω4

3c3
|D(Ω)|2 (2)

Now we only need to find the induced dipole. For a
quantum system with a wavefunction Ψ(t)

d(t) = 〈Ψ(t)|d̂|Ψ(t)〉 (3)

This is the most general way to find the polarization. It
is not based on any kind of perturbation theory, it is valid
for arbitrarily strong or complex laser field, but it means
that we need to solve the time-dependent Schroedinger
equation to find the wavefunction.

What are the questions that we may want to ask about
the polarization? One most obvious question is: how
does the spectrum look like? How far does it extend?
We will discuss these questions in the following lectures.
In Lecture II, we will study high harmonic generation in
bound systems and we will see that it can tell us a lot
about the underlying charge dynamics. After looking at
strong field ionization in Lecture III, we will come back to
high harmonic generation in Lecture IV, this time dealing
with continuum dynamics and ionization.

IONIZATION: PHYSICAL PICTURES

If we know the wavefunction, we know everything –
in principle. Extracting this knowledge is generally a
lot of pain, however. But with ionization it is not that
difficult if what you want is the ionization probability.
All you need is to collect the wavefunction norm that is
far enough.

What are the questions that we may want to ask about
ionization? Here are some:

1. How does ionization depend on the laser intensity?

2. How does ionization depend on the laser frequency?

3. How does ionization depend on the structure of the
ionizing orbital?

There are two distinctly different regimes, and the
physical pictures associated with them are also very dif-
ferent.

Modest Fields

One is that of weak to modest fields, and relatively
few photons needed for ionization. This is where we talk
about the importance of resonances, and think in terms
of making a few ~ωL jumps via a set of intermediate
virtual states onto the continuum.

The theoretical method that works very well here is
the time-dependent perturbation theory, and we might
have a brief look at it down the road.

The perturbative picture breaks down when the fields
approach intensities in the range of 1013W/cm2 or so.
Of course, there is no hard line here and nor one can say
that 1013W/cm2 is universal. The boundary between
perturbative and non-perturbative regimes depends on
the laser frequency, ionization potential, initial state, en-
ergy spectrum, etc. These lectures will skip over the
high/moderate frequency and modest intensity regime of
the usual time dependent perturbation theory.

Strong Low-Frequency Fields

Dealing with ionization, I will focus on the case when
the photon frequency is small compared to the ionization
potential Ip, ωL � Ip. This is the regime where we
need to absorb a lot of photons to ionize the system, and
therefore the required field intensity will be high.

This is the standard situation we deal with when we
use near IR lasers and noble gasses, and this is what you
will face with Ti:Sapph or its sub-harmonics and most of
the targets.

For the ionization potentials in the range of 10eV or
so, or higher, and near-IR or mid-IR or even for the vis-
ible red light, we won’t see much signal until the laser
intensity approaches and exceeds 1013W/cm2 or so. In
this strong-field regime the picture of ionization is rather
complex.

Let the field be polarized along the x axis. The inter-
action potential is V (x) − dxF (t) = V (x) + xE cosωLt,
where I have set the electron charge to q = −1 and used
that dx = qx, and my field is E cosωLt. This potential
oscillates up and down as shown in Figure 1.

There are two physical pictures associated with ion-
ization. One is the smooth extension of the perturbative
picture into the strong-field domain, see Fig.2

The second appeals to the idea of tunnelling. If there
is a barrier created by the laser field and the binding
potential, then we can tunnel through it, see Fig.3

How do these two pictures co-exist? do they co-exist
peacefully, or is there a cold war between them? Which of
these two pictures is correct? How does ionization really
proceed? These issues will be the subject of Lecture III.

But before we move on to the math, let us take a closer
look at the pictures, see Fig.1. Two things must be men-
tioned.
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E

x

−εx cosωt

FIG. 1: Potential created by an instantaneous laser field and
a potential well.

E

x

−εx cosωt

FIG. 2: Vertical ionization channel: multi-photon absorption
from standard perspective.

(1) First, the potential well itself, in the classically
allowed region, is being distorted and modified every cy-
cle. Only if it has a reasonable size, though. There is
absolutely no distortion of the infinitely narrow and infi-
nitely deep hole which is called the delta-function poten-
tial and is a favorite toy of strong-field theorists. Thus,
the physical mechanisms of ionization in a short-range
(delta-function) potential, which is realistic for the neg-
ative ions, and in the long-range potential (everything
else) will likely be different.

(2) Second, the barrier is oscillating up and down,
opening a possibility for tunneling out every half-cycle.

E

x

−εx cosωt

FIG. 3: Horizontal ionization channel: tunnel ionization from
the standard perspective.

E

x

Vertical ionization: 
“classical” MPI channel

FIG. 4: Vertical ionization channel without tunnelling –
multi-photon ionization in the classical limit

This is true for any values of the frequency, intensity, etc.
But whether the chance for tunnelling can be used, and
how – this remains to be seen and is the main subject
of the discussion in Lecture III. Note that chance of tun-
nelling through a barrier (oscillating fast or not so fast)
appears for all potentials, long-and short-range.

With this overview in mind, we now turn to the bound
state dynamics in laser driven systems.
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TDSE AND EQUATION FOR AMPLITUDES

Let us now be specific and look at a system with the
Hamiltonian Ĥ0, placed in an external time-dependent
field V̂ (t)? We will take the interaction potential in the
length form: V̂ (t) = −dE(t). The total Hamiltonian is
now Ĥ = Ĥ0 + V̂ (t). We will refer to the unperturbed
Hamiltonian Ĥ0 as ’field-free’, and to the time-dependent
perturbation V̂ (t) as ’field’.

The corresponding TDSE is

i
∂

∂t
Ψ = [Ĥ0 + V̂ (t)]Ψ (4)

The eigenstates ψn of the field-free Hamiltonian H0 form
a complete basis set. Therefore, we can always write the
wavefunction Ψ(t) as

Ψ(t) =
∑

n

an(t)ψn (5)

Our amplitudes an will depend on time, reflecting the
dynamics of population transfer between different states.
This time-dependence is precisely what we are interested
in.

We now insert Eq.(5) into the TDSE and recall that
Ĥ0ψn = Enψn. The result is

i
∑

n

ȧn(t)ψn =
∑

n

an(t)Enψn +
∑

n

an(t)V̂ (t)ψn (6)

Next, we use the standard trick to get rid of the sum on
the left-hand side. We recall that all eigenstates of Ĥ0

are orthogonal to each other,

〈ψk|ψn〉 =
∫ ∞

−∞
drψ∗k(r)ψn(r) = δkn (7)

(where δkn = 1 for k = n and δkn = 0 for k 6= n), multiply
the left and right-hand sides of the equation Eq.(6) with
ψ∗k, and integrate over dr. The result is

iȧk(t) = Ekak(t) +
∑

n

an(t)Vkn(t) (8)

where the transition matrix elements of the perturbation
V̂ (t) are

Vkn(t) = 〈ψk|V̂ (t)|ψn〉 =
∫ ∞

−∞
dr ψ∗k(r)V (r, t)ψn(r) (9)

As for the initial conditions, it is frequently useful to
assume that only one field-free state is initially popu-
lated, while all others are empty, taking the opportu-
nity to follow and analyze the dynamics of each initial

state individually. We can always make such an assump-
tion, thanks to the linearity of the Schroedinger equa-
tion. For several initially populated states n1, n2, ... with
the initial amplitudes a(0)

n1 , a
(0)
n2 , ... the linearity of TDSE

allows one to solve several initial value problems for
each of the states n1, n2, ... separately, assuming all other
states empty. Then the solutions, which we will denote
an1

k (t), an2
k (t), ..., should be added coherently, weighted

with the initial amplitudes:

ak(t) =
∑
ni

ani

k (t) a(0)
ni

(10)

The differential equations Eq.(8) deserve a few com-
ments. They are just as exact as the original TDSE. No
assumption has been made about the strength of the per-
turbation. Importantly, all spatial dependence has been
integrated out – together with the second-order spatial
derivatives; only the first-order time derivatives are left
in these equations. Therefore, they are potentially much
simpler that the original TDSE, both for numerical and
analytical analysis.

