Time-dependent R-matrix theory

Hugo van der Hart

Goal

- Improve our understanding of fundamental dynamics underlying basic processes
- Most systems are inherently multi-electron systems
- Gain understanding of role of multielectron dynamics within atoms/molecules

Goal

- Multi-electron systems have many degrees of freedom (3 per particle)
- Large-scale computation possible for two electrons
- What about systems with more than two electrons that can respond to the field?
- Need to consider effective approximations

R-matrix theory

- R-matrix theory was developed in the late 40 's as a phenomenological method to study nuclear scattering processes
- For these processes, space could be separated:
- an inner region within which little was known
- an outer region with good approximate wavefunctions
- Scattering processes can be described by a phenomenological R -matrix at the boundary, which links these outer-region wavefunctions
- It was recognised in the 50 s that this phenomenological approach could be used as an ab-initio approach for atomic scattering processes

Textbook

- P.G. Burke

R-matrix theory of atomic collisions (2011)
Springer series on atomic, optical and plasma physics 61

- Includes, in addition to collisions, photoionization, R-matrix-Floquet theory for long pulses, Time-dependent R-matrix theory
(PRA 79, 053411 is better on TDRM)
- Does not include: ultra-cold atom-atom collisions

Basics of R-matrix theory

R-matrix theory

- Multi-electron systems substantially more complicated than single-electron systems
- Notation can obscure maths/physics
- Combine basic ingredients first Develop extra features later
- Elastic potential scattering (single electron)

R-matrix theory

- The starting point is the (radial) Schrödinger equation

$$
\mathrm{H} \psi=\mathrm{E} \psi
$$

- This equation must be solved separately for the inner region and the outer region.
The two solutions must then be linked together.
- We start with the inner region.
- Consider radial wavefunctions of form $\psi(r) / r$

Inner region

- The Hamiltonian is not Hermitian within the inner region
- Physically: an ionization process involves flow from inner region to outer region
\rightarrow norm of ψ in inner region not conserved
- Mathematically: the kinetic energy operator is not Hermitian

$$
\begin{aligned}
\int_{0}^{\mathrm{a}} \psi_{1}^{*}(\mathrm{r}) & \frac{\mathrm{d}^{2}}{\mathrm{dr}^{2}} \psi_{2}(\mathrm{r}) \mathrm{dr}=\int_{0}^{\mathrm{a}}\left(\frac{\mathrm{~d}^{2}}{\mathrm{dr}^{2}} \psi_{1}^{*}(\mathrm{r})\right) \psi_{2}(\mathrm{r}) \mathrm{dr}+ \\
& +\left[\psi_{1}^{*}(\mathrm{r}) \frac{\mathrm{d}}{\mathrm{dr}} \psi_{2}(\mathrm{r})\right]_{0}^{\mathrm{a}}-\left[\left(\frac{\mathrm{d}}{\mathrm{dr}} \psi_{1}^{*}(\mathrm{r})\right) \psi_{2}(\mathrm{r})\right]_{0}^{\mathrm{a}}
\end{aligned}
$$

Inner region

- Reordering the equation as

$$
\begin{aligned}
& \int_{0}^{\mathrm{a}} \psi_{1}^{*}(\mathrm{r}) \frac{\mathrm{d}^{2}}{\mathrm{dr}^{2}} \psi_{2}(\mathrm{r}) \mathrm{dr}-\left[\psi_{1}^{*}(\mathrm{r}) \frac{\mathrm{d}}{\mathrm{dr}} \psi_{2}(\mathrm{r})\right]_{0}^{\mathrm{a}}= \\
& \int_{0}^{\mathrm{a}}\left(\frac{\mathrm{~d}^{2}}{\mathrm{dr}^{2}} \psi_{1}^{*}(\mathrm{r})\right) \psi_{2}(\mathrm{r}) \mathrm{dr}-\left[\left(\frac{\mathrm{d}}{\mathrm{dr}} \psi_{1}^{*}(\mathrm{r})\right) \psi_{2}(\mathrm{r})\right]_{0}^{\mathrm{a}}
\end{aligned}
$$

shows that the operator

$$
\frac{\mathrm{d}^{2}}{\mathrm{dr}^{2}}-\delta(\mathrm{r}-\mathrm{a}) \frac{\mathrm{d}}{\mathrm{dr}}
$$

is Hermitian (radial Ψ includes term $r \rightarrow \Psi(0)=0$)

