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Goal

* Improve our understanding of fundamental
dynamics underlying basic processes

* Most systems are inherently multi-electron
systems

« Gain understanding of role of multi-
electron dynamics within atoms/molecules



Goal

Multi-electron systems have many degrees of
freedom (3 per particle)

Large-scale computation possible for two
electrons

What about systems with more than two
electrons that can respond to the field?

Need to consider effective approximations



R-matrix theory

« R-matrix theory was developed in the late 40’ s as a
phenomenological method to study nuclear scattering
processes

* For these processes, space could be separated:
— an inner region within which little was known
— an outer region with good approximate wavefunctions

— Scattering processes can be described by a phenomenological
R-matrix at the boundary, which links these outer-region
wavefunctions

* |t was recognised in the 50s that this phenomenological
approach could be used as an ab-initio approach for
atomic scattering processes



Textbook

 P.G. Burke
R-matrix theory of atomic collisions (2011)
Springer series on atomic, optical and plasma physics 61

* |Includes, in addition to collisions,
photoionization,
R-matrix-Floquet theory for long pulses,
Time-dependent R-matrix theory
(PRA 79, 053411 is better on TDRM)

« Does not include:
ultra-cold atom-atom collisions



Basics of R-matrix theory

Outer region, 1
electron

Electron feels long-
range field

Propagation of the
R-matrix

match R-matrix to
asymptotic solutions
at a distance a' /




R-matrix theory

Multi-electron systems substantially more
complicated than single-electron systems

Notation can obscure maths/physics

Combine basic ingredients first
Develop extra features later

Elastic potential scattering (single electron)



R-matrix theory

The starting point is the (radial) Schrodinger equation

This equation must be solved separately for the inner

region and the outer region.
The two solutions must then be linked together.

We start with the inner region.

Consider radial wavefunctions of form w(r)/r



Inner region

The Hamiltonian is not Hermitian within the inner region

Physically: an ionization process involves flow from inner region
to outer region

— norm of Y in inner region not conserved

Mathematically: the kinetic energy operator is not Hermitian

f\lfl (r) > Vs (r)dr [( ;122 V, (r))\Vz (r)dr +

a

; wi‘(r)%wzm] — [( d

Ly, (r))wz(r)}

0




Inner region

* Reordering the equation as

a

Jvi <f>%wz<r>dr - [wi‘(r)%wr)]o -

a

f( v (r))wxr)dr - [( Ly (r))\vz(r)}

shows that the operator

d2
— —o(r - a—
o2 o)

Is Hermitian (radlal Y includes term r— Y(0)=0)

0



Inner region

* The potential energy is a function of r, and thus
Hermitian

* The angular kinetic energy is Hermitian

* The radial kinetic energy can be made
Hermitian as
1d° 1
—-——+= 8 r—a)—
2 dr’ ( )



Inner region

* The radial Schrodinger equation is then rewritten as
(H+L,-E}y=L,y
1 d
L, =—0o(-a)—
b= (r —a) rn

so that the operator on the LHS is Hermitian.

 Obtain the eigenvalues and eigenvectors of H+L, in an
appropriate eigenbasis

« With L, included, basis can contain functions with
w(a)#0, ' (a)#0. Essential for TDRM!



Inner region

» Let us have eigenvalues E, and associated
eigenfunctions |¥, >. Then

‘\lf> = (H+Lb _E)_lLb‘\V>

_ Z(H+Lb —E)-I‘Wk><\|jk \LbM
- Z (E, - E)'I‘ka\lfk Lolw)

22 ‘\Vk \llk‘s(r a)_‘\lf>

=Z\vk>2(Ek_E)(wk(a dr\vr:a)




Inner region

* The final result of this manipulation gives

1 )

)= 2w (e _E)(wk(a)%w

which shows that the wavefunction in the inner
region is determined entirely by its derivative at
the boundary and the energy.




Inner region R-matrix

 Now we can look at what happens at the
boundary. So we evaluate ¥ on the LHS at the
boundary, while on the RHS we evaluate ¥,.