Note, that the equations remain the same no matter
how many electrons are involved. All the complexity of
the underlying multi-electron dynamics is hidden in the
transition matrix elements Vkn(t) between the field-free
eigenstates ψn. Thus, from the theoretical perspective,
the onus is on calculating the field-free excited states and
the transition matrix elements between them.

There has to be a price to pay for such possible sim-
plifications. Indeed, a second glance at Eqs.(8) discovers
the problem: the equations are all coupled to each other.
The approach based on Eqs.(8) is efficient when the num-
ber of states involved in the dynamics, and hence the
number of equations, is limited – solving infinitely many
coupled equations is rarely an option. The problem be-
comes particularly acute when dealing with ionization,
ubiquitous in strong laser fields. As soon as unbound
(continuum) motion gets involved, the number of partic-
ipating eigenstates becomes, strictly speaking, infinite.
There are routes to deal with this problem, associated
with replacing the true continuum with a dense but still
discrete manifold of eigenstates, but the warning yellow
flags have been raised. The stronger the laser field, the
more important the ionization, the larger the range of en-
ergies involved in the dynamics, and the more costly and
computationally intense the method becomes. We will
only use this method in the next Lecture II for bound
states, and will switch to a different approach when deal-
ing with ionization.
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This Lecture focuses on some general properties of bound state dynamics in strongly driven
systems.

INTRODUCTION

The purpose of these lectures is to provide a brief in-
troduction into the general theoretical methods and to
illustrate some interesting and rather general effects in
bound electron dynamics during intense laser-atom and
laser molecule interaction.

TIME-PERIODIC HAMILTONIANS AND THE
FLOQUET THEOREM

Let us consider a quantum system interacting with a
periodic laser field, so that its Hamiltonian is

H(t) = H0 − d̂F cos ωt (1)

This Hamiltonian is periodic with the period T = 2π/ω.
Also periodic is the linear operator Û(t) = H(t)− i∂/∂t
offered to us by the time-dependent Schroedinger equa-
tion

ÛΨ(t) = 0 Û(t + T ) = Û(t) (2)

What can be said about the solutions of such equation?
Well, the initial impetus might be to say that the solu-
tions are periodic. This is, of course, wrong. One does
not need to go far for a counter-example - how about ion-
ization of an atom in a periodic (cw) laser field? There
you have it – an irreversible and completely aperiodic
process induced by a periodic Hamiltonian.

There is analogy with time-independent Hamiltonians
that are periodic in space. In fact, for a mathematician
looking at the linear differential equation ÛΨ = 0 there
is not much difference between time and space. The op-
erator i∂/∂t is not much different from the momentum
operator - same imaginary unity, same first derivative.

In space-periodic systems we have the so-called Bloch
states, which are nearly (that is, up to a phase) periodic
solutions of the time-independent Schroedinger equation,
i.e. its solutions that satisfy periodic boundary condi-
tions. But of course not all solutions will be of the Bloch
type. The Bloch states form a complete basis set, and
then any solution can be expanded into it. Any solution
is a wavepacket of the Bloch states, which are defined not
only by the differential equation, but also by the periodic
boundary conditions.

So, three important words were said: (1) wavepacket,
(2) periodic boundary conditions, (3) basis set. The

same applies to time-periodic Hamiltonians, the Floquet
states, and the general solutions of initial value prob-
lems. Namely, (1) the Floquet states are defined by the
equation 2 and the periodic boundary conditions in time
(up to a phase factor; the conditions will show up in a
minute); (2) the Floquet states form a complete basis set;
(3) general solution is a wavepacket of the Floquet states.

Just as spatial periodicity is enforced onto the Bloch
states by setting periodic boundary conditions in space,
temporal periodicity is enforced upon the Floquet states
by requiring that they obey periodic boundary conditions
in time.

Now it is time to specify the boundary conditions. Sup-
pose that at some moment t0 + T the wavefunction hap-
pened to match what it looked like at an instant t0, up
to a factor λ:

Ψ(t0 + T ) = λΨ(t0) (3)

If this happened for at least one single moment t0 and
its partner t0 + T , the wavefunction is doomed to be
periodic forever. Now (and only now) the periodicity of
the Hamiltonian will force the wavefunction to reproduce
between t0 + T and t0 + 2T the exact same evolution it
experienced between t0 and t0 + T . Indeed, the initial
condition at t0 + T was the same as at t0 (up to a factor
λ), and the differential equation is the same.

What about this factor λ? If Ψ(t + T ) = λΨ(t), then
Ψ(t + nT ) = λΨ(t + nT − T ) = ... = λnΨ(t). Clearly, an
additional time-dependent function is showing up here.
Since the norm must conserve, λ can only be a phase fac-
tor - the phase factor which is multiplying every laser cy-
cle. We already see the answer: λ = exp(−iεT ), a snap-
shot of a time-dependent phase factor exp(−iεt). Now
the boundary condition for the Floquet state can be set
as:

Ψ(t) = e−iεtΦ(t), Φ(t + T ) = Φ(t) (4)

The value ε is called the quasi-energy, and the periodic
function Φ is the corresponding quasi-energy state – or
the Floquet state. These states form a complete basis
set, just like the field-free states do. All possible values
of ε which are allowed by Eqs.(2,4) form the spectrum
(the Floquet spectrum) of the dressed quantum system
(dressed by the laser field).

Since Φ is periodic in time, we can expand it into the
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FIG. 1: The Floquet Ladder

Fourier series:

Φ(x, t) =
∑

k

akφk(x)e−ikωt

Ψ(x, t) =
∑

k

akφk(x)e−i(ε+kω)t (5)

Here the coordinate parts φk(x) are normalized to unity,
and the coefficients ak carry the weights of each Fourier
component.

Each φk(x) corresponds to the absorption of k photons,
as is clear from the second of the two equations above:
the energy ε has been raised by kω. Each Floquet state
forms an infinite ladder of states ”quantum system +kω”,
corresponding to having k photons in the ”dress”, see
Fig.1.

Of course, the ladder is only formally infinite - the
weights |ak|2 of each step in the ladder will eventually go
down, making higher and higher steps of the ladder less
and less sturdy.

If the laser field is turned on adiabatically, each field-
free state Ψ(0)

n = exp(−iEnt)Φ(0)
n will go into a corre-

sponding Floquet state Ψn = exp(−iεnt)Φn(x, t), and
each energy En will go into a corresponding quasi-energy
εn.

Ψ(0)
n = e−iEntΦ(0)

n → e−iεntΦn(x, t)

Φn(x, t) =
∑

k

an,kφn,k(x)e−ikωt (6)

If the initial field-free state had a definite parity, the
same will be true for the harmonics of the Floquet state.
The one which corresponds to the net absorption of zero
photons, φn,k=0(x), will retain the same parity as its
field-free counterpart. Each photon absorption or emis-
sion will change the parity to the opposite. So, for exam-

ple, if the field-free state was even, then its k = 0 Floquet
harmonic is even, k = +1 is odd, and so on, see Fig.1.

Are there any other general statements that one can
make about the Floquet spectrum?

(1) Any general solution of the initial value problem
- time-dependent Schroedinger equation for some initial
condition – is a superposition of the Floquet states, with
their respective phase factors. If an irreversible dynam-
ical process such as ionization (no matter how slow or
weak) is happening in the system dressed by the laser
field, then rigorously speaking the spectrum of various
ε’s in this superposition must be continuous. Indeed, dis-
crete spectrum means that the process shows some re-
peated events, like the Poincare returns, incompatible
with irreversibility.

