
Time-dependent R-matrix 
theory 

Hugo van der Hart 



Goal 

•  Improve our understanding of fundamental 
dynamics underlying basic processes  

•  Most systems are inherently multi-electron 
systems 

•  Gain understanding of role of multi-
electron dynamics within atoms/molecules 



Goal 
•  Multi-electron systems have many degrees of 

freedom (3 per particle) 

•  Large-scale computation possible for two 
electrons 

•  What about systems with more than two 
electrons that can respond to the field? 

•  Need to consider effective approximations 



R-matrix theory 
•  R-matrix theory was developed in the late 40’s as a 

phenomenological method to study nuclear scattering 
processes 

•  For these processes, space could be separated: 
–  an inner region within which little was known 
–  an outer region with good approximate wavefunctions 
–  Scattering processes can be described by a phenomenological 

R-matrix at the boundary, which links these outer-region 
wavefunctions  

•  It was recognised in the 50s that this phenomenological 
approach could be used as an ab-initio approach for 
atomic scattering processes 



Textbook 
•   P.G. Burke 

R-matrix theory of atomic collisions (2011) 
Springer series on atomic, optical and plasma physics 61 

•  Includes, in addition to collisions, 
photoionization, 
R-matrix-Floquet theory for long pulses, 
Time-dependent R-matrix theory 
                                (PRA 79, 053411 is better on TDRM) 
 

•  Does not include: 
ultra-cold atom-atom collisions 



Basics of R-matrix theory 

Inner region, N+1 
electrons 

All interactions between 
          all        electrons 

R-matrix obtained at 
boundary r=a through a 
diagonalisation of H 

Outer region, 1 
electron 

Electron feels long-
range field 

Propagation of the 
R-matrix 
 
match R-matrix to 
asymptotic solutions 
at a distance a' 



R-matrix theory 

•  Multi-electron systems substantially more 
complicated than single-electron systems 
 

•  Notation can obscure maths/physics 
 

•  Combine basic ingredients first 
Develop extra features later 

•  Elastic potential scattering (single electron) 



R-matrix theory 
•  The starting point is the (radial) Schrödinger equation 

•  This equation must be solved separately for the inner 
region and the outer region. 
The two solutions must then be linked together. 

•  We start with the inner region. 

•  Consider radial wavefunctions of form ψ(r)/r  

EψHψ =



Inner region 
•  The Hamiltonian is not Hermitian within the inner region 

•  Physically: an ionization process involves flow from inner region 
to outer region 
→ norm of ψ in inner region not conserved 

•  Mathematically: the kinetic energy operator is not Hermitian 
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Inner region 
•  Reordering the equation as 

 
 
 
 
 
 
shows that the operator 
 
 
 
is Hermitian (radial Ψ includes term r→ Ψ(0)=0) 
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Inner region 

•  The potential energy is a function of r, and thus 
Hermitian 

•  The angular kinetic energy is Hermitian 

•  The radial kinetic energy can be made 
Hermitian as 
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Inner region 
•  The radial Schrödinger equation is then rewritten as 

 
 
 
 
 
so that the operator on the LHS is Hermitian. 

•  Obtain the eigenvalues and eigenvectors of H+Lb in an 
appropriate eigenbasis 

•  With Lb included, basis can contain functions with 
ψ(a)≠0, ψ’(a)≠0.  Essential for TDRM! 
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Inner region 

•  Let us have eigenvalues Ek and associated 
eigenfunctions |Ψk>. Then 
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Inner region 

•  The final result of this manipulation gives 
 
 
 
which shows that the wavefunction in the inner 
region is determined entirely by its derivative at 
the boundary and the energy. 
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Inner region R-matrix 

•  Now we can look at what happens at the 
boundary. So we evaluate Ψ on the LHS at the 
boundary, while on the RHS we evaluate Ψk.  
 
With R the so-called R-matrix, this gives 
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Inner region R-matrix 

•  This relationship expresses the wavefunction at the 
boundary in terms of its derivative. 

•  If it holds at the boundary, it must not only apply to the 
inner region… it must also apply to the outer region. 
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Outer region 
•  In the outer region, the wavefunction is given in terms of 

asymptotic wavefunctions. 

•  In an elastic scattering problem, the standard radial 
wavefunction is of the form 
 
 
 
with  A: overall normalisation 

  Ψin, Ψout: incoming/outgoing wavefunction 
  S: scattering S-matrix 

 
Details of Ψin, Ψout depend on nature of problem 

( )SψψAψ outin −=



Outer region 
•  Now substitute outer region wavefunction into 

equation obtained earlier: 

•  So by this substitution, we can obtain the S-
matrix by straightforward algebra, and hence 
obtain all the information about the scattering 
process 
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Basic application  
•  Previous outline gives basic principle of R-matrix theory 

•  Can be used for s-wave scattering off a square-well 
potential (s-wave: Bessel functions → sin, -cos) 
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Basic application  
•  Obtain eigenvalues and eigenfunctions of H+Lb. 

