Hugo van der Hart

# Goal

 Improve our understanding of fundamental dynamics underlying basic processes

- Most systems are inherently multi-electron systems
- Gain understanding of role of multielectron dynamics within atoms/molecules

## Goal

- Multi-electron systems have many degrees of freedom (3 per particle)
- Large-scale computation possible for two electrons
- What about systems with more than two electrons that can respond to the field?
- Need to consider effective approximations

## **R-matrix theory**

- R-matrix theory was developed in the late 40's as a phenomenological method to study nuclear scattering processes
- For these processes, space could be separated:
  - an inner region within which little was known
  - an outer region with good approximate wavefunctions
  - Scattering processes can be described by a phenomenological R-matrix at the boundary, which links these outer-region wavefunctions
- It was recognised in the 50s that this phenomenological approach could be used as an ab-initio approach for atomic scattering processes

## Textbook

- P.G. Burke R-matrix theory of atomic collisions (2011) Springer series on atomic, optical and plasma physics 61
- Includes, in addition to collisions, photoionization, R-matrix-Floquet theory for long pulses, Time-dependent R-matrix theory (PRA 79, 053411 is better on TDRM)
- Does not include:
   ultra-cold atom-atom collisions

#### **Basics of R-matrix theory**

Inner region, N+1 electrons

All interactions between all electrons

R-matrix obtained at boundary r=a through a diagonalisation of H Outer region, 1 electron

Electron feels longrange field

Propagation of the R-matrix

match R-matrix to asymptotic solutions at a distance a'

## **R-matrix theory**

- Multi-electron systems substantially more complicated than single-electron systems
- Notation can obscure maths/physics
- Combine basic ingredients first
   Develop extra features later
- Elastic potential scattering (single electron)

## **R-matrix theory**

• The starting point is the (radial) Schrödinger equation

# $H\psi = E\psi$

- This equation must be solved separately for the inner region and the outer region.
   The two solutions must then be linked together.
- We start with the inner region.
- Consider radial wavefunctions of form  $\psi(r)/r$

- The Hamiltonian is not Hermitian within the inner region
- Physically: an ionization process involves flow from inner region to outer region
   → norm of ψ in inner region not conserved
- Mathematically: the kinetic energy operator is not Hermitian

$$\int_{0}^{a} \psi_{1}^{*}(r) \frac{d^{2}}{dr^{2}} \psi_{2}(r) dr = \int_{0}^{a} \left( \frac{d^{2}}{dr^{2}} \psi_{1}^{*}(r) \right) \psi_{2}(r) dr + \left[ \psi_{1}^{*}(r) \frac{d}{dr} \psi_{2}(r) \right]_{0}^{a} - \left[ \left( \frac{d}{dr} \psi_{1}^{*}(r) \right) \psi_{2}(r) \right]_{0}^{a}$$

• Reordering the equation as

$$\int_{0}^{a} \psi_{1}^{*}(r) \frac{d^{2}}{dr^{2}} \psi_{2}(r) dr - \left[\psi_{1}^{*}(r) \frac{d}{dr} \psi_{2}(r)\right]_{0}^{a} = \int_{0}^{a} \left(\frac{d^{2}}{dr^{2}} \psi_{1}^{*}(r)\right) \psi_{2}(r) dr - \left[\left(\frac{d}{dr} \psi_{1}^{*}(r)\right) \psi_{2}(r)\right]_{0}^{a}$$

shows that the operator

$$\frac{\mathrm{d}^2}{\mathrm{d}r^2} - \delta(r-a)\frac{\mathrm{d}}{\mathrm{d}r}$$

is Hermitian (radial  $\Psi$  includes term  $r \rightarrow \Psi(0)=0$ )

- The potential energy is a function of r, and thus Hermitian
- The angular kinetic energy is Hermitian
- The radial kinetic energy can be made Hermitian as

$$-\frac{1}{2}\frac{d^2}{dr^2} + \frac{1}{2}\delta(r-a)\frac{d}{dr}$$

• The radial Schrödinger equation is then rewritten as

$$(H + L_b - E)\psi = L_b\psi$$
$$L_b = \frac{1}{2}\delta(r - a)\frac{d}{dr}$$
so that the operator on the LHS is Hermitian.