(2) Although rigorously the quasi-energy spectrum is
continuous, in practice it can be treated as discrete. As a
price, one has to deal with complex quasi-energies which
describe decay: ε = ε− iΓ. The norm of Ψ = exp(−iεt)Φ
now decays exponentially with time, as exp(−2Γt) (fac-
tor 2 because we have to square the function to get the
norm). The same happens for a Hydrogen atom in a con-
stant electric field. Rigorously, it has continuous spec-
trum - any energy is allowed. But in practice we deal
with quasi-stationary bound states which decay.

FLOQUET ANALYSIS OF COHERENT
EMISSION SPECTRA

Let us now use the Floquet approach to look at the
time-dependent dipole moment d(t), induced by a laser
field in a quantum system, and the spectrum of the co-
herent emission associated with it, which is given by the
Fourier transform of d(t).

In most strong-field experiments on high harmonics to-
date, even with 10 fs pulses, the turn-on of the field is suf-
ficiently adiabatic with respect to the electronic response
of the system (which is on 102 attosecond scale). This
means that when the system starts in a single quantum
state - ground - only a single Floquet state will be cre-
ated (populated) - the state that adiabatically connects
to the field-free ground state.

Thus, we will have a ladder of photon steps as shown
in Fig.1, with the distance between the steps equal to the
laser frequency ω.

If the ground state has, say, even parity (usually the
case), then the first step in the ladder is odd, the next
is even, and so on. Emission of the harmonic photons
Kω will correspond to the transitions between the differ-
ent steps of the Floquet ladder, as shown in Fig.2. Since
the emission of the harmonic photon changes the par-
ity, transitions can only occur between the steps of the
ladder that have opposite parity and, hence, separated
by the odd number of laser photons ω. So far, nothing
surprising.
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FIG. 2: The Floquet state and the transitions within it that
lead to harmonic emission. If the ground state is even parity
(usually is), then the first step in the ladder is odd, the next
is even, and so on.

Before we move on to the surprises, let us get a bit more
technical and look at the same emission in a slightly more
mathematical manner to see how these jumps between
the steps of the ladder come about.

If the system is in a Floquet state Ψ0(x, t), which orig-
inated from the (ground) state of the field-free system
|0〉, then the polarization of the medium is

d(t) = 〈Ψ0(x, t)|d|Ψ0(x, t)〉 (7)

Let us put into this equation the expression for the Flo-
quet state,

Ψ0(x, t) = e−iεt
∑

k

a0,kφ0,k(x)e−ikωt (8)

Here the coordinate parts φ0,k(x) are normalized to unity,
and the coefficients ak carry the weights of each Fourier
component. Putting Eq.8 into the Eq.7, we obtain

d(t) =
∑

k

∑
n

a∗0,na0,k〈φ0,n|d|φ0,k〉ei(n−k)ωt (9)

Each term in the double sum corresponds to the emission
of a photon Ω = (n − k)ω. It comes with the matrix el-
ement dn,k = 〈φ0,n|d|φ0,k〉 and corresponds to the jump
from the step number k to the step number n in Fig.2.
Of course, these steps must have opposite parity – other-
wise dn,k = 0. This means, once again, that n− k must
be odd.

There are plenty of terms with various n and k but
the same difference n − k. All these correspond to the
emission at the same frequency and have to be added
coherently. In other words, all possible jumps between

+

+

+

-

-

-
Former ground Former excited

Ω=2ω−∆(Ε)
|1>

-

+

+

-

-

|0>

∆(Ε)

Ω=2ω+∆(Ε)

FIG. 3: Two Floquet states are populated coherently during
fast non-adiabatic turn-on. Arrows mark transitions allowed
by the selection rules which lead to the emission of ”even
harmonic” doublets (2-nd harmonic in the figure). ∆(E) is
the splitting of the Floquet quasi-energies, which depends on
the laser field strength E.

different pairs of steps on the Floquet ladder, which are
separated by the same distance, have to be added coher-
ently.

Consider now a case when the strong field is turned
on very quickly, so that the system cannot adiabatically
follow the changes in the field. In this case more than
one Floquet state will be populated, especially if for some
reason a second field-free state happened to be fairly close
to the ground state.

Suppose that the two Floquet states, Ψ0 and Ψ1, are
coherently populated, so that the total wavefunction of
the system includes both: Ψ = αΨ0 + βΨ1. Then the
polarization of the medium is:

d(t) = [|α|2〈Ψ0|d|Ψ0〉+ |β|2〈Ψ1|d|Ψ1〉]
+ [α∗β〈Ψ0|d|Ψ1〉+ αβ∗〈Ψ1|d|Ψ0〉] (10)

The last two terms, complex conjugated to each other,
describe jumps between the steps of the two Floquet lad-
ders ( Ψ0 and Ψ1) standing side-by-side. Once again, the
selection rules require that the parity changes upon each
jump. If the two original states which started these two
ladders had opposite parity, the parity of each step is as
shown in the Figure 3. The selection rules will then dic-
tate that each allowed jump corresponds to the transition
energy Ω = 2Lω ±∆(E), where ∆(E) is the splitting of
the two quasi-energies - the shift between the two ladders.
It depends on the field strength E.

Now, as a result of a quick turn-on, the coherent emis-
sion spectrum will look like shown in Fig.4 It contains
”even harmonic” doublets (2-nd harmonic in the figure).
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∆(Ε )

FIG. 4: Two Floquet states of the opposite parity are popu-
lated coherently during the turn-on. Coherent emission spec-
trum in this case includes the doublets around even harmonic
lines.

The doublets are in reality nothing but the result of Ra-
man transitions of various orders.

Now, finally, here comes the intriguing question: Is it
possible that the two lines in the doublet merge into one?
In other words, are there any conditions when the laser
field induces degeneracy of the two Floquet states of the
opposite parity, ∆(E) = 0 in mathematical terms?

Before we go to the next section which contains posi-
tive answer to this question, let us for a second speculate
about what such degeneracy would mean.

Second harmonics are never emitted in symmetric me-
dia. If we have managed to generate even harmonics - we
have managed to break the symmetry in the medium.

How is this possible with a laser field E cos ωt which is
linearly polarized, periodic, and seems to have no prefer-
ence between left and right (positive and negative cosine
values)? Is it possible to displace the electric charges
and induce a permanent dipole (that is, break the sym-
metry) when the laser field is perfectly symmetric. And
what would be the preferential direction that the system
would choose?

A very general answer to all these questions is as fol-
lows. Suppose L is a characteristic size of the system
and EL is the amplitude of the interaction strength, the
voltage put across the system. Intuitively, it is clear that
the interaction between the system and the field should
be very different in the limits EL � ∆0 and EL � ∆0.

Suppose the field is strong and is turned on fast, so
that it passes from the regime EL � ∆0 and into to
the regime EL � ∆0 in a time which is much shorter
than the laser cycle. In this case the field will have a
specific direction at the moment when it passes through

the demarcation line EL ∼ ∆0. This direction could (and
would) be special, and might be picked by the symmetric
medium loosing its symmetry.

Of course, this special direction is determined not only
by the peak intensity of the laser pulse but also, at a
fixed peak intensity, by the absolute carrier phase of the
oscillations under the envelope. For pulses f(t) cos ωt and
−f(t) cos ωt the directions of the symmetry breaking will
be opposite.

We now move to the example of such surprising effect,
providing a much more accurate discussion of its physical
details.

SYMMETRY BREAKING AND THE
DESTRUCTION OF TUNNELING IN A DOUBLE

WELL POTENTIAL

First of all, let me assure you that the effect is not
limited to double-well systems and exists in multiple-well
systems as well. The only reason for selecting a double-
well potential is the simplicity of the treatment.

In a double well potential, each well on its own sup-
ports a state, see Fig.5. We denote these states |L〉 and
|R〉, for ”Left” and ”Right”. On their own, they are de-
generate if the two wells are perfectly symmetric, which
they are by our choice. However, since quantum particles
tunnel, the addition of the second well makes sure that
the two states local to each well are no longer the eigen-
states of the system. Tunneling couples and splits them,
removing the degeneracy, see Fig.5. If all other states
are sufficiently far away (compared to the coupling be-
tween these two states), one can very easily diagonalize
the 2x2 matrix with equal energies on the diagonal and
a tunneling coupling off the diagonal.

