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Strong pulse hits an atom

Electron density of the Hydrogen atom
In a 2-cycle pulse @ 2 x 10'* W/cm?, 800nm

Complex appearance — simple basic physics

— tunnel (or so) ionization,
— free electron in the laser field,
— dipole matrix elements

Free motion is exactly described by the
Volkov solutions
of the time-dependent Schrodinger equation

lonization can be (reasonably well) described
by rate formulae

Dipole matrix elements are known
from electronic structure calculations




We believe we understand the physics.

Why struggle to solve the TDSE?



Why solve the TDSE?

(Except for producing colorful pictures)

Test models:
We think we have understood — have we?

Numerical experiments:
Try, instead of thinking too hard
can be simple and inspiring

Predict:
Use models for trustworthy predictions of phenomena (not numbers)
Here we are doing physics at its best
High harmonic cutoff-energy ~ IIO + 3.2 Up

was first seen in simulation!

Get the numbers right, get the details:
ionization rates, photo-electron spectra, high harmonics
In the end, numbers is all that matters

Reproduce experimental findings:
The ultimate (but only ultimate) prove of correct experiment&computation
(very hard, if taken seriously!)



The solution — t-SURFF

The time-dependent SURFace Flux method

Idea:

We know the time-evolution beyond radius R_ (“channel radius”), e.g.Volkov solutions
Integrate flux through a surface for obtaining the asymptotic solutions

Related to:

R-matrix theory (in spirit, not technically)
Spectra from auto-correlation (for time-independent Hamiltonians)

Requires:
- wave function and derivative on |r|=R_: ¥|., d V|,

- asymptotic solution (exact or numerically “cheap”)
- perfect (or very good) absorption beyond R_

Can do:

- fully differential strong-field IR single photo-electron spectra any polarization
- shake-up processes in two-electron systems
- fully differential strong-field IR double photo-electron spectra




We have understood: HHG

Time-frequency analysis of the high harmonic response
More structures
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Tunnel ionization - principle

Gamov factor \
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Strongly non-linear (exponential !) dependence on parameters

Ammosov-Delone-Krainov (ADK) formulae




Get the numbers right: field-ionization rates of He

TABLE I. Static field ionization rates from the ground state Companson Of

of He in atomic units. The conversion flactors to ST units H

are 1 (time) a.u. — 2.419 X 1077 s, 1 (electric field strength) accurate numencal data tO
au. = 5.142 X 10" V/m. The numerical data is accurate to ADK ionization rates

at least two digits.

E W E w E w

0.08 0463 X 1077 028 0266 % 107! 048 0.164 1e+0 : :

0.09 0.509 X 107® 029 0309 X 107" 049 0.174 : H /i — T
0.10 0288 X 10 ° 030 035 X 10 ' 050 0.183 Te-1 : :

0.11 0.115x 107* 031 0405 x 107" 055 0233

012 0362 X 107* 032 0458 X 107! 0.60 0287 _le2

0.13 0943 X 107* 033 0513 %X 107" 065 0.345 >

0.14 0212 X 1073 034 0572 107" 070  0.406 © Te-3

0.15 0423 X 10 035 0633 X 10" 075 0470 2 led

0.16 0.768 X 107> 036 0696 x 107! 0.80 0536 &

0.17 0129 X 1072 037 0763 X 107" 085 0.604 1e-5

0.18 0203 x 107> 038 0832 107" 0.90 0.673 ;

0.19 0302 x 1072 039 0903 x 107" 095 0.744 ) : : .

0.20 0.431 X 10_2 040 0977 X 10_] 1.00 0818 le 60 \0_1/0 2 0.3 0 05
0.21 0590 x 10°* 041 0.105 .10 0.97 ' ' ’ ’ ’ '
0.22 0783 X 1072 042 0.113 120 1.13 Electric field (a.u.)

0.23  0.101 X 107" 043 0.121 .30  1.29

0.24 0.127 X 107! 0.44 0.129 1.40 1.45 ADK works

0.25 0.157 X 107! 045 0.138 1.50 1.6l .

026  0.190 x 10~!  0.46 0.146 1.60 177 nicely here

Factor 6 discrepancy!
027  0.226 X 107! 047 0.155 .70 1.92




Laser ionization of H,

Electrons coherently leave
from the two atoms of H,

When atomic separation matches
Y2 of the phase difference

Destructive interference, no ionization?

Predicted by molecular ADK formula

Ratio (parallel/perpendicular)

We have not (fully) understood: ionization

Solve the TDSE for H
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Molecular ADK prediction

Thanks to A. Saenz

[Y.V.Vanne, A. Saenz PRA 82, 11404(R), (2010)]



Numerical experiments

Two-photon double ionization of He
Basic idea:

Very large scale simulation of TDSE
Two photons

well separated in time (“long” pulse)

lonic ground state after 1% ionization 60 1
50 08 3
2 well separated photo-electron energies o 40 i E
g -
" 20 g
Two photons 10 02 &
at the same time (short pulse) i : .
Both from the correlated neutral state 0 10 20 30 40 50 60 O 10 20 30 40 50 60

E, [8V] E, [eV]

Both in the same energy range

FIG. 1 (color online). TPDI electron spectra P(E,, E,) at
hew = 70 eV for different pulse durations (FWHM): (a) =
150 as, (b) T, = 750 as. The top shows the spectrum integrated
over one energy. i.e.. the one-electron energy spectrum P(E;) =

P(E5). .
Bt ot hoa Stomghys W& expect the (B2l 4. Feist et al., PRL 63002 (2009)]



Understand experiments in detail...

Photo-electron emission and spectra
- basis for all re-scattering type experiments

*High harmonic generation IR photo-electron spectra (COLTRIMS)

[Meckel et al., Science 2008]
*|R photo-electron spectra c -

. . . 7% 0.2
*“Re-scattering imaging” ~ "
5 @ o.
=0 4
Surprisingly little is known = = r.
- Hydrogen 2 rr:?’ - @@ o
- Helium (to some degree) . ey S i q":

- Single electron models _ _ - _ _
Phantastic detail — difficult interpretation!