- Obtain the eigenvalues and eigenvectors of H+L<sub>b</sub> in an appropriate eigenbasis
- With L<sub>b</sub> included, basis can contain functions with ψ(a)≠0, ψ' (a)≠0. Essential for TDRM!

• Let us have eigenvalues  $E_k$  and associated eigenfunctions  $|\Psi_k>$ . Then

$$\begin{split} \left|\psi\right\rangle &= \left(H + L_{b} - E\right)^{-1} L_{b} \left|\psi\right\rangle \\ &= \sum_{k} \left(H + L_{b} - E\right)^{-1} \left|\psi_{k}\right\rangle \left\langle\psi_{k}\left|L_{b}\right|\psi\right\rangle \\ &= \sum_{k} \left(E_{k} - E\right)^{-1} \left|\psi_{k}\right\rangle \left\langle\psi_{k}\left|L_{b}\right|\psi\right\rangle \\ &= \sum_{k} \frac{1}{2(E_{k} - E)} \left|\psi_{k}\right\rangle \left\langle\psi_{k}\left|\delta(r - a)\frac{d}{dr}\right|\psi\right\rangle \\ &= \sum_{k} \left|\psi_{k}\right\rangle \frac{1}{2(E_{k} - E)} \left(\psi_{k}(a)\frac{d}{dr}\psi\right|_{r=a}\right) \end{split}$$

• The final result of this manipulation gives

$$|\psi\rangle = \sum_{k} |\psi_{k}\rangle \frac{1}{2(E_{k} - E)} \left(\psi_{k}(a) \frac{d}{dr} \psi\Big|_{r=a}\right)$$

which shows that the wavefunction in the inner region is determined entirely by its derivative at the boundary and the energy.

#### Inner region R-matrix

• Now we can look at what happens at the boundary. So we evaluate  $\Psi$  on the LHS at the boundary, while on the RHS we evaluate  $\Psi_k$ .

With R the so-called R-matrix, this gives

$$\psi(a) = \sum_{k} \psi_{k}(a) \frac{1}{2(E_{k} - E)} \psi_{k}(a) \left(\frac{d}{dr}\psi\right)\Big|_{r=a}$$
$$= R\left(\frac{d}{dr}\psi\right)\Big|_{r=a}$$

#### Inner region R-matrix

$$\psi(a) = \sum_{k} \psi_{k}(a) \frac{1}{2(E_{k} - E)} \psi_{k}(a) \left(\frac{d}{dr}\psi\right)\Big|_{r=a}$$
$$= R\left(\frac{d}{dr}\psi\right)\Big|_{r=a}$$

- This relationship expresses the wavefunction at the boundary in terms of its derivative.
- If it holds at the boundary, it must not only apply to the inner region... it must also apply to the outer region.

## Outer region

- In the outer region, the wavefunction is given in terms of asymptotic wavefunctions.
- In an elastic scattering problem, the standard radial wavefunction is of the form

$$\Psi = A(\Psi_{\rm in} - \Psi_{\rm out}S)$$

with A: overall normalisation  $\Psi_{in}, \Psi_{out}$ : incoming/outgoing wavefunction S: scattering S-matrix