The new eigenstates are the symmetric and antisym-
metric superpositions of the local states:

|0〉 =
|L〉+ |R〉√

2

|1〉 =
|L〉 − |R〉√

2
(11)

Conversely, the localized states are the symmetric and
antisymmetric superpositions of the delocalized states:

|L〉 =
|0〉+ |1〉√

2

|R〉 =
|0〉 − |1〉√

2
(12)

An example of such a system would be a diatomic mole-
cular ion, such as H+

2 - each nucleus makes a well, and
the electron is running in between. Of course, to make
analogy even better one has to localize the nuclei - that
is, make a narrow vibrational wavepacket at appropriate
internuclear separation, which determines the distance
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Even, +

Odd, -
∆0

|0>
|1>

|L> |R>

R0

FIG. 5: In a double well potential, two delocalized ”ground”
states, even and odd, are approximately the symmetric and
anti-symmetric superpositions of the localized states in each
potential well. The splitting between them is due to tunnel-
ing, the tunneling time is τT = π/∆0.

between the wells. In H+
2 the two localized states cor-

respond to the electron being on the left or on the right
nucleus, and the delocalized states |0〉, |1〉 are the familiar
σg, σu states of H+

2 .
Before we proceed further, let me make a brief, simple,

but very important remark about the physical meaning
of ∆0 - the splitting between the states |0〉 and |1〉. Let us
put the system in a localized state |L〉 = (|0〉+ |1〉)/

√
2,

which is not an eigenstate. How will it evolve? Well, each
eigencomponent of |L〉 will accumulate its own phase:

|Ψ(t)〉 =
|0〉e−iE0t + |1〉e−iE1t

√
2

=

= e−iE0t |0〉+ |1〉e−i∆0t

√
2

(13)

and after a time τT = π/∆0 the state |Ψ(t)〉 will coincide
with the right-localized state |R〉

|Ψ(t =
π

∆0
)〉 = e−iE0

π
∆0
|0〉 − |1〉√

2
= e−iE0

π
∆0 |R〉 (14)

Thus, the time τT = π/∆0 is the time it takes a particle
(electron) to tunnel from one well to another.

If we want to break the symmetry and generate even
harmonics, we need to make this splitting in the laser field
equal to zero, ∆(E)=0. Thus, we need to do two things:
(1) destroy the tunneling and (2) catch the electron in
one of the wells. Which one? – this will depend on the
absolute carrier phase.

How do we destroy the tunneling? It is very easy with
a constant electric field - you have to apply the voltage

|L>

|R>

R0

ER0>>D0

E

FIG. 6: Destruction of tunneling in a double well potential, for
either a constant or an oscillating electric field. In a constant
electric field the potential is biased by the field potential −Fx.
The curved double-sided arrows indicate the rocking motion
of the potential in the oscillating electric field. Tunnelling is
only possible when the two wells are level with each other,
and hence the electron moving, say, from left to right, can be
admitted into the right well by the energy quantization.

exceeding the tunneling splitting: ER0 � ∆0. This is
shown in Fig. 6, where the bias of the total potential is
due to the electric field. The states localize in each well.
Now the electron sitting in the left well can no longer
tunnel efficiently to the right well because the quantiza-
tion does not support it (at the energy of the left state).
In this case they say that the resonant tunneling is no
longer possible.

With an oscillating field the double-well potential will
rock back and force around the middle every laser cy-
cle: ER0 is replaced now by ER0 cos ωt. If ER0 is suffi-
ciently large, the tunneling will only happen at the brief
instances when the two localized states R and L have
the same energy - i.e. while ER0 cos ωt < ∆0. At all
other times tunneling is not possible. Hence, the tun-
neling time will grow and the tunneling splitting - now
of the Floquet quasi-energies - will shrink. The ”even
harmonic” doublets will come closer.

But there is even more: there are some special values
of the field where the tunneling is completely suppressed.
What is the origin of such special values of the field? It
is quantum destructive interference. Let us make a very
crude qualitative estimate of when we should expect such
interference and how it comes about.

Let’s say the wavefunction is initially localized in the
left well. At some point, while ER0 cos ωt < ∆0, a
small portion tunnels to the right well. During the
next half-cycle the two parts of the wavefunction stay
in their respective wells - one going up in energy and
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one going down, acquiring different energy phase-shifts
exp(±i(1/2)ER0 sinωt/ω), with the total phase differ-
ence something like δφ ∼ ER0/ω). This phase differ-
ence becomes important when the next portion of the
wavefunction tunnels to the right at the end of the half-
cycle. The new fragment has to be added coherently to
the half-cycle earlier escapee, and their interference will
be destructive if δφ ∼ ER0/ω ∼ π(2n + 1). The ex-
act condition on the field is somewhat different, and is
derived below. But the physics is exactly as described.
And it means that over many cycles, on average, tun-
neling is destroyed and hence the Floquet states become
degenerate.

Once we have found the points of the degeneracy of
the Floquet states, the only question left is: where will
the electron get stuck? This is completely determined by
how we cross the demarcation line from the weak field
to the strong-field regime, and where the electron was
at that point. Initially, in weak fields, the electron was
following the field oscillations, tunneling back and force
between the wells and trying to keep minimal energy -
i.e. stay in the lower well. But when the transition to
the strong-field limit occurs, and occurs very quickly - the
electron is no longer able to tunnel and it gets caught in
the well it was in at this time. And where it was - this
depends on the exact evolution of the electric field - that
is, on the absolute carrier phase.

I conclude this chapter with a formal treatment of the
problem. The wavefunction is written as

|Ψ(t)〉 = a0(t)|0〉+ a1(t)|1〉 (15)

and, when plugged into the Schroedinger equation, gives
two differential equations for the amplitudes

iȧ0 = −∆0

2
a0 + V cos ωta1

iȧ1 =
∆0

2
a1 + V cos ωta0 (16)

where I have set the energies of the two field-free states to
±∆0/2 and denoted V = V10 = V01 = d01E ≈ (R0/2)E
the coupling strength. We cannot use any rotating wave
approximation here - the effect is way beyond it since it
requires V � ∆0.

The way to deal with very strong fields is to try to
include the field exactly, treating the field-free part as a
perturbation. In this spirit, we look for the solutions in
a form that would have worked for ∆0 = 0. In this case
the local states in the left and right well would have been
decoupled, and would have rocked up and down with the
oscillations of the field, out of phase with each other.

So, we change to the amplitudes

aL =
a0 + a1√

2
aR =

a0 − a1√
2

(17)

for which the equations are decoupled if ∆0 = 0:

iȧL = +V cos ωtaL −
∆0

2
aR

iȧR = −V cos ωtaR −
∆0

2
aL (18)

Now, ”overlooking” the second term, we look for the so-
lutions in a form

aL = bLe−i V
ω sin ωt

aR = bRe+i V
ω sin ωt (19)

For ∆0 = 0 this would have been exact solution with
constant values of bL and bR determined by initial con-
ditions. But in our case ∆0 6= 0 and hence bL and bR are
functions of time. If we put these expressions Eq.19 into
Eq.18, we get

iḃL = −∆0

2
bRei 2V

ω sin ωt

iḃR = −∆0

2
bLe−i 2V

ω sin ωt (20)

The problem is virtually done. Each differential equation
should be integrated. We have very fast oscillating ex-
ponents on the right hand side, which do not contribute
to such integrals unless they oscillate around non-zero
constant background. Let us average the fast-oscillating
terms over one laser period. This is, in fact, a perfectly
sensible procedure if we are interested in a long-term evo-
lution over many laser cycles - that’s exactly tunneling
given by a small splitting of merging quasi-energies. We
get

ω

2π

∫ 2π/ω

0

dte±i 2V
ω sin ωt = J0(2V/ω) (21)

Thus, the zero-order Bessel function J0 gives the constant
background that accumulates in the long-term integrals.
The slow evolution is described by the averaged equations

iḃL = −∆0

2
J0(2V/ω)bR

iḃR = −∆0

2
J0(2V/ω)bL (22)

This is, in fact, the final answer. The field-free splitting
(at V=0) between the levels ∆0 has been replaced by the
field-dependent splitting ∆0J0(2V/ω). The equations are
virtually identical to the field-free ones up to this single
simple substitution. Just like ∆0 determined the splitting
of the field-free energies, the splitting of the quasienergies
is:

∆(E) = ∆0J0(2V/ω) (23)

The special points where exact degeneracy occurs, the
tunneling is destroyed and the symmetry can be broken
by a rapid turn-on correspond to the zeroes of the Bessel
function, which in the limit of large argument are pretty
close to our simple and crude estimates made above.
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INTRODUCTION

The purpose of these lectures is to provide a glimpse
into the theory of strong-field ionization. It is absolutely
not possible to give a full account of this very rich prob-
lem, but I will point out some key ideas.