With R the so-called R-matrix, this gives

V= S e E)wk<a>(§w)

a)

r=a

r=a



Inner region R-matrix

V= S e E)wk<a>(§r )

a)

* This relationship expresses the wavefunction at the
boundary in terms of its derivative.

r=a

r=a

 Ifit holds at the boundary, it must not only apply to the
Inner region... it must also apply to the outer region.



Outer region

 In the outer region, the wavefunction is given in terms of
asymptotic wavefunctions.

* |In an elastic scattering problem, the standard radial
wavefunction is of the form

v=Aly, - v..S)

with A: overall normalisation
Y., ¥, incoming/outgoing wavefunction

in’

S: scattering S-matrix

Details of ¥, , W, depend on nature of problem



Outer region

* Now substitute outer region wavefunction into
equation obtained earlier:

Ay, (@) - ... (2)S)=RA(v, ' () - v, (2)S)
V. (@ -Ry,'(@)]=[v,.(-Ry,, '@

S =[V (@ -Ry,, @] [v;, (@) - Ry,,' @]
* S0 by this substitution, we can obtain the S-
matrix by straightforward algebra, and hence
obtain all the information about the scattering
process




Basic application

* Previous outline gives basic principle of R-matrix theory

« Can be used for s-wave scattering off a square-well
potential (s-wave: Bessel functions — sin, -cos)




Basic application

« Obtain eigenvalues and eigenfunctions of H+L,.

« Eigenfunctions associate with constant potential in box.
Boundary conditions: W(0)=0, ¥’ (a)=0

Energies:%(k+%)2(§)2 Vg ( )m

k=0,1,2,...




Basic application

 We can now use these energies and boundary
amplitudes to create the R-matrix at a specific
scattering energy E (=k?/2):

R = EWJ(a) (E E)\Vj(a)

and then the S-matrix can be obtained as
S = —1Rke‘ka} [ * +1Rke 1ka]

= _1 —1Rk] [1 + 1Rk] 2k




Basic application

This is a procedure to explain how to obtain the S-matrix, it is not
standard procedure!

Normally, one uses regular and irregular asymptotic solutions to
obtain the K-matrix.

— This avoids complex arithmetic. . K
— Relation between K-matrix and S-matrix S - +1

I -1K

You can calculate the R-matrix yourself from the given eigenvalues
and boundary amplitudes. Incoming wavefunction: e, and
outgoing ek, (Again,1/r factored out throughout).

tan(\/ 2(E + V)a)
J2(E+V)

This problem can be solved analytically. R =




Further iIssues

» Atomic multi-channel scattering
— Several emission routes for electron
— Inner region wavefunction basis
— Presence of closed channels

» Accuracy of outer region wavefunctions
— R-matrix propagation
— Asymptotic expansion of wavefunction

* Time-dependence



Atomic multi-channel scattering

 Inner-region wavefunction notation not obvious.
Obscures basic principles of R-matrix theory

« Wavefunction based on close-coupling expansion
— Scattering target state has N electrons
— Total system has N+1 electrons
— Electron entering outer region is electron N+1
— Full coordinates X,: r, (radial), 8,, @, (angular), o, (spin).

n
r r P G
Vi = &%CEE O; (X5 InoiOne ) By ()
1=1

QT r
+ Z Xi (XN+1)Cij



Atomic multi-channel scattering

\V]E %(Pl (X3t N+16N+1)rN+1FF(rN+1)

+ ; Xlr (XN+1)C5

» [: all conserved quantum numbers in scattering
L, S, M, Mg, 1, a (all others that may apply)

 |: a solution label
E: energy



Atomic multi-channel scattering

\V]E %(Pl (X3t N+16N+1)rN+1FF(rN+1)

+ ; Xlr (XN+1)C5

. state of scattering target, coupled with £ and
o of scattered electron to a total L and total S

* A: antisymmetrisation operator
 F: radial wavefunction for scattered electron



Atomic multi-channel scattering

\V]E %(Pl (X3t N+16N+1)rN+1FF(rN+1)

m

+ Xlr (Xnai )CE
f

1=

» .. “correlation” function involving all electrons
to improve near-nucleus wavefunction, where
close-coupling description is less accurate