Inner region

- The potential energy is a function of r, and thus Hermitian
- The angular kinetic energy is Hermitian
- The radial kinetic energy can be made Hermitian as

$$
-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{dr}^{2}}+\frac{1}{2} \delta(\mathrm{r}-\mathrm{a}) \frac{\mathrm{d}}{\mathrm{dr}}
$$

Inner region

- The radial Schrödinger equation is then rewritten as

$$
\begin{aligned}
& \left(\mathrm{H}+\mathrm{L}_{\mathrm{b}}-\mathrm{E}\right) \psi=\mathrm{L}_{\mathrm{b}} \psi \\
& \mathrm{~L}_{\mathrm{b}}=\frac{1}{2} \delta(\mathrm{r}-\mathrm{a}) \frac{\mathrm{d}}{\mathrm{dr}}
\end{aligned}
$$

so that the operator on the LHS is Hermitian.

- Obtain the eigenvalues and eigenvectors of $\mathrm{H}+\mathrm{L}_{\mathrm{b}}$ in an appropriate eigenbasis
- With L_{b} included, basis can contain functions with $\psi(a) \neq 0, \psi^{\prime}(a) \neq 0$. Essential for TDRM!

Inner region

- Let us have eigenvalues E_{k} and associated eigenfunctions $\mid \Psi_{k}>$. Then

$$
\begin{aligned}
|\psi\rangle & =\left(\mathrm{H}+\mathrm{L}_{\mathrm{b}}-\mathrm{E}\right)^{-1} \mathrm{~L}_{\mathrm{b}}|\psi\rangle \\
& =\sum_{\mathrm{k}}\left(\mathrm{H}+\mathrm{L}_{\mathrm{b}}-\mathrm{E}\right)^{-1}\left|\psi_{\mathrm{k}}\right\rangle\left\langle\psi_{\mathrm{k}}\right| \mathrm{L}_{\mathrm{b}}|\psi\rangle \\
& =\sum_{\mathrm{k}}\left(\mathrm{E}_{\mathrm{k}}-\mathrm{E}\right)^{-1}\left|\psi_{\mathrm{k}}\right\rangle\left\langle\psi_{\mathrm{k}}\right| \mathrm{L}_{\mathrm{b}}|\psi\rangle \\
& =\sum_{\mathrm{k}} \frac{1}{2\left(\mathrm{E}_{\mathrm{k}}-\mathrm{E}\right)}\left|\psi_{\mathrm{k}}\right\rangle\left\langle\psi_{\mathrm{k}}\right| \delta(\mathrm{r}-\mathrm{a}) \frac{\mathrm{d}}{\mathrm{dr}}|\psi\rangle \\
& =\sum_{\mathrm{k}}\left|\psi_{\mathrm{k}}\right\rangle \frac{1}{2\left(\mathrm{E}_{\mathrm{k}}-\mathrm{E}\right)}\left(\left.\psi_{\mathrm{k}}(\mathrm{a}) \frac{\mathrm{d}}{\mathrm{dr}} \psi\right|_{\mathrm{r}=\mathrm{a}}\right)
\end{aligned}
$$

Inner region

- The final result of this manipulation gives

$$
|\psi\rangle=\sum_{k}\left|\psi_{k}\right\rangle \frac{1}{2\left(\mathrm{E}_{\mathrm{k}}-\mathrm{E}\right)}\left(\left.\psi_{\mathrm{k}}(\mathrm{a}) \frac{\mathrm{d}}{\mathrm{dr}} \psi\right|_{\mathrm{r}=\mathrm{a}}\right)
$$

which shows that the wavefunction in the inner region is determined entirely by its derivative at the boundary and the energy.

Inner region R-matrix

- Now we can look at what happens at the boundary. So we evaluate Ψ on the LHS at the boundary, while on the RHS we evaluate Ψ_{k}.