Strong-field ionization is a term that is used rather
loosely. In these lectures, I will use this term to de-
scribe ionization in the regime where the laser frequency
is much smaller than the ionization potential of the sys-
tem, ωL ¿ Ip, and when the characteristic excitation
energy from the ground state of the neutral system ω0 is
also large compared to ωL. What this means is that the
electrons can respond very quickly to the oscillating laser
field E cos ωLt, and from the electron’s perspective these
field oscillations are nearly adiabatic.

What does this condition mean in practice is that the
modifications of the ’inside’ part of the binding poten-
tial well are slow, from the electron’s point of view, and
that the classical-like vertical absorption mechanism is
not efficient.

Quantum-mechanically, it means that excitations in-
side the potential well do not develop, and that the most
efficient way for the electron to escape is via the classi-
cally forbidden region. Note that the key parameter here
was the laser frequency and its ratio to the characteris-
tic response frequencies of the system. Note also, that
nowhere it is required that the barrier has to be static
while the electron is going through it.

Now we will try to put this physical picture into math.

BASIC FORMALISM

Hamiltonians and Gauges

Let us start with the time-dependent Schroedinger
equation, which reads:

i|̇Ψ〉 = [Ĥ0 + V̂ (t)]|Ψ〉 = Ĥ(t)|Ψ〉 (1)

Here V (t) describes the interaction with the laser field
and H0 is the field-free hamiltonian. In this lecture I
will assume that the wavelength of light is much bigger
than the size of our quantum system, and so I will use
the dipole approximation, which means that the spatial
dependence of the electromagnetic field across the size of
the system is ignored.

In the dipole approximation, laser-system interaction
can be written in the so-called length gauge as V̂ =
−d̂E(t). The Hamiltonian has the form

ĤLG(t) =
p̂2

2m
+ U(r)− d̂E(t) (2)

Here U(r) is the interaction potential between the ioniz-
ing active electron and the ionic core. The mass of the
electron is m = 1 in the atomic units which are used
everywhere below. The electron charge q = −e = −1 in
the same units.

There are two more approximations here. The first is
to describe the laser field classically – this is fine given
large number of photons (high intensity). The second is
to use the single active electron approximation in Eq.(2)
– this is a major approximation but it has been very
successful in a majority of cases of interest.

Before we proceed further, let me stress that the length
form of the interaction is approximate and can only be
used in the dipole approximation. There is another gauge
that is often used in treating laser-matter interaction, the
so so-called velocity gauge. This one is general and works
beyond the dipole approximation. The Hamiltonian in
the velocity gauge is

ĤVG(t) =
[p̂− qA]2

2m
+ U(r)

ĤVG(t) =
[p̂ + A]2

2m
+ U(r) (3)

where in the last line q = −1 was used and the vector
potential A is defined as

E(t) = −∂A(t)
∂t

(4)

These two forms of the Hamiltonian are equally good,
meaning that one can go from the TDSE in the veloc-
ity form to the TDSE in the length form by a unitary
transformation

ΨLG(t) = e−iqr̂A(t)ΨVG(t) = eir̂A(t)ΨVG(t) (5)

and the corresponding transformation of the Hamil-
tonian, which you are welcome to try to derive. All ob-
servable quantities are invariant under this unitary gauge
transformation – that is, as long as the TDSE is solved
exactly.

From now on I will stick mostly to the length gauge
and I will drop the subscript LG from HLG.
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Formal solutions

The discussion below applies equally to both the length
and the velocity gauge, or any other gauge.

The formal solution of the TDSE

i|̇Ψ〉 = [Ĥ0 + V̂ (t)]|Ψ〉 = Ĥ(t)|Ψ〉 (6)

is

|Ψ(t)〉 = e
−i
R t

ti
Ĥ(τ)dτ |Φi〉 = Û(t, ti)|Φi〉 (7)

Here Φi is the initial state of the system at a fixed mo-
ment t = 0. The exponential operator is the propagator
U(t, ti). This solution seems to be of little use at this
very moment: evaluating exponential operators is a te-
dious task, no easier than solving TDSE. However, we
will find a good use to this formal solution very shortly.

The separation of the Hamiltonian H(t) into the two
parts, H = H0+V is also knows as the partitioning of the
Hamiltonian. Here our partitioning is into the field-free
part and the interaction with the laser field, but one can
come up with many other ways for such partitioning. It
turns out that one can use such partitioning to relate the
TDSE solution for the full Hamiltonian to the solution
for the part of the Hamiltonian H0.

Let us write the TDSE with the Hamiltonian H0

i|̇Ψ(0)〉 = Ĥ0|Ψ(0)〉 (8)

Its formal solution is

|Ψ(0)〉 = e−iĤ0t|Ψ(t = 0)〉 = e−iĤ0t|Φi〉 (9)

where |Φi〉 is the same initial state of the system as above
in Eq.7 and the index (0) means that this solution applies
to the Hamiltonian H0.

What is the relationship between Ψ(t) and Ψ(0)(t)?
Direct substitution into the TDSE Eq.(6) shows that its
exact solution can be written as

Ψ(t) = Ψ(0)(t) + ∆Ψ(t) = e−iĤ0t|Φi〉+ ∆Ψ(t)

∆Ψ(t) = −i

∫ t

ti

dt′e−i
R t

t′ Ĥ(τ)dτV (t′)e−iĤ0(t
′−ti))Φi(10)

Try to substitute this into the TDSE and check that it
does indeed work. Here ti is the initial moment of time
when we know the wavefunction.

Let’s see where we have come. We have started with a
single exponential operator in Eq.(7) and we have re-
placed it with an integral over exponential operators
taken from all times t′. Let’s be frank: Eq.(10) does
not look very inviting. However, it this this general –
and exact – expression where interesting approximations
can be explicitly tried, sometimes based on rigorous math
and sometimes based on physical reasoning.

Let us look at the physics behind the expression
Eq.(10). The system starts in the state |Φi〉. During

the time-interval before some moment t′ it evolves with-
out interacting with the laser field. If the initial state is
an eigenstate of the Hamiltonian H0 with energy Ei, all
this evolution does is accumulates the phase due to the
energy, exp[−iEi(t′ − ti)].

This quiet evolution ends at a moment t′ when the
system is kicked by the instantaneous laser field V (t′).
To which state the transition occurs at this moment is
anybody’s guess. It is called a virtual transition and it
can go anywhere – the energy conservation law need not
to be satisfied until the interaction is over. Then, from
the moment t′ to the moment of observation t the evolu-
tion is under the action of the full Hamiltonian, including
both the laser field and the field-free potential.