Experimentalists rely on ADK and its derivatives
Known to be quite wrong where we can check it:
e.g. Hydrogen atom and molecule at 800 nm, [shown by Alejandro Saenz]



Things to come...

* Approaches to solving the TDSE

Simplifying models: 1d and restricted dynamics

The 2-electron problem

The few-electron problem and beyond

Absorption of outgoing flux & spectra



The TDSE

potential
Single electron, length gauge kmitlc l ﬁe'di”teradio”
i%\PL('F; t) = [—%A — % — 7. g(t)] U (7, )
1 Z o 1
Multi-electron H(t) = Z 58+ - VE.7 ; T

Gauge-transformation
U, (7 1) = e AT (F 1) A = / £t
t

Velocity gauge ~ laser vector potential

’z%qiv(f} = E (—zﬁ + }Y(t))Q - %] Uy (7)

\ field-interaction

Dimensions 1 (time) + 3" (space), n... number of particles

Linear partial differential equation (parabolic)

Simple time-dependence



Approaches to solutions

Simplified analytic models — the Volkov propagator
Classical models — classical trajectory Monte-Carlo
Single-electron models

Models in reduced dimensions

Full fledged quantum dynamics calculations



Classical trajectory methods



Classical trajectory methods

Motion of free electron in the field is nearly classial
— simulate by classical trajectories

Advantages: i -to-
Can handle 2-e situation relatively easily N, Single-to-double
Follow the trajectories — “see what happens” ionization ratio
Disadvantages: 10" —————————
“Auto-ionization” of the ground state Y oM €Gomaggis

Crucial choice of initial distributions in phase space 4o L T Ourmede!
Difficult to assess correctness i :

Reproduce
Double-differential photo-electron emission patterns i :
Double-to-single ratios at 800nm 10°k : /
F Threshold intensity

/
F.

Peak laser intensity (10"°W/cm?)

Geyer, Rost, J. Phys. B 36, L107 (2003)
Ye, Chen, Liu, PRA 77, 013403 (2008) Ye et al. 2008
Shaaran, Nygren, Faria, PRA 81, 063413 (2010) Exp. : Cornaggia 2000



Numerical solutions



Numerical solutions

What we need to do

In mathematical terms:
Solve the initial value problem
for a (parabolic) partial differential equation

Discretization
approximately represent ¥ by a finite set of numbers c,

Turns the partial differential equation
into a set of ordinary differential equations

Time-propagation
Determine an initial state
Solve the set of ordinary differential equations in time
Obtain W(t) in terms of c(t ) for (a set of) times f,

Analyze

Extract the information from the c(t)
— electron spectra, ionization rates, high harmonic responses, ...



Grid representation of T and 17

(21 —21 01 - OG[;@ (V(:r-l) 0 0 0 )
TN 0 -1 2 <10 0 Vi) 0 .. 0
Ax S : 5 :

CIo ... 0 -1 2/ L 00 0 Vi)

Finite differences rep. of -A

Storage ~ 3 N Storage ~ N
Accuracy T ~-. O(Ax)"] Accuracy V ~~ O[(Ax)]

/

Simple & straight forward, very limited aEcuracy




Basis representation of /'and |/

General basis @,

Full matrices

) 0
=~ [ depi@) i@

Matrix elements Vij= / drpi(x)V (x)p,(x)
| Storage ~ N2, accuracy can be exponentialin N m@(h“ﬁ !

— — — — — — — — — — — — — — — — — —

Rapid convergence, more elaborate setup (integrations), large storage



Local basis representation of T and 1/

Local basis &

(Example B-splines)

Band matrices i,

-

' N, ,
d, = —/ dIfi(:E)%an(m)
Half-bandwidth n ~ order of splines

Storage ~ nN
Accuracy ~ O[(Ax)"|

Easy setup (simple integrations), tunable accuracy




Local basis sets: finite elements

Element boundaries

N
. e« “Infinite” Finite “Infinite”
FEM - finite elements method s} element elements / element -
. . . . LR X) exp(+ax - -
Piece-wise approximation _3_p”( ) expl %{\ Pn(X)j P.(x) Jf\’n(x) exp(-ax) -
by a smooth basis: - ; /\ N \ﬁ \\\
polynomials p_(X) - A #irfx I,-’;h;nu\klx ,r?(\ H‘ .
- others, e.g. p_(x) e o == Y D T
o . y k\\ A s SV
! \k L ;f.l' ‘I\R ,-’."I Voo
i NS ¢ N Sl RV

g AEL. ) —dd —Bu = —= 1] EUE] ‘ il HY e EREIE)

Can be combined with Gauss quadratures to give the

“‘FEM-DVR” method

finite elements in “discrete variable representation”

Mathematically and computationally

very similar to B-splines
Possibly more flexible...




Time-propagation

Solve a set of ordinary (usually linear) differential equations

4
dt

o~

C=H@tC
Formal solution
t+7
Ct+ 7) =T exp !—2/ dfﬁ(t’)} 5(3&)
t

Highly symbolic notation: /
T ... time-ordered product!
How to obtain the exponential of the matrix?

Make numerical sense of it;

Runge-Kutta

Crank-Nicolson

Split-step

... and many more, more elaborate methods



Absorption of outgoing flux

What is the problem?