With R the so-called R -matrix, this gives

$$
\begin{aligned}
\psi(a) & =\left.\sum_{k} \psi_{k}(a) \frac{1}{2\left(E_{k}-E\right)} \psi_{k}(a)\left(\frac{d}{d r} \psi\right)\right|_{r=a} \\
& =\left.R\left(\frac{d}{d r} \psi\right)\right|_{r=a}
\end{aligned}
$$

Inner region R-matrix

$$
\begin{aligned}
\psi(\mathrm{a}) & =\left.\sum_{\mathrm{k}} \psi_{\mathrm{k}}(\mathrm{a}) \frac{1}{2\left(\mathrm{E}_{\mathrm{k}}-\mathrm{E}\right)} \psi_{\mathrm{k}}(\mathrm{a})\left(\frac{\mathrm{d}}{\mathrm{dr}} \psi\right)\right|_{\mathrm{r}=\mathrm{a}} \\
& =\left.\mathrm{R}\left(\frac{\mathrm{~d}}{\mathrm{dr}} \psi\right)\right|_{\mathrm{r}=\mathrm{a}}
\end{aligned}
$$

- This relationship expresses the wavefunction at the boundary in terms of its derivative.
- If it holds at the boundary, it must not only apply to the inner region... it must also apply to the outer region.

Outer region

- In the outer region, the wavefunction is given in terms of asymptotic wavefunctions.
- In an elastic scattering problem, the standard radial wavefunction is of the form

$$
\psi=\mathrm{A}\left(\psi_{\mathrm{in}}-\psi_{\mathrm{out}} \mathrm{~S}\right)
$$

with \quad A: overall normalisation
$\Psi_{\text {in }}, \Psi_{\text {out }}$: incoming/outgoing wavefunction S: scattering S-matrix

Details of $\Psi_{\text {in }}, \Psi_{\text {out }}$ depend on nature of problem

Outer region

- Now substitute outer region wavefunction into equation obtained earlier:

$$
\begin{aligned}
& \mathrm{A}\left(\psi_{\text {in }}(a)-\psi_{\text {out }}(a) S\right)=\operatorname{RA}\left(\psi_{\text {in }}{ }^{\prime}(a)-\psi_{\text {out }}{ }^{\prime}(a) S\right) \\
& {\left[\psi_{\text {in }}(a)-R \psi_{\text {in }}{ }^{\prime}(a)\right]=\left[\psi_{\text {out }}(a)-R \psi_{\text {out }}{ }^{\prime}(a)\right] S} \\
& S=\left[\psi_{\text {out }}(a)-R \psi_{\text {out }}{ }^{\prime}(a)\right]^{-1}\left[\psi_{\text {in }}(a)-R \psi_{\text {in }}{ }^{\prime}(a)\right]
\end{aligned}
$$

- So by this substitution, we can obtain the Smatrix by straightforward algebra, and hence obtain all the information about the scattering process

Basic application

- Previous outline gives basic principle of R-matrix theory
- Can be used for s-wave scattering off a square-well potential (s-wave: Bessel functions \rightarrow sin, -cos)

Basic application

- Obtain eigenvalues and eigenfunctions of $\mathrm{H}+\mathrm{L}_{\mathrm{b}}$.
- Eigenfunctions associate with constant potential in box. Boundary conditions: $\Psi(0)=0, \Psi^{\prime}(\mathrm{a})=0$.

Basic application

- We can now use these energies and boundary amplitudes to create the R-matrix at a specific scattering energy $E\left(=k^{2} / 2\right)$:

$$
\mathrm{R}=\sum_{\mathrm{j}} \psi_{\mathrm{j}}(\mathrm{a}) \frac{1}{2\left(\mathrm{E}_{\mathrm{j}}-\mathrm{E}\right)} \psi_{\mathrm{j}}(\mathrm{a})
$$

and then the S -matrix can be obtained as

$$
\begin{aligned}
\mathrm{S} & =\left[\mathrm{e}^{\mathrm{ika} a}-\mathrm{iRke} \mathrm{k}^{\mathrm{ika}}\right]^{-1}\left[\mathrm{e}^{-\mathrm{ika} a}+\mathrm{iRke}{ }^{-\mathrm{ika}}\right] \\
& =[1-\mathrm{iRk}]^{-1}[1+\mathrm{iRk}] \mathrm{e}^{-2 \mathrm{ika}}
\end{aligned}
$$

Basic application

- This is a procedure to explain how to obtain the S-matrix, it is not standard procedure!
- Normally, one uses regular and irregular asymptotic solutions to obtain the K-matrix.
- This avoids complex arithmetic.
- Relation between K-matrix and S-matrix

$$
\mathrm{S}=\frac{1+\mathrm{iK}}{1-\mathrm{iK}}
$$

- You can calculate the R-matrix yourself from the given eigenvalues and boundary amplitudes. Incoming wavefunction: $\mathrm{e}^{-\mathrm{k} r}$, and
outgoing $\mathrm{e}^{\mathrm{ikr} \text {. (Again, } 1 / \mathrm{r} \text { factored out throughout). }} \begin{aligned} & \text { - This problem can be solved analytically. } \mathrm{R}=\frac{\tan (\sqrt{2(\mathrm{E}+\mathrm{V})} \mathrm{a})}{\sqrt{2(\mathrm{E}+\mathrm{V})}}\end{aligned}$.