If we are interested to find the transition amplitude
from the initial field-free state Φi to some final state Ψf ,
then at the moment of observation the wavefunction must
be projected onto the state of interest, Ψf . If we are in-
terested in ionization and our initial state is a bound
state, then the final (continuum) state must be orthog-
onal to the initial state. Then the projection of Ψ(0)(t)
onto Ψf is zero, and the transition amplitude afi is

afi(t) = 〈Ψf |Ψ(t)〉 = 〈Ψf |∆Ψ(t)〉 =

= −i

∫ t

dt′〈Ψf |e−i
R t

t′ Ĥ(τ)dτV (t′)e−iĤ0(t
′−ti))|Φi〉(11)

This expression is often refereed to as strong-field S-
matrix, as it reminds one time-dependent treatment of
Scattering problems. It is exact. No approximations have
been made yet. Now let’s turn to the approximation.

THE VOLKOV PROPAGATOR AND THE
STRONG FIELD APPROXIMATION

Let us think about the physics of the situation in
the strong low frequency field. ”Low frequency” means
”compared with the characteristic response frequency” of
the system. While the electron is in the initial – ground –
state, not much is happening until it manages to escape
to the continuum at some t′, which could be pretty much
any instant of time. At this point in time the strong field
takes the electron over and it starts to oscillate in the
field, possibly scattering on the parent ion. Can we put
this physical picture into the mathematical terms? Or,
rather, can we use this picture to do something to the
formal expressions for the amplitude afi?

Once we realize that only the ground state and the con-
tinuum are involved in the dynamics, the plan is rather
clear. Indeed, in Eqs.(10,11) first the electron sits in the
ground state until the moment t′, at which point the laser
field V (t′) kicks it to the continuum. Now, while in the
continuum, the electron is dominated by the laser field.



3

Therefore, instead of the exact propagator

exp(−i

∫ t

t′
Ĥ(τ)dτ)

we will use an approximate propagator that includes the
laser field fully and exactly but completely ignores the
field-free potential of the system. This is the essence of
the Strong Field Approximation.

One of the main reasons to make such as approxima-
tion – completely neglect the atomic (or molecular) po-
tential in the continuum – is that the propagator for the
free electron in the laser field is known exactly. It is
called the Volkov propagator. It corresponds to solving
the TDSE for the Hamiltonian Hv(t):

Ĥv(t) =
p2

2
+ rE(t) (12)

and is formally written as

Ûv(t, t′) = e−i
R t

t′ Ĥv(τ)dτ (13)

To understand how this propagator – this exponential
operator – acts on the electron in the laser field, let us
see what would it do with the plane wave exp(ikr), which
describes the free electron which has the kinetic momen-
tum k.

All the free electron does in the laser field is oscillates.
Classically, if at time t′ the electron has kinetic momen-
tum k′ = k(t′) (kinetic momentum k(t′) = mv(t′) is pro-
portional to the instantaneous velocity), then its kinetic
momentum at any other time is

k(t) = k(t′)−A(t′) + A(t) (14)

In other words,

k(t)−A(t) = k(t′)−A(t′) = p = const (15)

The conserved quantity p is called the canonical momen-
tum. The instantaneous kinetic momentum (velocity) is
expressed as

k(t) = p + A(t) (16)

What is important is that the plane wave exp(ikr) stays
the plane wave, with the same canonical momentum,
while its kinetic momentum changes as described by
Eq.(16). The instantaneous kinetic energy during these
oscillations is

E(t) =
1
2
[k(t′)−A(t′) + A(t)]2 (17)

Now we can write the answer for the action of the
Volkov propagator on the plane wave with kinetic mo-
mentum k′ at the moment t′:

e−i
R t

t′ Ĥv(τ)dτ |k(t′)〉 = e−i
R t

t′ E(τ)dτ |k(t)〉 (18)

Here the plane waves |k(t)〉, |k(t′)〉 have different mo-
menta related by the Eq.(14). In terms of the conserved
canonical momentum p, which is also equal to the kinetic
momentum of the electron after the laser field is switched
off, the result can be re-written as

e−i
R t

t′ Ĥv(τ)dτ |p + A(t′)〉 = e−i
R t

t′ E(τ)dτ |p + A(t)〉 (19)

Thus, the coordinate part of the wavefunction has been
changed, but the temporal phase added is the same for
all coordinates because the interaction (the laser field)
is homogeneous. This is the only reason we could re-
place the Hamiltonian operator in the exponent with the
energy.

Before we use this expression, let us turn it around a
bit and apply the propagator to the bra- and not the ket.
Let us specify the kinetic momentum at the instant t to
be equal to k, and back-propagate it in time:

〈k|e−i
R t

t′ Ĥv(τ)dτ = e−i
R t

t′ E(τ)dτ |〈k(t′)〉 (20)

where the instantaneous kinetic energy is

E(τ) =
1
2
[k + A(t′)−A(τ)]2 (21)

Now we write the SFA approximate expression for the
amplitude to find the system with the momentum |k〉 at
an instant t.

We assume that the system has started at the moment
ti in the ground state Φi ≡ Φg with the energy Eg = −Ip

(and hence exp(−iĤ0(t′ − ti)) = exp(+iIp(t′ − ti)). The
amplitude to find the system with the momentum k at
the time t, according to the general equation Eq.(11), is

a(k, t) = −i

∫ t

dt′〈k|e−i
R t

t′ Ĥ(τ)dτV (t′)eiÎp(t′−ti))|Φg〉(22)

In the SFA, we replace the exact propagator between t′

and t with the Volkov propagator,

a(k, t) = −i

∫ t

dt′〈k|e−i
R t

t′ Ĥv(τ)dτV (t′)eiÎp(t′−ti))|Φg〉(23)

Now we use the fact that we know how to back-
propagate the plane wave in the laser field:

ak(t) = −i

∫ t

dt′e−i
R t

t′ E(τ)dτ+iIp(t′−ti)

〈k + A(t′)−A(t)|V (t′)|g〉 (24)

where the instantaneous energy E(τ) is now given by

E(τ) =
1
2
[k−A(t) + A(τ)]2 (25)

since we have fixed the momentum k at the instant t.
In the literature, the k, t, t′-dependent phase of this

integral,

S(t, t′,k) =
1
2

∫ t

t′
dτ [k−A(t) + A(τ)]2 − Ipt

′ (26)
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is often referred to as the classical action of the free
electron in the laser field. It is a bit of a stretch of
the term, since it also includes the −Ipt

′. Often you
will find it written in terms of the canonical momentum
p = k − A(t), which is a conserved quantity and will
stay unchanged at all times — that’s within the SFA, of
course. In this case the phase will be

S(t, t′,p) =
1
2

∫ t

t′
dτ [p + A(τ)]2 − Ipt

′ (27)

In terms of action and the canonical momentum p, the
SFA transition amplitude is

ap(t) = −i

∫ t

dt′e−iS(t,t′,p)−iIpti〈p + A(t′)|V (t′)|g〉(28)

In future, if and when you come across such expressions,
pay special attention to the meaning of the momentum
– is it canonical or kinetic.

Eqs.(24,28) are intuitive and clear. The electron sits in
the ground state until t′ when it makes (at this point still
virtual) transition to the continuum. Then the electron
moves in the laser field, converting the virtual transition
into real and oscillating – as the free electron should. It
accumulates the phase given by the integral of its instan-
taneous energy E(t′′), performed between the moment of
birth t′ and the moment of observation t. The electron
finishes with the canonical momentum p, which dictates
the initial kinetic momentum that the electron populates
at t′, k = p + A(t′).

There are several major problems with this result, all
stemming from the main approximation of the theory -
to neglect the effect of the Coulomb potential.

(1) During the transition to the continuum the electron
will be liberated differently if we include its interaction
with the atomic core. After all, if it has to tunnel through
the barrier, the shape of this barrier is important – and
it is heavily affected by the binding potential. Thus, the
ionization amplitude will be different. This problem can
be corrected by incorporating the effect of the Coulomb
tail into the electron action.

(2) The propagation in the continuum is also differ-
ent: the electron not only oscillates in the laser field, it
can also scatter off the atomic core. This is not present
in the SFA formalism, but can be included additionally:
The SFA result can be considered as the first term in a
perturbative expansion, with the atomic potential being
a perturbation. The corresponding new terms are often
referred to as SFA2, etc. But the accuracy and the con-
vergence of such series is generally a major problem.