* C;: expansion coefficients



Closed channels

« Channels without escape are common.
— Use K-matrix formalism F=gs+c¢cN

— n open channels K
— m closed channels N = (L )
s..(r) = ! smit, 1=1,..,n+m j=1,..,n
j r—>°°\/kT
cij(r):w\/%cosz%, i=1,..,n+m, j=1,..,n
c,;(r) = d.e™, i=1,.,n+m, j=n+l,..,n+m

r—00

U =k.ar + corrections

@. = |k.|r + corrections




Closed channels

* |nsertion into

F = RF

allows us to transform an (n+m)-by-(n+m) R-
matrix into a n-by-n K-matrix and S-matrix.

* Multi-channel R-matrix given by
1
ik §J ;\Vlj( )2(EJ _E)\llkj( )

where y,(a) is boundary amplitude of inner-
region eigenstate | associated with channel k




Orbitals

Needed:

— Accurate wavefunction for total system
— Accurate wavefunction for target
— No overconvergence of one vs. the other

Number of functions needed to describe F: around 25 —
75.

To keep calculations feasible, use small number of
functions to describe target states.

Start by specifKilng an orbital list used for target-state
generation. In Ne, 1s, 2s, 2p, 3s, 3p, 3d



Orbitals

« Target states described using a small Cl basis set.
— Basis set formed by configuration list

— Example 2-state calculations of Ne*
1522s?2p° and 1s22s2p°

— Configuration list
1822s22p° , 1s22s22p° , 1s22p"
(+ single/double excitations to 3s, 3p and 3d)

« Ground-state orbitals, 1s, 2s, 2p, typically HF orbitals

« Depending on the nature of the calculations,
3s, 3p and 3d: physical orbitals OR
pseudo-orbitals to optimise 1s%2s22p°, 1s22s2p°



Correlation functions

 Multi-electron wavefunction has 2 terms
— Scattering functions
— Correlation functions

« Correlation functions obtained by adding
an extra orbital (from the input orbital list)
to an entry in the configuration list

o All allowed combinations are included.



Scattering functions

» Scattering functions: product of a target state
plus a continuum function

Continuum function obtained from diagonalistion
of a B-spline basis set in a model potential over
the inner region. Bloch operator is included.

* Orthogonality with orbitals
— Orbitals are projected onto B-spline basis set

— Diagonalisation proceeds in a manner, which
guarantees orthogonality with these orbitals
(Bentley PRA 1993/4)



R-matrix propagation

Asymptotic expansion may only be sufficiently
accurate at a large distance from nucleus

Multi-electron effects only significant close to
nucleus

Efficient calculation:

— Determine R-matrix reasonably close to nucleus
— Propagate R-matrix to the larger distance



R-matrix propagation

* R-matrix propagation requires the Schrodinger
equation on an interval with a left and a right
boundary (L, and L, Bloch operators):

(H-L, +L, -E)F=(L, -L, JF

« Rewrite in terms of Green’ s function
F=(H-L, +L,-E)'(L, -L, JF
1

=G§(Fﬁ ~F)



R-matrix propagation

 Simplify equation by determining the Green’ s
function in Rydberg rather than au.
F=G(F, -F )

 Now evaluate equation at L and R boundary
FR = GRRFI,{ - GRLFIC
FL = GLRFI,{ - GLLF£

* R-matrix equations
F, =REF,
F, =RF



R-matrix propagation

» Now express Ry as function of R/, G’ s:

FL = RLF£ = GLRFI,{ - GLLFIZ

/ -1 /
FL = (RL + GLL) GLRFR
FR = GRRFI’{ - GRLFI’J

/ -1 /
FR = GRRFR - GRL(RL + GLL) GLRFR
F, =R.F,
1

RR = GRR - GRL(RL + GLL) GLR
and a propagation scheme for the R-matrix



Time-dependent R-matrix theory

« Start from the non-relativistic time-dependent
Schrodinger equation:

G,
in Y _ Hy
ot
* Approximated in a Crank-Nicolson form as
(Hq+1/2 ~ E)\Pqn = _(Hq+1/2 + E)\Pq
21

At



Time-dependent R-matrix theory

* For the inner region, this can be written as

‘Pq+1 = Hq+1/2 -:Lb - E) (Lb\PqH ~ (Hq+1/2 T E)\Pq)

which resembles the earlier equations, but with
an extra inhomogeneous term

» Additional term leads to slightly more
complicated propagation equations



Theory

Projection onto the outer region channels at the
boundary of the inner region gives

dF
q+1 + T
dr -

R: time-dependent equivalent of standard R-matrix,
flow of unknown wave function through boundary

Fq+1 (a) = R

T: vector describing flow from the inner region

flow of known wave function

F: wave function at time-step g+1
Boundary condition: atlarger, F(r)=0



Time-dependent R-matrix theory

F:  known atlarge r
R,T known at inner region boundary

Divide the outer region into sub-regions
Propagate R and T outward on boundaries

Inner region

R :
T Outer region




Time-dependent R-matrix theory
R-matrix is propagated outward again using
-1
Ry = GRR ~ GRL (GLL + RL) GLR
T-vector propagation:

TR = JR +GRL(GLL +RL)_1(TL _JL)

J(r) = —Z}G(r, r')(H(r') + E)y (1 )dr'

G denotes Green’ s function on subregion,
R and L indicate right and left boundaries



Time-dependent R-matrix theory

F:  known atlarge r
R,T known at all sub-region boundaries

Propagate F inward on sub-region boundaries
F at boundaries — subregion wavefunctions

Inner region Outer region

—— F




Time-dependent R-matrix theory

F is propagated inward following
F = RL(GLL +R, )_1 X
X [GLRRR_1 (Fr —Tx) + GLLRL_ITL T JL}

When F obtained on inner region boundary, use

\Pq+1 = (Hq+1/2 ':Lb _ E) (LbLPq+1 - (Hq+1/2 + E)\Pq)

to obtain g, in the inner region



Atomic data

« Atomic data generated by R-matrix Il codes using B-
spline basis sets

— Eigenstates for set of L, S, 1 symmetries
— Boundary amplitudes / derivatives
— Dipole matrix elements between eigenstates (Length / V)

 I|nitial state: Inner region: eigenstate
outer region: O

« Outer region Green’ s functions time-consuming
— Parallelised over outer region sectors
— Communication: R, T and F
— Scales well up to ~200 cores



R-matrix theory

* Quick overview of R-matrix theory

* Many subtleties, so much not discussed

— Buttle correction (avoid if possible: use B-splines)
— Gauge of field

— Long-range coupling of asymptotic wavefunctions
— Double ionization

* Recently developed RMT approach links inner
and outer region through another scheme

— High accuracy in both regions absolutely essential




Conclusions

General idea about R-matrix theory and its mathematical
foundations

An overview of basic principles

Show the origin of some of the frequent formulae in R-
matrix theory

Beware of phases, factors of 2 !

Atomic R-matrix codes written in Fano-Racah phase
convention...



Do it yourself

* s-wave scattering off a spherical well
Phase shift is only possible comparison

» Scattering through a square barrier (1D)

— 2-channel problem (left, right)
K-matrix formalism (see closed orbitals):
s: diagonal 2-by-2 matrix (sin kx)
c: diagonal 2-by-2 matrix (cos kx)
Derivatives: s’ diagonal k cos kx
¢’ diagonal —k sin kx



Do it yourself

* Build the R-matrix
» Eigenfunctions within the barrier [-a,a]
Boundary conditions p’ (-a)=w’ (a)=0.

» Diagonalisation of H+Lz-L, gives (note the
constant n=0 solution) :

2

E 1(1171:) +V, n=0,..,0o

v (a) = \/7\|1n (-a) = \/inl ..... 00
\vn(a)=\|fn(—a)=\/:, n=0
2a