Further issues

- Atomic multi-channel scattering
- Several emission routes for electron
- Inner region wavefunction basis
- Presence of closed channels
- Accuracy of outer region wavefunctions
- R-matrix propagation
- Asymptotic expansion of wavefunction
- Time-dependence

Atomic multi-channel scattering

- Inner-region wavefunction notation not obvious. Obscures basic principles of R-matrix theory
- Wavefunction based on close-coupling expansion
- Scattering target state has N electrons
- Total system has N+1 electrons
- Electron entering outer region is electron $\mathrm{N}+1$
- Full coordinates $X_{1}: r_{1}$ (radial), θ_{1}, φ_{1} (angular), σ_{1} (spin).

$$
\begin{aligned}
\psi_{\mathrm{jE}}^{\Gamma} & =\sum_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}^{\Gamma}\left(\mathrm{X}_{\mathrm{N}} ; \hat{\mathrm{r}}_{\mathrm{N}+1} \sigma_{\mathrm{N}+1}\right) \mathrm{r}_{\mathrm{N}+1}^{-1} \mathrm{~F}_{\mathrm{ij}}^{\Gamma}\left(\mathrm{r}_{\mathrm{N}+1}\right) \\
& +\sum_{\mathrm{i}=1}^{\mathrm{n}} \chi_{\mathrm{i}}^{\Gamma}\left(\mathrm{X}_{\mathrm{N}+1}\right) \mathrm{c}_{\mathrm{ij}}^{\Gamma}
\end{aligned}
$$

Atomic multi-channel scattering

$$
\begin{aligned}
\psi_{\mathrm{jE}}^{\Gamma} & =\sum_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}^{\Gamma}\left(\mathrm{X}_{\mathrm{N}} ; \hat{\mathrm{r}}_{\mathrm{N}+1} \sigma_{\mathrm{N}+1}\right) \mathrm{r}_{\mathrm{N}+1}^{-1} \mathrm{~F}_{\mathrm{ij}}^{\Gamma}\left(\mathrm{r}_{\mathrm{N}+1}\right) \\
& +\sum_{\mathrm{i}=1}^{\mathrm{n}} \chi_{\mathrm{i}}^{\Gamma}\left(\mathrm{X}_{\mathrm{N}+1}\right) \mathrm{c}_{\mathrm{ij}}^{\Gamma}
\end{aligned}
$$

- 「: all conserved quantum numbers in scattering
$\mathrm{L}, \mathrm{S}, \mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}, \mathrm{m}, \alpha$ (all others that may apply)
- j : a solution label

E : energy

Atomic multi-channel scattering

$$
\begin{aligned}
\psi_{j E}^{\Gamma} & =\sum_{i=1}^{n} \varphi_{i}^{\Gamma}\left(\mathrm{X}_{\mathrm{N}} ; \hat{\mathrm{r}}_{\mathrm{N}+1} \sigma_{\mathrm{N}+1}\right) \mathrm{r}_{\mathrm{N}+1}^{-1} \mathrm{~F}_{\mathrm{ij}}^{\Gamma}\left(\mathrm{r}_{\mathrm{N}+1}\right) \\
& +\sum_{\mathrm{i}=1}^{\mathrm{n}} \chi_{\mathrm{i}}^{\Gamma}\left(\mathrm{X}_{\mathrm{N}+1}\right) \mathrm{c}_{\mathrm{ij}}^{\Gamma}
\end{aligned}
$$

- φ_{i} : state of scattering target, coupled with ℓ and σ of scattered electron to a total L and total S
- A: antisymmetrisation operator
- F: radial wavefunction for scattered electron