(4) The Volkov propagator is sensitive to the gauge.
The one in these notes is written in the length gauge. In
the velocity gauge where V̂ = p̂A the plane wave state
|p〉 stays the same between t′ and t. Physically, this is
simply because in this new gauge p refers to canonical,
not kinetic momentum, and in the laser field the canoni-
cal momentum of the free electron is a constant of motion.

This does not lead to any problems in the exact theory -
i.e. if the electron is indeed free all the time. Then the
extra phase that differs canonical and kinetic momenta
states carefully cancels out, as it is chosen consistently
for all states one deals with. But in the approximate
theory it is not the case - the initial (ground) state is not
a free electron state, and no consistent phase enters it.
The result is that SFA is not gauge invariant, which is
really bad news for any theory.

However, the good news is that the gauge problem di-
rectly affects only the pre-exponential term in the am-
plitude, and keep the major piece – which is the fast
oscillating exponent – intact. So with exponential part
we are more-or-less safe, at least as far as gauges go.

(5) Finally, there is one more major ”wrong” with SFA.
By using the plane waves as continuum states, we have
selected a basis which is complete and not orthogonal to
the initial state of the system. In other words, in addition
to all other problems our basis set is also overcomplete: it
includes all plane waves that already make up a complete
basis plus an extra state. Result: the pre-exponential
factor which includes transition matrix elements suffers
– but the key exponential dependence stays the same.

To summarize, SFA is wrong in so many ways that it vi-
olates every rule in the theory book. But the physical pic-
ture that stands behind it is so intuitive, clear, and com-
pelling that SFA is used very widely, and it works very
well for gaining qualitative and sometimes even quan-
titative insight into the physics of intense laser-matter
interaction.

KELDYSH-TYPE THEORIES OF
STRONG-FIELD IONIZATION

The seminal paper by L. V. Keldysh on strong-field
ionization, which has provided a unified picture of this
process for various ionization regimes, has been published
in 1965, very soon after the invention of the laser. The
intensities available at that time have been many orders
of magnitude lower than those envisioned by Keldysh.
His results remained under-appreciated for almost two
decades, pushed out onto the fringe by the successes of
a much more quantitative time-dependent perturbation
theory.

At the end of 70-th, it looked like the problem of
multi-photon ionization was done and over with, and
statements to that effect could have been found in the
literature. This is precisely when the time-dependent
perturbation theory began to fail. The first call was
the discovery of above-threshold ionization in 1979 by
Pierre Agostini. Let N be the minimum number of pho-
tons that the atom has to absorb to release an electron,
N = Int[Ip/ω] + 1, where Int stands for the (floor) inte-
ger part. Then the energy of the freed electrons would be
E = Nω − Ip. Above threshold ionization (ATI) refers
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to the observation of electrons with additional energy,
gained by absorbing extra photons, E = (N +s)ω−Ip. A
few years later people have realized that this has all been
predicted theoretically in mid-sixties by several groups of
Russian theorists including (1) Keldysh, (2) Perelomov,
Popov and Terent’ev (PPT), (3) Nikishov and Ritus. In
1980 H. Reiss developed his SFA, which is not much un-
like the earlier Keldysh papers (even though Reiss says
otherwise). Prior to that, in 1973, F. Faisal developed
his approach – which is similar in some respects to the
earlier PPT theory, albeit for a different (velocity) gauge.
The various versions of the strong-field approximation are
now referred to as KFR-theory (Keldysh-Faisal-Reiss).

The PPT theory stands alone. There are three reasons
for it.

First, it is both deeper and more general than KFR.
Second, it is generally superior in terms of quantitative
accuracy compared to the KFR, with the exception of
one very simple ad-hoc improvement of the KFR already
described by Keldysh in 1965 – but without derivation.

Third, the PPT papers are written in the best style
of the Russian school of the theoretical physics of that
time: ’if you, dear reader, don’t get that it this obvious,
too bad for you, you idiot’.

The simplest limiting case of the PPT theory for
very low-frequency laser fields have then been used (pla-
giarized) by Krainov, who turned it into now popular
Ammosov-Delone-Krainov theory (ADK) that everyone
uses. But let me stress that this latter is only valid in
the tunnelling regime, and is not original in any way com-
pared to the PPT theory.

I will now stop on the features and the math which are
common in PPT and Keldysh, and the particular form
of the approach is taken from the SFA.

Up to the global phase factor eiIp(t−ti) the SFA prob-
ability amplitude of populating the field-free continuum
state labelled by the canonical momentum |p〉 is

ap(t) = −i

∫ t

dt′e−iS(t,t′,p)〈p + A(t′)|V (t′)|g〉

S(t, t′,p) =
1
2

∫ t

t′
dτ [p + A(τ)]2 + Ip(t− t′) (29)

The phase factor eiIp(t−ti) introduced for symmetry rea-
sons corresponds to shifting the zero energy level to the
ground state. Of course, nothing in observables changes
as a result.

Let us assume that the field is linearly polarized,
E cos ωt. Then the vector-potential is

A‖ = −E
ω

sin ωt = −v0 sin ωt

A⊥ = 0 (30)

Then, keeping only exponential accuracy, we obtain

a(p, t) ∼
∫ t

−∞
dt′ exp(−iS(p, t, t′)) (31)

where

S(p, t, t′) =
(

Ip +
1
2
p2
⊥

)
(t− t′) +

+
1
2

∫ t

t′
dτ

[
p‖ − v0 sin ωτ

]2 (32)

is the familiar from the previous lecture action integral,
v‖ and v⊥ are the velocity components parallel and per-
pendicular to ~E and v0 = E/ωL is the velocity amplitude
of electron oscillations.

You already see that having non-zero perpendicular
momenta is like increasing Ip. Hence, for now p⊥ can
be set to zero. If we are interested in the probabilities
of populating non-zero p⊥, all we need to do is take the
formula for p⊥ = 0 and replace Ip with Ip + p2

⊥/2. From
now on, I will absorb p2

⊥/2 into Ip.
This expression is the standard SFA expression for the

ionization amplitudes, in the length gauge. The next step
is to use it to evaluate ionization probabilities.

Calculating the integral

To calculate the integral for the ionization ampli-
tude a(p, t), we need to understand how does the phase
S(p, t, t′) in this integral behave.

To do this analysis, let us temporarily re-write the ac-
tion in terms of dimensionless variables: let us pull v0 out
of the brackets of Eq.(32), and also introduce the phase
φ = ωτ as a new dimensionless integration variable:

S(p, t, t′) =
Ip

ω
(ωt− ωt′) +

v2
0

2ω

∫ ωt

ωt′
dφ [u− sin φ]2 (33)

where the dimensionless momentum is u = p‖/v0. The
momentum p here refers to the parallel momentum, p2

⊥/2
is included into Ip.