During a few-cycle pulse,
electrons can move VERY far
much further than just the quiver amplitude

either
reflection from simulation box boundaries

or
VERY large simulation box

or
traceless absorption of flux

<= bad (aka wrong) results

<= VERY costly

<= non-trivial



Extracting information from ¥(x,t): excitation and HHG

Excitation

Probability of finding an excited state after the pulse is over
Py =[(U(D)|®,)[> o B, =|CHT)-C,f

Straight forward and easy to compute

High harmonic spectra
Time-dependent dipole Of(t) = <\If(t)|??|\p(t)> = 5*@) : Xé(t)

Harmonic power spectrum h(w) — |-7:[J(t)](w)|2

Reasonably simple, some care for density of time-grid, smooth beginning and end of field



Extracting information from ¥(x,t): ionization

Fundamentally, ionization is an asymptotic concept
— well defined only at large times

Easy to compute only when we know
the stationary states of the field free system

Single ionization yield

Easy, when all bound states C_are available:

Yield=1-= P,=1=) |CY(T)-C,|°

Double ionization yield

Harder: need to know bound and single-electron scattering states

Alternative definition

Yield ~ probability of finding the electron(s)
outside a small box surrounding the nucleus
(simple and efficient, reasonably reliable)



Extracting information from ¥(x,t): photo-electron spectra

Fundamentally, photo-electron ener?y is an asymptotic concept
— well defined only at very large times and distances

Generally hard
(1) Need to keep the complete wave function until the pulse is over
=> Very large simulation boxes needed
(2) Need to asymptotically analyze W(x,T)

Note: we do not have the exact double-photoelectron states!

ACp g, P(E,E) U(T)|Dg, 5,

Ways out:

(1) Analyze only asymptotic part of wave function using free-electron states
=> need to wait even longer until also slow electrons come there
Long after the end of the pulse
=> need an even larger box

(2) Keep track of current through a surface, perfectly absorb beyond that surface
=> need to wait long, but at least can keep the box small



It's no mystery: try it in Python...

Your choice of the discretization
— for simplicity start from finite differences

Choose a grid: (x,,X,,...,X)
Set up the matrices T, V, X, H=T+V

Solve the eigenproblem for an initial state:
“C = eig(H)” (eig is a standard SciPy eigensolver)

Choose a laser pulse:
e.g. “function f = field(t)
f = cos(wt) cos(mr t/T)”

Define the derivative
“function d = hamiltonian(c,t)
D=(T+V+field(t)*X ) * c”

Time-propagate fromt=-Ttot=T
function “ode()” [solver for moderately stiff ODES]

Analyze: Python:
Determine ionization It's free!
High harmonic response It's a programming language
Excited state populations It's great!




Numerical approaches:

More than 1 electron



Scaling of the computational effort

N ...number of discretization points ~ phase space covered by the solution

~P__ x X__ xPulse duration

Electron in the laser field:
P ax~ Em XX)\ and Xmax~ Emaxx()\laser)z

m a laser

Pulse durations grow ~ A

laser

Total effort
~ (A,...)* (linear polarization)

~ (A...,)" (general polarization)

Number of particles: N grows exponentially !




The curse of dimensions

The quantum wave function ¥
(tells us everything we can know about the system)

W(X,,Y,1Z,: XY 02, X Y ,Z ) n...number of electrons

n =1 - one electron (3 dimensions) 100° points storeona
100 points in each dimension 8 MB memory stick
_ : : 100° points hard disk
n = 2 — two electrons (6 dimensions) 8 TB (rather large)
_ : : 100° points e.g. 10°DVDs
n = 3 — three electrons (9 dimensions) 8 ExaB (4000 metric tons)

The “curse of dimensionality” strikes early on!



Resources needed

1d, single electron problem — try run it on your smartphone

3d problem, cylindrical symmetry — laptop, desktop (minutes — hours)

3d problem, no symmetry: good workstation, small cluster (hours — days)

Larger (2 or more electrons): really large computers



Simplifying models



Lower-dimensional models

“1d-Helium”

1 o? 2 1
H(xy,x9;t) = — 4+
| | i=1,2 28%2 T; +a \/(iUl — 292+ b

Adjust a and b to obtain spectra similar to 3d Helium
NOTE: a=1/2 give the exact He" ground state energy E = -2 (atomic units)

Easy to program, fast solving:

E.g. x, X, —grid of 1000 x 1000 ~ 16 MB for the wave function

FFT and split step very efficient for time propagation
Very nice toy!



Lower-dimensional models: restricted dynamics

Restrict dynamics A Becker & group

e.g. only center-of-mass motion of two electrons

' P2 2 Zmlcl Zm]cl 1 P2
H(_R,I‘,I)=—+p“— r| ¥ + - HZ, 2,1 =—Z 2 2
4 |R+§| |R—§| r ( psz ) 4 ‘I‘Pp‘l‘PZ—l‘ p2+Z2
_P-AQ) 2
C VP A+ (Z +2/2) +a?
@ r R—->Z 5
........... - _
o A . VOrA+ (Z =2/ + &
‘R ® P2 [AID) + A1)

o c

Jacobi coordinates...

Probability distribution

6 )

Investigated XUV + IR ionization
Chen et al., PRA 82, 033626 (2010)

=« the so-called RESI process,
our results show that it may be difficult 1o distinguish
procasses initiated by the attosecond VUV pulse from those
solcly driven by the IR pulse in the sctups considered in
the present work.

Z (z;).u.)
Butu- XUV tIR




A note of caution for lower-dimensional models

lonization of molecules _ ,
3-d calculations vs. 1-d calculations

(solid lines vs. dashed lines)

With increasing size 1
2-4 -6 atoms -
2 —4 — 6 electrons = osl 3D, HF, R=3.0 ——
g 0 1D, MC, R=1.4 ---8---
= 1D, MC, R—3.0 ---a---
Z 1M, HF, R=3.0 ---e---
. (.6
A simple process! 2
Shouldn't 1-d models give us 2
. 5] 04 L
a feeling for what happens? g
2
] 02

2 4 6

No. of nuclei

1-d models can be qualitatively wrong

Simple models can be inspiring, but do not base conclusions on them!




Single active electron approximation

Not very precisely defined: somehow “freeze” all electrons except for one
[since 1987: Kulander, Schafer,...]

