Example electron spectrum (ATI)

Hydrogen atom

Laser parameters: 1300 nm; 6 cycles; \cos^2 ; $I_{max} = 10^{14} \text{ W/cm}^2$.

Direct electrons: 0 to about 2 times the ponderomotive energy $U_{\rm p} = I/(4\omega^2)$.

Rescattered electrons: dominate spectrum beyond 2 U_p .

Example electronic wavepacket (H_2^+)

H2p_R2p0_R305p00_L24_r1p0_LG_AS_CF114a_1Sg_L_cgdA_aa_v12_t_MCP0p00_grid30x30_yz.PD

Electronic wavepacket at two different times within a 2-cycle laser pulse. (Only the continuum part is shown.)

B-spline properties (I)

All 11 *B* splines of order k = 4 for knot sequence $\{t_i\} = \{0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8\}.$

B-spline properties (II)

Fitting (a) e^{-x} or (b) $\sin(\pi x)$ with B splines (order k = 4 and s = 8 knot points).

Example: continuum wavefunctions for H atom (I)

Example: continuum wavefunctions for H atom (II)

Box discretization with B splines

Size of the (radial) "box": $r_{\rm max}$

Number of (radial) knot points: s

(a): same knot spacing; (b): variable knot spacing $(r_{\text{max}} = 500 a_0)$.

Prolate spheroidal coordinates (for diatomics)

Transitions within non-relativistic dipole approximation

Transitions within relativistic beyond-dipole treatment

Normalization of continuum states

Uncoupled continuum states:

- separable potential (H_2^+) : channels are separately obtained,
- normalization (of originally) box-discretized states via density of states or asymptotic behaviour.

Coupled continuum states:

- non-separable potential (like Na_2^+) or two-electron case,
- Note: this differs from atoms (and larger molecules) where the electron-electron interaction does not break a symmetry!
- analysis of leading configurations (two-electron case): [Apalategui & Saenz, J. Phys. B 35, 1909 (2002)].
- asymptotic analysis in terms of linear combinations of spherical harmonics (more robust): [Vanne & Saenz, J. Phys. B 37, 4101 (2004)].

A. Saenz: Solving the TDSE with the spectral approach (11)

Continuum transition moments for HeH⁺

 $\mathsf{X}^{1}\Sigma \rightarrow^{1}\Sigma (R = 1.45 a_0)$

Partial photoionization cross-section for HeH⁺

 $\mathsf{X}^{1}\Sigma \rightarrow^{1}\Sigma \ (R = 1.45 \, a_0)$

Solid: this method, dashed: explicitly-correlated basis functions + CSM [Saenz, Phys. Rev. A 67, 033409 (2003)].

Continuum transition moments for Na_2^+

 $X^2 \Sigma_g \rightarrow^2 \Sigma_u \ (R = 6.75 a_0)$

H₂: Hartree-Fock vs. DFT core (ionization)

M. Awasthi et al. PRA **77**, 063403 (2008)

H₂: Hartree-Fock vs. DFT core (excitation)

M. Awasthi et al. PRA **77**, 063403 (2008)

Validity of the SAE approximation for H₂

M. Awasthi et al. PRA **77**, 063403 (2008)

6D: Orientational dependent ion yield of H_2 ($R = 1.4 a_0$)

Laser field: 30-cycle (cos²) pulses with peak intensity $I = 5 \cdot 10^{12} \text{ W/cm}^2$. [Y. V. Vanne and A. Saenz, *J. Mod. Optics* **55**, 2665 (2008).]

Internuclear-distance dependent ion yields of H_2 (800 nm, perp.)

[for method see: Y.V. Vanne and A. Saenz, J. Modern Optics 55, 2655 (2008); Phys. Rev. A 80, 053422 (2009)]

Energy-resolved electron spectra (ATI)

Imaging (I): Orientational-dependent ionization of O₂ molecules

[Exp.: Pavicic et al., PRL 98, 243001 (2007); Theory: Petretti et al., PRL 104, 223001 (2010)]

Imaging (II): Orientation-dependent ionization of H₂O molecules

Imaging:

enforced inversion symmetry.

Short pulses:

carrier-envelope effects (interesting by itself), but limits time resolution!

[Chem. Phys. (2012)]