We see that there are two important parameters in the
phase – N = Ip/ω and

2Z =
v2
0

2ω
= 2

E2

4ω3
2 =

Up

ω
(34)

where Up = E2/4ω2 is the ponderomotive energy – the
laser-cycle-average kinetic energy of the oscillating elec-
tron. In strong low-frequency fields both parameters
are very large, meaning that the phase is changing very
rapidly with time. For example, at intensities around
1014W/cm2 and for w = 1.56eV, which corresponds to
the laser wavelength of 800nm, the characteristic value
of the second term in the phase, over one laser cycle,
is about 10 π, which is a very large phase change over
one laser cycle. Therefore, we can use the saddle-point
method to calculate the integral for the amplitude,

a(p, t) ∼
∫ t

−∞
dt′ exp(−iS(p, t, t′)) (35)
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where

S(p, t, t′) = Ip(t− t′) +
v2
0

2

∫ t

t′
dτ [u− sin ωτ ]2 (36)

The saddle-point method proceeds as follows. First,
one looks for the values of the integration variable t′

where the phase of the integrand is stationary. In our
case these stationary points are given by the equation

∂S(p, t, t′)
∂t′

= −Ipt
′ − v2

0

2
[u− v0 sin ωτ ′]2 = 0 (37)

Second, one expands exp(−iS(t′)) in Taylor series around
the stationary phase point t′ = tm. The first derivative
w.r.t t′ at this point is zero, and the integral becomes

∫
dt′e−iS(t′) = e−iS(tm)

∫
dt′e−i

S′′(tm)
2 (t′−tm)2 (38)

where the second derivative is denoted S′′. Now one uses
the fact that the integral converges quickly, so that the
limits of integration with respect to ξ = t′ − tm in the
vicinity of the stationary point are expended to ±∞. The
integral is then well-known, and the answer is

∫
dt′e−iS(t′) ' e−iS(tm)

√
2π/iS′′(tm) (39)

There could be many stationary phase points, and one
needs to sum contributions from all of them, so the full
answer is

∫
dt′e−iS(t′) '

∑
tm

e−iS(tm)
√

2π/S′′(tm) (40)

Let us go back to our integral. The equation for
the stationary phase points Eq.(37) can be re-written in
terms of the dimensionless Keldysh parameter γ:

(u− sin ωtm)2 = −γ2

γ2 =
2Ip

v2
0

=
2Ipω

2

E2
(41)

The solutions of this equation are always complex: all tm
will have imaginary part. Complex time means motion
in classically forbidden region, it means tunnelling. In
SFA all ionization, no matter what γ, is always rooted in
tunneling.

To make our calculation slightly more specific, let us
set u ≥ 0. This means we are looking at the electrons
flying in the positive direction. For each value of the
normalized parallel component u of the canonical mo-
mentum, there are plenty of stationary phase points that
satisfy Eq.(41). Indeed, let t

(0)
0 be one such point, with

the real part of ωt
(0)
0 between 0 and π/2 and an imaginary

part iτT :

t
(0)
0 = Ret(0)0 + iτT ≡ t0 + iτT

0 ≤ ωRet(0)0 ≤ π/2 (42)

Then t
(0)
m = t

(0)
0 + 2πm/ω = t0 + 2πm/ω + iτT would

also satisfy the same stationary phase equation. More-
over, there are two points per each laser cycle – these are
the points where sin(...) has the same value. Thus, in
addition to t

(0)
0 , there will also be t

(1)
0 related to t

(0)
0 as

ωt
(1)
0 = π − ωt

(0)
0 .

Question: Show that the imaginary part of the action

integral is the same for all t
(0,1)
m , particularly:

Im[S(p, t, t
(0)
0 )] = Im[S(p, t, t(0,1)

m )] (43)

Remember that an integral from a point t′ = Ret′ + iτT

on the complex plane to the point t on the real axis can be
calculated by first going to the real axis and then integrating
along the real axis.

Since the imaginary part of the action is the same for
all stationary phase points, we can write

S(p, t, t(0,1)
m ) = Re[S(p, t, t(0,1)

m )]− iσ(p) (44)

where

σ = −Im[S(p, t, t
(0)
0 )] (45)

and the sum of the contributions of all stationary points
to the total ionization amplitude is:

a(p, t) ∝ e−σ(p)
∑

e−iRe[S(p, t, t(0,1)
m )] (46)

with the summation over all m and 0, 1.
As we see, in time-domain, we have a sequence of ion-

ization bursts, twice per each laser cycle. These con-
tributions from each successive cycle interfere with each
other, leading to constructive and destructive interfer-
ence depending on the specific value of p. The inter-
ference is responsible for turning the electron spectrum
|a(p)|2 into a sequence of peaks corresponding to a differ-
ent number of absorbed photons. The picture is similar
to optics, where a sequence of pulses following each other
with regular intervals results in a ’comb’ structure in the
spectrum. Here the ionization bursts repeat every laser
cycle, and there is a double-burst-structure for the ion-
ization burst corresponding to a particular cycle.

Now, having understood the time-domain picture of
strong-field ionization, let us finally turn to the contribu-
tion from a single stationary point, i.e. from a single ion-
ization burst that produces electrons with the canonical
momentum p. The contribution from a single stationary
point will also give us the ionization probability per laser
cycle (up to factor 2, for two such points per cycle), and
hence the ionization rate:

Γ(p) ∝ e−2σ(p) (47)

This expression is written with only exponential accu-
racy.

Thus, to find the rate for each value of p = v0u, we will
need to solve the equation Eq.(41) for t

(0)
0 = t0+iτT , then
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calculate the action integral, find its imaginary part and
find the corresponding rate.

Eq.(41) can be solved for any u, but for the moment
I will limit the discussion to u = 0. The reason is sim-
ple: these values dominate the overall ionization rate,
integrated over all u = p/v0. Indeed, we will see very
quickly that for u = 0 the complex time t

(0)
0 = t0 + iτT

has t0 = 0. Thus, for u = 0 the electron emerges from
the classically forbidden region, where it has been travel-
ling in complex (imaginary) time, at the maxima of the
instantaneous electric field E cos ωt0 = E . This is pre-
cisely when the strong-field ionization is peaked. Thus,
the rate for u = 0 corresponds to the rate at the peaks of
the field, and it will dominate the total, cycle-averaged,
ionization rate. With exponential accuracy, this is all we
need to know.

Our equation becomes

sinω(t0 + iτT ) = iγ (48)

or, separating real and imaginary parts, t0 = 0 (as
promised) and

sinh(ωτT ) = γ (49)

Remembering that

sinh(ωτT ) ≡ eωτT − e−ωτT

2
(50)

and denoting exp(ωτT ) = z, we find the quadratic equa-
tion

z − 1
z

= 2γ (51)

with the solution

z = γ +
√

γ2 + 1

ωτT = ln[γ +
√

γ2 + 1] (52)

Let us now look at the two limits of this expression. For
γ ¿ 1 we have

τT =
γ

ω
(53)

This expression gives a clear meaning to the γ parameter
in terms of the so-called ’tunnelling time’ τT : small γ
mean that during tunnelling the barrier has no time to
oscillate: ωτT ¿ 1. Once we found the stationary phase

point, we can now calculate the corresponding action in-
tegral:

S(p, t, t′) = Ip(t− iτT ) +
v2
0

2

∫ t

iτT

dτ [sin ωτ ]2 (54)

We note that by introducing the new integration variable
τ = iξ the integral term can be re-written as

∫ 0

iτT

dτ [sin ωτ ]2 = i

∫ τT

0

dξ sinh2(ωξ) (55)

and hence the imaginary part σ = −ImS is

σ = IpτT − E2

2ω2

∫ τT

0

dξ sinh2(ωξ) (56)

Question: Calculate the remaining integral and show
that in the limit γ ¿ 1 this rate is given by the exact
analogue of a DC tunnelling exponent:

Γ ∝ exp
[
−4

3
IpτT

]
= exp

[
−2

3
[2Ip]3/2

E
]

(57)

Let us now look at the opposite limit of very large
γ À 1. The integral we need to calculate and the imag-
inary part of the action are given by the same general
expression as before,

σ = IpτT − E2

2ω2

∫ τT

0

dξ sinh2(ωξ) (58)

but now

τT =
1
ω

ln[γ +
√

γ2 + 1] ≈ 1
ω

ln(2γ) (59)

Question: Calculate the integral and show that in the
limit γ À 1 this rate is given by the expression familiar
from the time-dependent perturbation theory for the multi-
photon ionization process:

Γ ∝ E2Ip/ω ∝ IIp/ω (60)

Finally, do the calculation for the general case of arbitrary
γ and derive the general expression for the ionization rate

Γ = exp
[
−E

2

ω3

[(
γ2 +

1
2

)
ωτT − 1

4
sinh(2ωτT )

]]
(61)

where ωτT = ln[γ +
√

γ2 + 1] = Arcsh(γ).


	ionization in strong low-frequency fields
	lecture 1
	lecture 2
	lecture 3-4