Atomic multi-channel scattering

$$
\begin{aligned}
\psi_{j E}^{\Gamma} & =\sum_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}^{\Gamma}\left(\mathrm{X}_{\mathrm{N}} ; \hat{\mathrm{r}}_{\mathrm{N}+1} \sigma_{\mathrm{N}+1}\right) \mathrm{r}_{\mathrm{N}+1}^{-1} \mathrm{~F}_{\mathrm{ij}}^{\Gamma}\left(\mathrm{r}_{\mathrm{N}+1}\right) \\
& +\sum_{\mathrm{i}=1}^{\mathrm{m}} \chi_{\mathrm{i}}^{\Gamma}\left(\mathrm{X}_{\mathrm{N}+1}\right) \mathrm{c}_{\mathrm{ij}}^{\Gamma}
\end{aligned}
$$

- X_{i} : "correlation" function involving all electrons to improve near-nucleus wavefunction, where close-coupling description is less accurate
- c_{ij} : expansion coefficients

Closed channels

- Channels without escape are common.
- Use K-matrix formalism $\quad \mathrm{F}=\mathrm{s}+\mathrm{cN}$
- n open channels
- m closed channels

$$
\mathrm{N}=\binom{\mathrm{K}}{\mathrm{~L}}
$$

$\mathrm{s}_{\mathrm{ij}}(\mathrm{r}) \underset{\mathrm{r} \rightarrow \infty}{\rightarrow} \frac{\delta_{\mathrm{ij}}}{\sqrt{\mathrm{k}_{\mathrm{i}}}} \sin \vartheta_{\mathrm{i}}, \quad \mathrm{i}=1, \ldots, \mathrm{n}+\mathrm{m} \quad \mathrm{j}=1, \ldots, \mathrm{n}$
$\mathrm{c}_{\mathrm{ij}}(\mathrm{r}) \underset{\mathrm{r} \rightarrow \infty}{ } \frac{\delta_{\mathrm{ij}}}{\sqrt{\mathrm{k}_{\mathrm{i}}}} \cos \vartheta_{\mathrm{i}}, \quad \mathrm{i}=1, \ldots, \mathrm{n}+\mathrm{m}, \quad \mathrm{j}=1, \ldots, \mathrm{n}$
$\mathrm{c}_{\mathrm{ij}}(\mathrm{r}) \underset{\mathrm{r} \rightarrow \infty}{\rightarrow} \delta_{\mathrm{ij}} \mathrm{e}^{-q_{\mathrm{i}}}, \quad \mathrm{i}=1, \ldots, \mathrm{n}+\mathrm{m}, \quad \mathrm{j}=\mathrm{n}+1, \ldots, \mathrm{n}+\mathrm{m}$
$\vartheta_{\mathrm{i}}=\mathrm{k}_{\mathrm{i}} \mathrm{r}+$ corrections
$\varphi_{\mathrm{i}}=\left|\mathrm{k}_{\mathrm{i}}\right| \mathrm{r}+$ corrections

Closed channels

- Insertion into

$$
\mathrm{F}=\mathrm{RF}^{\prime}
$$

allows us to transform an ($n+m$)-by-($n+m$) Rmatrix into a n-by-n K-matrix and S-matrix.

- Multi-channel R-matrix given by

$$
R_{i k}=\sum_{j} \psi_{i j}(a) \frac{1}{2\left(E_{j}-E\right)} \psi_{k j}(a)
$$

where $\psi_{\mathrm{kj}}(\mathrm{a})$ is boundary amplitude of innerregion eigenstate j associated with channel k

Oroitals

- Needed:
- Accurate wavefunction for total system
- Accurate wavefunction for target
- No overconvergence of one vs. the other
- Number of functions needed to describe F: around 25 75.
- To keep calculations feasible, use small number of functions to describe target states.
- Start by specifying an orbital list used for target-state generation. In Ne, 1s, 2s, 2p, 3s, 3p, 3d

Oroitals

- Target states described using a small Cl basis set.
- Basis set formed by configuration list
- Example 2-state calculations of Ne^{+} $1 s^{2} 2 s^{2} 2 p^{5}$ and $1 s^{2} 2 s 2 p^{6}$
- Configuration list $1 s^{2} 2 s^{2} 2 p^{5}, 1 s^{2} 2 s^{2} 2 p^{5}, 1 s^{2} 2 p^{6}$ (+ single/double excitations to $3 s, 3 p$ and $3 d$)
- Ground-state orbitals, $1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}$, typically HF orbitals
- Depending on the nature of the calculations, $3 \mathrm{~s}, 3 \mathrm{p}$ and 3d: physical orbitals OR pseudo-orbitals to optimise $1 s^{2} 2 s^{2} 2 p^{5}, 1 s^{2} 2 s 2 p^{6}$

Correlation functions

- Multi-electron wavefunction has 2 terms
- Scattering functions
- Correlation functions
- Correlation functions obtained by adding an extra orbital (from the input orbital list) to an entry in the configuration list
- All allowed combinations are included.