Build a potential V_.that simulates the effect of the frozen electrons

|
H(t) = —5A Verp(T)

“invent” a good V_: match excitation energies, scattering properties...

Slater determinant, n-1 fixed functions, let one be time-dependent

1 Z 2 1
Use exact Hamiltonian 47 (1) = Z —§Ai + = +&-T+ Z E——
i 2 @ ]

Ansatz: W(r ,r,,...,r ;t) = det[® (r ;t) D (r,) .../JCDn(rn)]
( )= delD. (1) O,(r) ¢

Only least bound orbital evolves in time Field free HF orbitals, frozen

Note: gauge question arises!

Neither is exact, errors of both are difficult to estimate
Make the simplest choice for your purpose




Non-linear approximations to the TDSE

As the wave function evolves, different discretizations would be optimal
‘ ¥

/
N

¥

Some time t,... ...some later time t,

Adjust the discretization to the evolution of the solution

The feed-back introduces non-linearity into the equations

The current solution acts back on its representation

— NONLINEAR EQUATIONS

Examples:
Adaptive meshes
Time-dependent Hartree-Fock



The two-electron problem



He in linearly polarized fields — fixed discretization

5-dimensional problem, just at the limit where full discretizations are still possible

Combine spherical harmonics with gridsonr, andr,

Finite-differences grid
[K. Taylor & group]

Double-ionization (;))hoto-electron spectra FHYSICAL REVIEW A 83, 053418 (2011)
at wavelength ~ 400 nm

one result @ 800 nm 104 10 102 ggt 101

FEM-DVR grid + split-step propagator £3

[J. Feist et al. PRA 77, 43420 (2008)]

mostly at shorter wave Ien?th

numerically very solid results R

Pazoureketal. .. .,

_ _i H H FIG. 3. (Colar online) Two-dimensional energy-angular differen-
TWO phOton dOUbIe |On|Zat|0n tial distribution PPY(AE . #)) for an xuv pulse with T = 4.5 fs and
hiew = 80 eV us a function of the energy difference AE = E, — E,
between the two electrons, and emission angle #,, relative to the

olarization axis. The vertical dashed white lines show the expected
Very Iarge comPUter resources Eositions of the peaks for the sequential process; see Fig. :) The
horizontal nodal line 6, = /2 is visible except near shake-up
resonances.




Tackling the multi-electron
problem



Multi-electron systems

Isn't the single-electron picture sufficient?

NOT for
Inherently two- or more-electron processes:
Auger processes in the field
Double ionization

Severe “perturbations” by multi-electron effects
As in molecular orbital tomography

Getting the numbers right



A lproaches that worki
C? and R-matrix

Cl - configuration interaction
[A. Saenz & group]:

Get a basis from a dedicated ClI calculation
Select by physical insight, energy range
Expand time-dependent problem in this basis

Very efficient, very precise in some parameter ranges

Possible limitations:
Continuum difficult to include
Plays an important role in strong-field polarization

R-matrix Floquet and time-dependent R-matrix

[Burke, Joachain, H.van der Hart]

Exploit existing structure codes to compute inner region

R-matrix:
match value and derivative at the boundary _
Between outer region scattering solutions to inner region

Question of different gauges:
inner region must be length gauge
outer region is more efficient in velocity gauge

Possibile limitations:
Similar as CI



Continuum states and polarization

Bound/unbound is an asymptotic concept
Spectral distinction between bound and unbound
only for time-independent Hamiltonians

In CI, continuum states are excluded
from the core — play a role in polarization!

Conceptual question:
Can we look into the laser cycle?
How to define an ionization rate during the cycle??

.0C17 :

0015 -

L0006 A |

L0 - }
f
f

0008 - /f "\ n .
|
|
|

— non-bound
— |field| | -

|

l
I' 'K | / o™
0007 - /\/a h w \
|
I / \
0000 : \V | ! ! L I
—300  —200  —00 0 100 200 300

Time (a.u.)

Contents of field-free non-bound states
during ionization of H (length gauge)

“Deep tunneling regime”:
Keldyshy ~ 0.3 !




Approaches that work: . . .
\fery large scale full discretizations

Carry the multi-surface Born-Oppenheimer picture to the extreme (F. Martin & group)

V(7,7 R) = 3 xi(R)BY (71,75)

ha(ry, m) 0 (7, 1) = EWVOY (7, )

Use a very large number of E_
including: continuum states
doubly excited states
relevant couplings
Obtain @, by
(B-spline) discretization on a very large box

Advantages: _ o
best results results on laser-dissociation of H,

Disadvantages:
Limited to H,

Enormous computer needs

KER [eV]
in

-

=
i

Very large computer resources

| N
300313233 343536 3738 30 AL AZ 33 M 35 36 3T M 0
hv |eV] hv |eV]

[F. Martin et al., Science 315, 629 (2007)]




Approaches that do not work: TDHF and TDDFT

(Time-dependent) Hartree-Fock method — TDHF

Approximate the electron wave function by
a single determinant of inter-dependent three-dimensional orbitals

W(r,,r,,...r;t) =det[® (r ;t) ®(r;t) ... D (r ;)]

Orbitals @ are optimal for each time t
We hope/assume that the determinant ansatz is suitable

+ compact representation of the wave function (some 10 MB)
+ straight forward extraction of experimental observables

- large computational effort (much larger than TDDFT)
- no checks of accuracy
- fails for strong time-dependent interactions

Time-dependent density functional theory - TDDFT

suffers from similar problems, possibly more severely



Why time-dependet Hartree-Fock fails

A two-electron system Symbolic Quantum wave
in various states representation WY(r.,r,)
@ =
- ‘
Initial state (a configuration) w @ Aabq)a(r1)q)b(r2)
c :
Partial ionization 5 &
o :
Q ;
lonized state (another configuration) & ™. o— AP (r)Py(r,)
4————.
Another state (more configurations) % o—> A P (r)P(r,)

