Attosecond and strong-field electron dynamics in clusters and large molecules

Ultimate goal: Dynamical description of irradiation and response of

- electrons
- ions
- environment

- Huge energy absorption in intense laser fields
 - Production of energetic electrons, ions, photons
- Many-body « laboratory »
- Time resolved dynamics

- Microscopic mechanisms
- Role of water environment
- Medical applications
- Society applications

Deposited/embedded species

- Shaping at nanoscale
- **Defect formation**
- Chromophore effects and therapy applications

Summary

I. Introduction

- I.1 General context
- I.2 Signals from irradiated clusters/molecules
- I.3 Electronic observables

II. Theories

I.1 Theories versus dynamical regimesI.2-4 Time Dependent Density Functional Theories et alI.5 Some numerical considerations

III. Examples of applications

III.1 Photo Electron spectroscopies
III.2 Electronic pump and probe dynamics probing ionic motion
III.3 Attosecond electronic dynamics

Which theory for which situations?

Electrons Requirements Size **Dynamics** Microscopic Compromises No « final » Theory yet...

> Boundaries to explore ...

Local Density Approximation (LDA)

Local Density Approximation (LDA)

II.2

The Ionization Potential Problem

Vlasov and VUU

• Vlasov provides a sound basis for complementing mean-field by dynamical correlations (« Boltzmann-like » collision term)

- $egin{aligned} i\hbar\dot{
 ho} &= [h,
 ho] & \ TDHF/TDDFT \ \dot{f} &= \{h,f\} & \ Vlasov \ \dot{f} &= \{h,f\} + I_{coll}[f] & \ VUU/BUU \end{aligned}$
 - Semi classical kinetic equation (plasmas, nuclear physics...)
 - Collision integral

 $I_{coll}[f] \sim \int d\mathbf{p}_2 d\mathbf{p}_3 d\mathbf{p}_4 \delta(\sum \mathbf{p}_i) \delta(\sum \epsilon_i) \frac{d\sigma}{d\Omega} \{ f_1 f_2 (1 - f_3) (1 - f_4) - \ldots \}$

In medium cross section/ Screened Coulomb

Numerics : test particles

Pauli blocking

Photoelectron Spectroscopy (PES)

Ш.

Pohl et al, PRA 2003 Exp. Freiburg
Access to photoelectron spectroscopy
Angular distributions
Dynamical features

Angular distributions and temperature

Angular distributions and (thermo)dynamics

Time / Delay

Monopole « Pump – Probe » Dynamics

Ionization as a function of delay between pump and probe laser pulses

- Ionic vibration period
- Expansion rate

Attosecond and strong-field electron dynamics in clusters and large molecules

Ultimate goal: Dynamical description of irradiation and response of

- electrons
- ions
- environment

Dynamics of ionization in TDDFT

- Self Interaction problem (SIC)
- Benchmark TDSIC calculation
- Boundary conditions in the oven
- Dynamical correlations in near future (electronic transport) in quantum TDDFT

- Key importance of non adiabatic electron/ion couplings
- Photoelectron spectroscopy
- energy, angle done/ in the oven
- Pump and probe scenarios
- FEL laser domain mostly in future
- Ionization cross sections in near future
- Atto laser domain in the oven

A few references

Nobel lecture

W. Kohn <u>http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/kohn-lecture.pdf</u>

Density-Functional Theory of Atoms and Molecules,

R. G. Parr, W. Yang, Oxford University Press, 1989

Introduction to Cluster Dynamics

P-G. Reinhard, E. Suraud Wiley, Berlin, 2003

Laser-driven nonlinear cluster dynamics : from single- and multiphoton excitations to the strong-field domain Th. Fennel et al, Rev. Mod. Phys. **82** (2010) 1793