Scattering functions

- Scattering functions: product of a target state plus a continuum function

Continuum function obtained from diagonalistion of a B-spline basis set in a model potential over the inner region. Bloch operator is included.

- Orthogonality with orbitals
- Orbitals are projected onto B-spline basis set
- Diagonalisation proceeds in a manner, which guarantees orthogonality with these orbitals
(Bentley PRA 1993/4)

R-matrix propagation

- Asymptotic expansion may only be sufficiently accurate at a large distance from nucleus
- Multi-electron effects only significant close to nucleus
- Efficient calculation:
- Determine R-matrix reasonably close to nucleus
- Propagate R-matrix to the larger distance

R-matrix propagation

- R-matrix propagation requires the Schrödinger equation on an interval with a left and a right boundary (L_{L} and L_{R} Bloch operators):

$$
\left(H-L_{L}+L_{R}-E\right) F=\left(L_{R}-L_{L}\right) F
$$

- Rewrite in terms of Green' s function

$$
\begin{aligned}
\mathrm{F} & =\left(\mathrm{H}-\mathrm{L}_{\mathrm{L}}+\mathrm{L}_{\mathrm{R}}-\mathrm{E}\right)^{-1}\left(\mathrm{~L}_{\mathrm{R}}-\mathrm{L}_{\mathrm{L}}\right) \mathrm{F} \\
& =\mathrm{G} \frac{1}{2}\left(\mathrm{~F}_{\mathrm{R}}^{\prime}-\mathrm{F}_{\mathrm{L}}^{\prime}\right)
\end{aligned}
$$

R-matrix propagation

- Simplify equation by determining the Green's function in Rydberg rather than au.

$$
\mathrm{F}=\mathrm{G}\left(\mathrm{~F}_{\mathrm{R}}^{\prime}-\mathrm{F}_{\mathrm{L}}^{\prime}\right)
$$

- Now evaluate equation at L and R boundary

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{R}}=\mathrm{G}_{\mathrm{RR}} \mathrm{~F}_{\mathrm{R}}^{\prime}-\mathrm{G}_{\mathrm{RL}} \mathrm{~F}_{\mathrm{L}}^{\prime} \\
& \mathrm{F}_{\mathrm{L}}=\mathrm{G}_{\mathrm{LR}} \mathrm{~F}_{\mathrm{R}}^{\prime}-\mathrm{G}_{\mathrm{LL}} \mathrm{~F}_{\mathrm{L}}^{\prime}
\end{aligned}
$$

- R-matrix equations

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{R}}=\mathrm{RF}_{\mathrm{R}}^{\prime} \\
& \mathrm{F}_{\mathrm{L}}=\mathrm{RF}_{\mathrm{L}}^{\prime}
\end{aligned}
$$

R-matrix propagation

- Now express R_{R} as function of R_{L}, G^{\prime} s:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{L}}=\mathrm{R}_{\mathrm{L}} \mathrm{~F}_{\mathrm{L}}^{\prime}=\mathrm{G}_{\mathrm{LR}} \mathrm{~F}_{\mathrm{R}}^{\prime}-\mathrm{G}_{\mathrm{LL}} \mathrm{~F}_{\mathrm{L}}^{\prime} \\
& \mathrm{F}_{\mathrm{L}}^{\prime}=\left(\mathrm{R}_{\mathrm{L}}+\mathrm{G}_{\mathrm{LL}}\right)^{-1} \mathrm{G}_{\mathrm{LR}} \mathrm{~F}_{\mathrm{R}}^{\prime} \\
& \mathrm{F}_{\mathrm{R}}=\mathrm{G}_{\mathrm{RR}} \mathrm{~F}_{\mathrm{R}}^{\prime}-\mathrm{G}_{\mathrm{RL}} \mathrm{~F}_{\mathrm{L}}^{\prime} \\
& \mathrm{F}_{\mathrm{R}}=\mathrm{G}_{\mathrm{RR}} \mathrm{~F}_{\mathrm{R}}^{\prime}-\mathrm{G}_{\mathrm{RL}}\left(\mathrm{R}_{\mathrm{L}}+\mathrm{G}_{\mathrm{LL}}\right)^{-1} \mathrm{G}_{\mathrm{LR}} \mathrm{~F}_{\mathrm{R}}^{\prime} \\
& \mathrm{F}_{\mathrm{R}}=\mathrm{R}_{\mathrm{R}} \mathrm{~F}_{\mathrm{R}}^{\prime}
\end{aligned}
$$