Yet another state.... A (i



A non-linear method: MCTDHF

Solve the time-dependent Schrodinger equation for a few particles

Multi-Configuration|Time-dependent]Hartree|-Fock

|Hartree: |Few-particle wave function = Product of single particle wave function

V(xy,...,xr) =~ ¢1(x1)p2(x2) ... Of(x))

Multi-Configuration: |use linear combination of products

qj(ﬂﬂl Z ZAJ1 ..... J’fOJl $l>o})($2) ( f)

J1=1 Jr=1
ITlme-dependent |5|ngle -particle functions OJ, (LB i‘) and

[Review of MCTDH: Beck et al. Physms Reports 324, 1 (2000)]

Fock: -estrict to anti-symmetric:

A jo = -A

N PR



System of non-linear PDEs

’&%Asl...if(t) = Z SG'D,fl Oy [ H(E) — F D), - '@H‘ZAIL--U'

El"'ﬂf Calerki?? matrix
Projector Density matrix Mean field matrix
(] ,.—/\—.\ - ” % N - . ~, |
0, = FOW + P Y. GlA), (H — FO)A i,
[.im=1

Z F arbitrary self-adjoint single-particle op.
??

Gauge fixing F fixes non-uniqueness of the ansatz

Hamilt?nian with two-body interactions  Projector N

H = Z Z H(;’If;;_g, Ty, f) PJ_ =1- Z ‘C)'H> (QH‘

k=1 k<n n=1
Single particle density matrix Two particle density matrix
T2 I3 df

Mean field operators
: —1)(f =2 _ :
H,.. = U )/ ) Z (qi)m_z\H|g-i)n:3),0fz). o for gauge F =0

9 AT TS

Mmoio



Example

HHG a dynamic multi-electron process

HHG for the following system:

* Diatomic, homonuclear molecule
Internuclear distance R = 2.8 a.u.

3d with cylindrical symmetry 4 active electrons

ungerade outer orbital

*Screened Coulomb potential
| =0.58 a.u. (N,)

*Laser pulse:
800 nm, 1 cycle, 3 x 10 W/cm?

[G. Jordan et al., NJP 10, 025035 (2008)]



Do single active electron models work?

MCTDHF 10 |
— 1f
2

SFA: HOMO + plane waves = 0.1
% 0.01

Effective 1e Hamiltonian é 0,001 |

H__ = [0>E,<0| + (1-]0><0[)H_(1-]0><0]) % 0.0001 |
= 1e-05 |

Multi-electron corrections to the le-06 |

0 10 20 30 40 50 60

Harmonic order

transition dipole [Patchkovskii et. a

(Known) single active electron models do not work.



More than one electron moves!

Factor MCTDHF wave function
into (core) x (single electron) Ly

=
-

WMCTDHF~ quactor = d)core(pe
choose @

core

determine ¢_

001 ¢

Harmonic intensity [a.u. ]
]
=
[

- le-04
Static core:
®___ =ion without field 1605 |
Dynamic core: 1e-06 . s
®__(t) =ion in the field 0 10 20 30 40 30 60

Harmonic order

[G. Jordan et al., NJP 10, 025035 (2008)]



Why does it matter?

If we want to learn from harmonics about electronic structure and dynamics...

Molecular orbital tornography

Idea: extract electronic structure 3
measured under different polariz: ”
2
Cl
5 11
. B P
209 HOMO orbital of N, ? E’
> - |
-2 _1
-3 .
-3 -2 -1 0 1 2 3

X (Angstroms)
[Itatani, Nature 432, 867 (2004)]

Do we have “single electron”
Information in the harmonics?




Electron energy spectrum: 2U

Assume release at time t,
Momentum at t, ~ 0
Acceleration by the laser field

. (\X:
— —_

ploo) = plto) = — /f E(t) = —Alto)

plto) = ploc) + Alty) =0

Maximal acceleration = + AO = 4 80/0)

Maximal electron energy ~ 2Up = 2& /4w’

“direct electrons”




The 10 Up cutoff

Acceleration of the electron

from t, until t, " f1 E(z‘)dt — ;ﬁl(tg) — }1(1‘1)

from t, until end of pulse - ]?C" E(z‘)dz‘ — i4(h)

LI 1

final momentum without scattering  A(t,)
i@?ér@gyrﬁgm?niti:n att, |pf—i-n.c'u’. (t[l) | — |fil (fU) — 24 (fl) |
maximal momentum pma}; — lllBlX(t[]) |s4(fU) o 2*4 (tl) |

numerically determine p__

> |E,..=10.00..U



Absorption of outgoing flux

Photo-electron spectra



Absorption of outgoing flux

What is the problem?

During a few-cycle pulse,
electrons can move VERY far
much further than just the quiver amplitude

either
reflection from simulation box boundaries

or
VERY large simulation box

or
traceless absorption of flux

<= bad (aka wrong) results

<= VERY costly

<= non-trivial



Methods for absorption

Absorption by mask

After each time step, multiply the wave function that comes close to the boundary
By some function that goes gently to 0 towards the box boundaries

U(7,t,) — U(F,t,) x M(F)
1

(r)
\ I

Straight forward, but crude Box boundary
Produces artefacts

Complex absorbing potentials

Add a potential with a (negative) imaginary part near the box boundary
H(t) — H(t)+ Voap(r), eg Veap(r)=—ia(|r] — R)" for |r] > R
Closer analysis shows that this is the differential version of an absorption by mask

Straight forward, less crude
Produces artefacts



A perfect absorber
IrECS

infinite-range Exterior Complex Scaling

[A.S., Phys. Rev. A81, 53845 (2010)]

Triggered by COST STMS visit to F. Martin & group



Exterior complex scaling

Hamiltonian is analytic only beyond R,

complex scale only
beyond a finite distance R,

Imr

r-> r for r<R, Re r [
r->R,+e°(r-R)for r>R, 0 R r

Outgoing wave boundary conditions

exp(ikx) — exp (i cos B kx — sin 6 kx)

Outoing waves k>0 — exponentially decaying functions, L? integrable
Ingoing waves k<0 — exponentially exploding functions, not in L?