•  Eigenfunctions associate with constant potential in box. 
Boundary conditions: Ψ(0)=0, Ψ’(a)=0. 
 
 
Energies:      Ψk(a):   

 
        k=0,1,2,… 
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Basic application 

•  We can now use these energies and boundary 
amplitudes to create the R-matrix at a specific 
scattering energy E (=k2/2): 
 
 
 
and then the S-matrix can be obtained as 
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Basic application 
•  This is a procedure to explain how to obtain the S-matrix, it is not 

standard procedure! 

•  Normally, one uses regular and irregular asymptotic solutions to 
obtain the K-matrix. 
–  This avoids complex arithmetic. 
–  Relation between K-matrix and S-matrix 

•  You can calculate the R-matrix yourself from the given eigenvalues 
and boundary amplitudes. Incoming wavefunction: e-ikr, and 
outgoing eikr. (Again,1/r factored out throughout). 

•  This problem can be solved analytically. 
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Further issues  
•  Atomic multi-channel scattering 

–  Several emission routes for electron 
–  Inner region wavefunction basis 
–  Presence of closed channels 

•  Accuracy of outer region wavefunctions 
–  R-matrix propagation 
–  Asymptotic expansion of wavefunction 

•  Time-dependence 



Atomic multi-channel scattering  
•  Inner-region wavefunction notation not obvious.  

Obscures basic principles of R-matrix theory 

•  Wavefunction based on close-coupling expansion 
–  Scattering target state has N electrons 
–  Total system has N+1 electrons 
–  Electron entering outer region is electron N+1 
–  Full coordinates X1: r1 (radial), θ1, φ1 (angular), σ1 (spin). 
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Atomic multi-channel scattering  

•  Γ: all conserved quantum numbers in scattering 
L, S, ML, MS, π, α (all others that may apply) 

•  j: a solution label 
E: energy  
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Atomic multi-channel scattering  

•  φi: state of scattering target, coupled with ℓ and 
σ of scattered electron to a total L and total S 

•  A: antisymmetrisation operator 
•  F: radial wavefunction for scattered electron 
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Atomic multi-channel scattering  

•  χi: “correlation” function involving all electrons 
to improve near-nucleus wavefunction, where 
close-coupling description is less accurate 

•  cij: expansion coefficients 
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Closed channels 

•  Channels without escape are common. 
–  Use K-matrix formalism 
–  n open channels 
–  m closed channels 
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Closed channels 
•  Insertion into 

 
 
allows us to transform an (n+m)-by-(n+m) R-
matrix into a n-by-n K-matrix and S-matrix.  

•  Multi-channel R-matrix given by 
 
 
 
where ψkj(a) is boundary amplitude of inner-
region eigenstate j associated with channel k  
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Orbitals 
•  Needed: 

–  Accurate wavefunction for total system 
–  Accurate wavefunction for target 
–  No overconvergence of one vs. the other 

•  Number of functions needed to describe F: around 25 – 
75. 

•  To keep calculations feasible, use small number of 
functions to describe target states. 

•  Start by specifying an orbital list used for target-state 
generation. In Ne, 1s, 2s, 2p, 3s, 3p, 3d 



Orbitals 
•  Target states described using a small CI basis set. 

–  Basis set formed by configuration list 
–  Example 2-state calculations of Ne+  

1s22s22p5 and 1s22s2p6 
–  Configuration list 

1s22s22p5 , 1s22s22p5 , 1s22p6 

(+ single/double excitations to 3s, 3p and 3d) 

•  Ground-state orbitals, 1s, 2s, 2p, typically HF orbitals 

•  Depending on the nature of the calculations, 
3s, 3p and 3d: physical orbitals OR 
              pseudo-orbitals to optimise 1s22s22p5, 1s22s2p6 



Correlation functions 

•  Multi-electron wavefunction has 2 terms 
– Scattering functions 
– Correlation functions 

•  Correlation functions obtained by adding 
an extra orbital (from the input orbital list) 
to an entry in the configuration list 

•  All allowed combinations are included. 



Scattering functions 
•  Scattering functions: product of a target state 

plus a continuum function 
 
Continuum function obtained from diagonalistion 
of a B-spline basis set in a model potential over 
the inner region. Bloch operator is included. 