$$
\mathrm{R}_{\mathrm{R}}=\mathrm{G}_{\mathrm{RR}}-\mathrm{G}_{\mathrm{RL}}\left(\mathrm{R}_{\mathrm{L}}+\mathrm{G}_{\mathrm{LL}}\right)^{-1} \mathrm{G}_{\mathrm{LR}}
$$

and a propagation scheme for the R-matrix

Time-dependent R-matrix theory

- Start from the non-relativistic time-dependent Schrödinger equation:

$$
\mathrm{i} \hbar \frac{\partial \psi}{\partial \mathrm{t}}=\mathrm{H} \psi
$$

- Approximated in a Crank-Nicolson form as

$$
\begin{aligned}
\left(\mathrm{H}_{\mathrm{q}+1 / 2}-\mathrm{E}\right) \Psi_{\mathrm{q}+1} & =-\left(\mathrm{H}_{\mathrm{q}+1 / 2}+\mathrm{E}\right) \Psi_{\mathrm{q}} \\
\mathrm{E} & \equiv \frac{2 \mathrm{i}}{\Delta \mathrm{t}}
\end{aligned}
$$

Time-dependent R-matrix theory

- For the inner region, this can be written as

$$
\Psi_{\mathrm{q}+1}=\frac{1}{\left(\mathrm{H}_{\mathrm{q}+1 / 2}+\mathrm{L}_{\mathrm{b}}-\mathrm{E}\right)}\left(\mathrm{L}_{\mathrm{b}} \Psi_{\mathrm{q}+1}-\left(\mathrm{H}_{\mathrm{q}+1 / 2}+\mathrm{E}\right) \Psi_{\mathrm{q}}\right)
$$

which resembles the earlier equations, but with an extra inhomogeneous term

- Additional term leads to slightly more complicated propagation equations

Theory

- Projection onto the outer region channels at the boundary of the inner region gives

$$
\mathrm{F}_{\mathrm{q}+1}(\mathrm{a})=\left.\mathrm{R} \frac{\mathrm{dF}_{\mathrm{q}+1}}{\mathrm{dr}}\right|_{\mathrm{r}=\mathrm{a}}+\mathrm{T}
$$

- R: time-dependent equivalent of standard R-matrix, flow of unknown wave function through boundary
- T: vector describing flow from the inner region flow of known wave function
- F: wave function at time-step q+1 Boundary condition: at large $r, \quad F(r)=0$

Time-dependent R-matrix theory

F: known at large r
R,T known at inner region boundary
Divide the outer region into sub-regions
Propagate R and T outward on boundaries

Time-dependent R-matrix theory

R -matrix is propagated outward again using

$$
\mathrm{R}_{\mathrm{R}}=\mathrm{G}_{\mathrm{RR}}-\mathrm{G}_{\mathrm{RL}}\left(\mathrm{G}_{\mathrm{LL}}+\mathrm{R}_{\mathrm{L}}\right)^{-1} \mathrm{G}_{\mathrm{LR}}
$$

T-vector propagation:

$$
\begin{aligned}
& T_{R}=J_{R}+G_{R L}\left(G_{L L}+R_{L}\right)^{-1}\left(T_{L}-J_{L}\right) \\
& J(r)=-2 \int_{L}^{R} G\left(r, r^{\prime}\right)\left(H\left(r^{\prime}\right)+E\right) \psi\left(r^{\prime}\right) d r^{\prime}
\end{aligned}
$$

G denotes Green' s function on subregion, R and L indicate right and left boundaries