Implementation of exterior complex scaling

Important technical complication
Bra and ket functions are not from the same space!!!

Exterior scaled Laplacian A__ . is defined on discontinuous functions

U(Ry — 0) = e?2U(Ry + 0)

Discontinuity arises because we need to keep the norm constant

Discontinuity is reversed for the left hand functions

U*(Ry — 0) = (e 2920)*(Ry + 0)

Matrix elements of ARO o

are computed by piece-wise integration [0,R ] + [R,»)

Conditions easy to implement with a local basis set



IrECS - infinite range exterior complex scaling

[A.S., Phys. Rev. A81, 53845 (2010)]

Exterior complex scaling

£
r->r for r<R, —T _ /<
r -> R0 + e'® (r-Ro) for r> R0 Re r o |

Usually done with a finite discretization box...
1.2 T

1.0
0.8r

Example: ool
order 2 finite elements 04L
0.2
0.0F
—0.25 2 ) 3 ‘ 10 12
R

Infinite range exterior complex scaling
Use an infinite size last element [R,«)

Example:
order 2 infinite last element

|
14 16

In practice: 20 ~ 30 functions on last element



Does it work?




Exterior complex scaling for the TDSE

Solve

d

?:_lIJQRD (ZE: t) — H9R0 (t)lIIQRO (331 t)

dt

Hope that

VYoro (X)=¥(X)

for |x| <R,




Does it work?

Atom in a strong dipole field

d

1 — —
i U(E, 1) = |~ 50z +iA(1) - Vo + V(a?)] U(7, 1)

Pulse parameters: 2 x 10 W/cm?2, 760 nm, 5 opt. cycl. FWHM

Massive ionization:
At the end of the pulse ~ 80% of the probability is outside [-40,40]

Accuracy of the solution (1-dimensional)

(10418): Boj

Relative error

logqg(Error)

|V ory (X) = PX)[ /¥, () + P (X)]
Inside box ~ 10~

Works very nicel¥!
[Phys. Rev. A81, 53845 (2010)]



iIrECS is a perfect absorber

Errors are determined by the accuracy of the discretization

Mathematically speaking there are NO errors introduced by ECS itself

h line +++ punch line +++ punch line +++ punch line +++ punch line +++ punch line +++ pun



How efficient is irECS?

How many discretization points do we need for perfect absorption?



How many discretization points are needed?

Error measure: ||¥,., (x) — Y(X)II2, ., 7 | P(X)]|?

X<RO0 X<RO0

Points in unscaled region 160

0.9 =

\ N - N
08 [ 1 cycTehI}i]A:IO . 1/ 5 cycles, M, =10
| . AN N, S
07 L \ / \\\ \
. . £ S = e | !
Points for absorption % -- RN R T
M = 10 s 98r ~._ ' Bk '\> / 102 -
A P s . T~ I ~ s
£ 051 ~. 109 T 1 25100
a .
@ 0.4 T 1
\ 108 ~ 5
03F N . 3 - - 10
~.10 ~ :
0.2
=N T T - --..\\‘ T T T T T
08 L ‘\ I cycle, M =20 —
- 0.7 L ., ‘-\_\_ ||
M, =20 = NN |
A g 06 S
E 0.5 _\\\ AN \\ \_____1_?.14 4l ...'\
g \\ - '---._____HH '---._______._“ i ——
@ g4t T T NS
S — |
10 — I
0a L -‘\__1_{_}-_5 |
0.2 ' e —— =
0.2 0.4 0.6 0.8 1 1.2 0.2 0.4 0.6 0.8 1 1.2
Exponent o Exponent o

20 Absorption points are perfect!

Quite insensitive to scaling angle 8 and exponential exp(-ax)

[Phys. Rev. A81, 53845 (2010)]



Compare to complex absorbing potentials (CAPs)

Errors of ECS and CAPs with identical discretizations

Method| Ms |[A 6O oro q|E[—Ro, Rol

rECS| 21 bo 06 —|2x107"°
ECS | 20 po0 06 —| 2x10"*
ECS | 40 RO 05 —| 1x1077

CAP | 20 o0 107* 4| 3x 1073
CAP | 20 10 2x107°% 6| 4 x 1073
CAP | 40 Fo 4%x107% 4| 3x 1071

CAP | 60 BO6x10"7 4| 1x107°

Number of points Accuracy

[Phys. Rev. A81, 53845 (2010)]



In 3 dimensions

Works just the same way and equally robust and efficient

Perfect high harmonic responses for H and model Ne

Very stable wave functions when varying scaling parameters R  and 6

High harmonic spectrum
of the Hydrogen atom

- =
o o o

[N

&

&

Intensity (arb.u.)

1a

—
Du

o
Du

-
o

Relative error

(=1

L]

s

L~

j

I A
".I‘;”'“;‘ |»'lll1-' il "ll"l'p‘r fip | fﬂ oo
. |_1,f ) ]r"“’n'w"',.“»' | '| |uP1' H\H [| l[ 1r’Hh iR
i\y IIJ||,.|| _J}f‘.: l\\ w llﬂ\‘lrﬂk\wl‘ "U_ '[ h

i

30
Harmaoric order

Relative error



Can we hope to backscale the irECS solution?

Observation:
Wave function is not just absorbed in the scaled region
It returns from the exterior scaled region without distortions

1 ™ PN

|
,%

o
«©
l
|

~ 1% probability returns
from scaled region |x|>5
into unscaled region |x|<5

0.85 -

Wave-functionin |x|<5 0.75 - | .

accuracy < 10" at all times

Probability in [-5,5]
o
[es]
l

o
~J
l
|

0.85 |- NS .