•  Orthogonality with orbitals 
–  Orbitals are projected onto B-spline basis set 
–  Diagonalisation proceeds in a manner, which 

guarantees orthogonality with these orbitals 
           (Bentley PRA 1993/4) 



R-matrix propagation 

•  Asymptotic expansion may only be sufficiently 
accurate at a large distance from nucleus 

•  Multi-electron effects only significant close to 
nucleus 

•  Efficient calculation: 
–  Determine R-matrix reasonably close to nucleus 
–  Propagate R-matrix to the larger distance 



R-matrix propagation 

•  R-matrix propagation requires the Schrödinger 
equation on an interval with a left and a right 
boundary (LL and LR Bloch operators): 

•  Rewrite in terms of Green’s function 
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R-matrix propagation 

•  Simplify equation by determining the Green’s 
function in Rydberg rather than au. 

•  Now evaluate equation at L and R boundary 

•  R-matrix equations 
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R-matrix propagation 

•  Now express RR as function of RL, G’s: 
 
 
 
 
 
 
 
 
and a propagation scheme for the R-matrix 
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Time-dependent R-matrix theory 

•  Start from the non-relativistic time-dependent 
Schrödinger equation: 

•  Approximated in a Crank-Nicolson form as 
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Time-dependent R-matrix theory 

•  For the inner region, this can be written as 
 
 
 
 
which resembles the earlier equations, but with 
an extra inhomogeneous term 

•  Additional term leads to slightly more 
complicated propagation equations 
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Theory 
•  Projection onto the outer region channels at the 

boundary of the inner region gives 

•  R:  time-dependent equivalent of standard R-matrix, 
 flow of unknown wave function through boundary 

 
•  T:  vector describing flow from the inner region 

 flow of known wave function 
 

•  F:  wave function at time-step q+1 
 Boundary condition:    at large r,    F(r) = 0 

T
dr

dF
R(a)F 

ar

1q
1q +=

=

+
+



Time-dependent R-matrix theory 

F:  known at large r 
R,T  known at inner region boundary 
 
Divide the outer region into sub-regions 
Propagate R and T outward on boundaries 
 
  Inner region           Outer region 
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Time-dependent R-matrix theory 
R-matrix is propagated outward again using 
 
 
T-vector propagation: 

 
 
 
 

 
G denotes Green’s function on subregion, 
R and L indicate right and left boundaries 
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Time-dependent R-matrix theory 
F:  known at large r 
R,T  known at all sub-region boundaries 
 
Propagate F inward on sub-region boundaries  
F at boundaries → subregion wavefunctions 
 
  Inner region           Outer region 
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Time-dependent R-matrix theory 

F is propagated inward following 
 
 
 
 

When F obtained on inner region boundary, use 
 

 
 
to obtain ψq+1 in the inner region 
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Atomic data 
•  Atomic data generated by R-matrix II codes using B-

spline basis sets 
–  Eigenstates for set of L, S, π symmetries 
–  Boundary amplitudes / derivatives 
–  Dipole matrix elements between eigenstates  (Length / V) 

•  Initial state:  inner region: eigenstate 
   outer region: 0 

•  Outer region Green’s functions time-consuming 
–  Parallelised over outer region sectors 
–  Communication: R, T and F 
–  Scales well up to ~200 cores 



R-matrix theory 
•  Quick overview of R-matrix theory 

•  Many subtleties, so much not discussed 
–  Buttle correction (avoid if possible: use B-splines) 
–  Gauge of field 
–  Long-range coupling of asymptotic wavefunctions 
–  Double ionization 

•  Recently developed RMT approach links inner 
and outer region through another scheme 
–  High accuracy in both regions absolutely essential 



Conclusions 
•  General idea about R-matrix theory and its mathematical 

foundations 

•  An overview of basic principles 

•  Show the origin of some of the frequent formulae in R-
matrix theory 

•  Beware of phases, factors of 2 ! 

•  Atomic R-matrix codes written in Fano-Racah phase 
convention… 



Do it yourself 

•  s-wave scattering off a spherical well 
Phase shift is only possible comparison 

•  Scattering through a square barrier (1D) 
– 2-channel problem (left, right) 

K-matrix formalism (see closed orbitals): 
s: diagonal 2-by-2 matrix (sin kx) 
c: diagonal 2-by-2 matrix (cos kx) 
Derivatives:  s’ diagonal k cos kx 
   c’ diagonal –k sin kx 



Do it yourself 

•  Build the R-matrix 
•  Eigenfunctions within the barrier [-a,a] 

Boundary conditions ψ’(-a)=ψ’(a)=0. 
•  Diagonalisation of H+LR-LL gives (note the 

constant n=0 solution) :  
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