Time-dependent R-matrix theory

F: known at large r
R, T known at all sub-region boundaries

Propagate F inward on sub-region boundaries
F at boundaries \rightarrow subregion wavefunctions

Time-dependent R-matrix theory

F is propagated inward following

$$
\begin{aligned}
\mathrm{F}_{\mathrm{L}} & =\mathrm{R}_{\mathrm{L}}\left(\mathrm{G}_{\mathrm{LL}}+\mathrm{R}_{\mathrm{L}}\right)^{-1} \times \\
& \times\left[\mathrm{G}_{\mathrm{LR}} \mathrm{R}_{\mathrm{R}}^{-1}\left(\mathrm{~F}_{\mathrm{R}}-\mathrm{T}_{\mathrm{R}}\right)+\mathrm{G}_{\mathrm{LL}} \mathrm{R}_{\mathrm{L}}^{-1} \mathrm{~T}_{\mathrm{L}}+\mathrm{J}_{\mathrm{L}}\right]
\end{aligned}
$$

When F obtained on inner region boundary, use

$$
\Psi_{\mathrm{q}+1}=\frac{1}{\left(\mathrm{H}_{\mathrm{q}+1 / 2}+\mathrm{L}_{\mathrm{b}}-\mathrm{E}\right)}\left(\mathrm{L}_{\mathrm{b}} \Psi_{\mathrm{q}+1}-\left(\mathrm{H}_{\mathrm{q}+1 / 2}+\mathrm{E}\right) \Psi_{\mathrm{q}}\right)
$$

to obtain $\Psi_{\mathrm{q}+1}$ in the inner region

Atomic data

- Atomic data generated by R-matrix II codes using Bspline basis sets
- Eigenstates for set of L, S, m symmetries
- Boundary amplitudes / derivatives
- Dipole matrix elements between eigenstates (Length / V)
- Initial state: inner region: eigenstate outer region: 0
- Outer region Green' s functions time-consuming
- Parallelised over outer region sectors
- Communication: R, T and F
- Scales well up to ~ 200 cores

R-matrix theory

- Quick overview of R-matrix theory
- Many subtleties, so much not discussed
- Buttle correction (avoid if possible: use B-splines)
- Gauge of field
- Long-range coupling of asymptotic wavefunctions
- Double ionization
- Recently developed RMT approach links inner and outer region through another scheme
- High accuracy in both regions absolutely essential

Conclusions

- General idea about R-matrix theory and its mathematical foundations
- An overview of basic principles
- Show the origin of some of the frequent formulae in Rmatrix theory
- Beware of phases, factors of 2!
- Atomic R-matrix codes written in Fano-Racah phase convention...

Do it yourself

- s-wave scattering off a spherical well Phase shift is only possible comparison
- Scattering through a square barrier (1D)
- 2-channel problem (left, right)

K-matrix formalism (see closed orbitals):
s : diagonal 2-by-2 matrix ($\sin \mathrm{kx}$)
c: diagonal 2-by-2 matrix ($\cos \mathrm{kx}$)
Derivatives: s', diagonal $\mathrm{k} \cos \mathrm{kx}$
c' diagonal $-k \sin k x$

Do it yourself

- Build the R-matrix
- Eigenfunctions within the barrier [-a,a] Boundary conditions $\psi^{\prime}(-a)=\psi^{\prime}(a)=0$.
- Diagonalisation of $\mathrm{H}+\mathrm{L}_{\mathrm{R}}-\mathrm{L}_{\mathrm{L}}$ gives (note the constant $\mathrm{n}=0$ solution) :

$$
\begin{array}{ll}
\mathrm{E}_{\mathrm{n}}=\frac{1}{2}\left(\frac{\mathrm{n} \pi}{2 \mathrm{a}}\right)^{2}+\mathrm{V}, & \mathrm{n}=0, \ldots, \infty \\
\psi_{\mathrm{n}}(\mathrm{a})=\sqrt{\frac{1}{a}}, \psi_{\mathrm{n}}(-\mathrm{a})=(-1)^{\mathrm{n}} \sqrt{\frac{1}{\mathrm{a}}}, & \mathrm{n}=1, \ldots, \infty \\
\psi_{\mathrm{n}}(\mathrm{a})=\psi_{\mathrm{n}}(-\mathrm{a})=\sqrt{\frac{1}{2 a}}, & \mathrm{n}=0
\end{array}
$$