0.6 | | '
-1 -

Time (opt. cycles)

Dynamics is correctly encoded also in the scaled region!

Yes, we can hope... in practice: neither easy nor very important



Computation of photo-electron spectra
t-SURFF

Time-dependent surface flux method

[L. Tao and A.S., New. J. Phys. 14, 013021 (2012)]



Spectra from a finite range wave function

Scattering spectra = asymptotic information by definition

Finite range

Problem:
If we solve only on a finite range, exactly the asymptotic information is missing

Solution

Continue beyond the box using some known solution - Volkov

[Caillat et al,, Rev. A 71, 012712 (2005)]
[L. Tao and A.S., New. J. Phys. 14, 013021 (2012)]



How we usually calculate spectra from TDSE

Get W(r,t) at the end of the pulse t=T: ¥(r,T)

Scattering solution (), H(T) |w;—€-> —
With asymptotics wg(ff’) ~ (27T) —

Spectrally analyze W(x,T) b(E) — <¢E | \Ij (T) >

Spectral density J(E) X |62(E)H




Solve problem 2: only use asymptotic states

Choose distance R_where we (approximately) know the scattering solution
V() ~ (2m) 7 exp(ik - 7
Propagate until large T where bound ¥, and scattering ¥_ parts separate
lp(fFa T) — qu(F: T) + \IJS(Fa T)

/”\R°¢ AR

WD) ~ (WlORIVAD)) gy {o i< R,
= (Xk|0(R:)|Vs(T))

Only need yx,
asymptotic scattering solution

(k) o ‘(X,;W(Rc)m’(T))‘Q‘

Solves problem 2, but worsens problem 1: even larger T needed




Solve problems 1 & 2:

t-SURFF - time-dependent surface flux method

Same R as before
Asympotitic “comparison Hamiltonian™ H_(t)

H.(t) = H(t) for |r] > R, and Vt

d
with known solutions ¥, ZE Ixz(t)) = Ho(t)|xz(t))
1 - S
Eg. H.(t) = 5[—iv — A(t)]* with x, ...Volkov solutions

Convert volume-integral — time-integral + surface-integral
(e (T)IB(R, /dt— X (DIO(R)[L.(0)

TDSE for x_and ¥_
T /0 dt(xx (1) He(t)O(R.) — O(R.)H ()| Wy(t))

HCEHforr>RC\ T

=i [ a0l [-3a+ i) 90| 12.00)

Commutator depends only on ¥Y(R,1)!!!




Commutator in terms of the angular basis

4~ S IREO R—2(F| [H, (), O(R.)] ¥ (1))

= Y (—9) Vi) (Yim | Zin) (0, 1Cin — 511

Imn

+2A4, {(_i)lyvl—l-lm U::) <}Q+1,mjl-|—1| COS 9' Zl,ﬂ>cl?’1

— (—i)llﬁ—lm(’%)(ﬁq,mﬁ—ﬂ 0059|Zl,n>cln]

®(k,t)..Volkov phase

Y, -..spherical harmonics
Z_ ..angular expansion of ¥
J, ...spherical Bessel functions at |r|=R_

...radial expansion of ¥ at |r|=R_
...radial expansion of d ¥ at |r]=R_

In

In

= Y Bin(k)ein(t) + Cin(k)din(t) + A(t) Din(k)cin (t)

Note: B, , C,, D, are time-independent




Photo-electron spectra — short range potential

Truncated Coulomb potential

c[-1/r —=r*/(2R)* + 3/(2R)] forr < R
0 for r > R.

Yield (arb. units)

S 10 S S 1
0 20 60 80 10(} 120 140 0 20 40 60 80 100 120 140 20 40 60 8{) 100 12(} 140
-2 —2
5 10 - 10
% Total 1=0 H I=10 F
2 11[:-"3 { 10° ﬂ n ] !
©
[oh] _4 -4
@« 10 10
0 80 1(}0 120 140 0 20 40 60 80 100 120 140 20 40 60 BU 100 12(] 140
Phoioelectron energy (eV) Photoelectron energy (eV) Photoelectron energy (eV)

Errors for 90 discretization points relative to a well-converged calculation



Total box must accommodate quiver radius

)

c

3

o

s

L]

Q

g

10 .
0 2 40 60 80 100 120
10 - - - - - |

S 800 nm

3 10°}

]

2 3

S 10 ¢

& O
10 fth 100 pts _|

0 20 40 60 & 120
Photoelectron energy (eV)

Quiver radius ~ 23 a.u.

Potential range R=R, =15
Box size ~ 25 a.u.

Radial points 75 (black line)
100 (red line)



Hydrogen atom

Infinite range of the Coulomb potential

— Volkov solutions never become exact

Choose larger R

Short range‘R =R_=R, =20

Coulomb R_>100

V()

10 20 30 40 50 60 70 80 90 100
r{a.n.)

Note: R_can be reduced with significant extra effort
— maybe useful for multi-electron




Spectra: 800nm, 10'“W/cm?, 40 opt. cycl.

0.3

ho

U

Photoelectron energy (eV)

0]
7 1 64 67 70
RN 1L | |
10 20 30 40 50 60 70
0 20 30 40 50 _60 70



Photoelectron spectra

Photo-electron momentum density

If you like glossy pictures...

Photo-electron momentum distribution
20 optical cycles FWHM
800 nm @ 2 x 10" W/cm?

Fastest electrons move to ~ 4000 aul!

Simulation box size 30 au !

- All visible structures _
are accurate to ~ 1% in density
(mostly much better)

- Dynamical range is ~ 108

| .suouoaje pienessal,, ,(°‘noL) |

[Work by Liang Tao]

Note: Coulomb causes trouble, requires larger boxes ~ 100 au




Angle-resolved spectra

180
30 cycles

10 cycles
180

180

pesenssmemss) 10 L UL

LS )




General polarization

Problem grows from 2 to 3 dimensions

But only for |r| <R !
For =2 x 10" W/cm? @ 800 nm

Needs | =30, i.e. ~ 900 angular functions and ~ 90 radial functions
— Workstation size problem

Additional term in the commutator:

ZBm )cin (t) + Cun (k) din (t) + [AL (t) Din (k) i (1)

In the process of implementation...



Two-electron systems

Multi-channel single ionization
Shake-up

[A. S., submitted to New. J. Phys., arXiv:1201.3590v1]



Defining surfaces...

Split two-electron coordinate space |T_"2|

B... Ir|,Ir,] <R, “bound” region
Numerical solutions on r, and r,

S... |r| <R, |r,| >R, “singly asympotic” region
Numerical ionic solution on r,: @ (r,,1)
Volkov solution on r,

R,

D...[r|Ir,| > R, “doubly asymptotic” region
Volkov solutions on r, andr,

Simplest case: neglect double ionization

Channel solution  x_ -(¢) = (27) %/ 2e1(1) IkT ) Pe(t)

lonic TDSE Zaqbc(i) = H,p,(t)p.(1)



Multi-channel case

E.g. different ionic states channels

Play the same trick as before
“Channel asymptotic functions” y_,

Channel spectral density JC(E) — |(XC£(T)|9(RC)|\IJS(T))|2

Channel asymptotic TDSE ?:_Xc,z}'(t) = Hc(t)Xc’E(t)

Channel Hamiltonian ~ H .(t) = %[ iV — }T( )]2 R Hion(t)

.. further the same reasoning as before




Numerical demonstration: 2 x 1d model

_ 1 _gi_ 2_ 2M (z.) M{(1) M ()
H(t) = Z 2 { 0T, All )] \/3:§+1/2+ V(21— 22)2 +0.3

M(x) ... mask function turning off all potentials for |r_[> C
— Volkov solution exact beyond C_

a=1,2

Neutral energy: -2.88 a.u.
lon energy: -2.0 a.u.
“helium”
102 T T T T T T
Shake-up photo-electron spectra _ o exeted x 100
Single cycle, 2 x 10™W/cm? @800 nm 10° | . o e excited .
2 | pii e
Black lines: = 102 b (’/\W M w -
Channel method, *E? . A wh o
double ionization neglected S 04t , ' W_
g ' < I N‘. ‘l
Color: g 10 i !/AMN J \ |
including double ionization @ . N “ 'Mrww
. 5 / s A N "] ' "y ‘lﬁ ]
(discussed below) N II[ W‘ N
O ipied oy Wil e

-100 -80 -60 -40 20 0 20 40 60 80 100
Energy (eV)



Two-electron systems

Double ionization

[A. S., submitted to New. J. Phys., arXiv:1201.3590v1]



Extending t-SURFF to double-ionization

Do not neglect flux S — D 7|
For ¥ and o ¥ on interface S|D —

on area S N
expand into Volkov x,(r,t) x basis ¢ (r,1) S 1. D
(7, 7, ) = /d%Zb’(z?, ) e

n B4+ S

Equation for the expansion coefficients b(k.,n,) . fe 7]
d - L
Z%b(kl n,t) = Z (En|Hion ()| &m ) b(Kk1, m, t) .. ionic time-evolution

— (K, t|[Hy (), 01)(En| T (1)) .. flux B — S

For each k., solve one ionic problem in |r|<R_!

Integrate flux S — D by t-SURFF

Spectrum of k, for each k,



Numerical demonstration for 2 x 1d model

“z)] 2 OM(xa) M (1) M (22)
v ﬁi =+ 1){2 \/(I] — $2)2 + 0.3

cos? — pulse @ 800nm, 1=2 x 10 W/cm?, FWHM = 1,2,3 cycles

Discretization size

49 points on [0,«)
total of 97 x 97 points

150 150



Coulomb potential: importance of long-range

M(x) restricts the potential to |r |<C

10* — Double ionization 104 — Single ionization
) - G E =E, 1 excited channel
S 1wt 2 N
2 I \ ]
8 80 ]m*\\/\
5 108 F100 — /7 s L S
;1__3 I m{ rwwm Vo
10-10 |
40 -20 0 20
Double ionization Double ionization
@ E.=3eV o~ E=13eV |
5 10° / 10 M
k= h /
2
- 10710 ! 10710 |
-40 -20 0 20 40 -40 -20 0 20 40

Energy (eV)

Satisfactory approximation at Cp = 80 a.u.

Energy (eV)




Scaling to 2 x 3 dimensions

In 2 x 1d two-electron calculations

— 2 directions -x and +x
— 50 linear coefficients for x in [0,)

Discretization size: 2 x 2 x 50 x 50 = 10*
Single Intel i5 core @ 2.6GHz ~ 2 CPU hours per pulse

From 3d single electron calculations
Discretization at laser parameters 800nm, 1=2 x 10™ W/cm?
— L__ =30 angular momenta

ma

— 100 ~ 200 linear coefficients for r in [0,) (Coulomb potential!)
Discretization size: 30x30x30x100x100=3x 108

Resource estimate for accurate fully differential 2-electron spectra

6 x 10* CPU hours

~ 2 days on 1000 CPUs
Not small... but rather high accuracy standards



Summary & outlook

Prospects are that
t-SURFF completely solves IR single and double ionization

- single-electron spectra in linear polarization
- single-electron spectra in general polarization (in preparation)
- shake-up and double ionization in 2x1d (demonstrated)

- 3d double-ionization @ 800 nm: large but feasible problem

~ Thanks ~

[A.S., Phys. Rev. A81, 53845 (2010)]
[L. Tao and A.S., New. J. Phys. 14, 013021 (2012)]
[A. S., submitted to New. J. Phys., arXiv:1201.3590v1]