Details of  $\Psi_{in}$ ,  $\Psi_{out}$  depend on nature of problem

## Outer region

• Now substitute outer region wavefunction into equation obtained earlier:

$$A(\psi_{in}(a) - \psi_{out}(a)S) = RA(\psi_{in}'(a) - \psi_{out}'(a)S)$$
$$[\psi_{in}(a) - R\psi_{in}'(a)] = [\psi_{out}(a) - R\psi_{out}'(a)]S$$
$$S = [\psi_{out}(a) - R\psi_{out}'(a)]^{-1}[\psi_{in}(a) - R\psi_{in}'(a)]$$
• So by this substitution, we can obtain the S-matrix by straightforward algebra, and hence

obtain all the information about the scattering process

- Previous outline gives basic principle of R-matrix theory
- Can be used for s-wave scattering off a square-well potential (s-wave: Bessel functions → sin, -cos)



- Obtain eigenvalues and eigenfunctions of H+L<sub>b</sub>.
- Eigenfunctions associate with constant potential in box. Boundary conditions: Ψ(0)=0, Ψ' (a)=0.

Energies: 
$$\frac{1}{2}\left(k + \frac{1}{2}\right)^{2}\left(\frac{\pi}{a}\right)^{2} - V \quad \Psi_{k}(a): (-1)^{k}\sqrt{2/a}$$
  
 $k=0,1,2,...$   
 $V$   
 $0$   
 $a$ 

 We can now use these energies and boundary amplitudes to create the R-matrix at a specific scattering energy E (=k<sup>2</sup>/2):

$$R = \sum_{j} \psi_{j}(a) \frac{1}{2(E_{j} - E)} \psi_{j}(a)$$

and then the S-matrix can be obtained as  $S = \left[e^{ika} - iRke^{ika}\right]^{-1} \left[e^{-ika} + iRke^{-ika}\right]$   $= \left[1 - iRk\right]^{-1} \left[1 + iRk\right] e^{-2ika}$ 

- This is a procedure to explain how to obtain the S-matrix, it is not standard procedure!
- Normally, one uses regular and irregular asymptotic solutions to obtain the K-matrix.
  - This avoids complex arithmetic.
  - Relation between K-matrix and S-matrix

 $S = \frac{1 + iK}{1 - iK}$ 

 $\frac{\tan(\sqrt{2(E+V)a})}{\sqrt{2(E+V)}}$ 

- You can calculate the R-matrix yourself from the given eigenvalues and boundary amplitudes. Incoming wavefunction: e<sup>-ikr</sup>, and outgoing e<sup>ikr</sup>. (Again, 1/r factored out throughout).
- This problem can be solved analytically. R =

#### Further issues

- Atomic multi-channel scattering
  - Several emission routes for electron
  - Inner region wavefunction basis
  - Presence of closed channels
- Accuracy of outer region wavefunctions
  - R-matrix propagation
  - Asymptotic expansion of wavefunction
- Time-dependence

- Inner-region wavefunction notation not obvious.
   Obscures basic principles of R-matrix theory
- Wavefunction based on close-coupling expansion
  - Scattering target state has N electrons
  - Total system has N+1 electrons
  - Electron entering outer region is electron N+1
  - Full coordinates  $X_1$ :  $r_1$  (radial),  $\theta_1$ ,  $\phi_1$  (angular),  $\sigma_1$  (spin).

$$\psi_{jE}^{\Gamma} = \Re_{i=1}^{n} \phi_{i}^{\Gamma} (X_{N}; \hat{r}_{N+1} \sigma_{N+1}) r_{N+1}^{-1} F_{ij}^{\Gamma} (r_{N+1}) + \sum_{i=1}^{n} \chi_{i}^{\Gamma} (X_{N+1}) c_{ij}^{\Gamma}$$

$$\psi_{jE}^{\Gamma} = \Re_{i=1}^{n} \phi_{i}^{\Gamma} (X_{N}; \hat{r}_{N+1} \sigma_{N+1}) r_{N+1}^{-1} F_{ij}^{\Gamma} (r_{N+1}) + \sum_{i=1}^{n} \chi_{i}^{\Gamma} (X_{N+1}) c_{ij}^{\Gamma}$$

- $\Gamma$ : all conserved quantum numbers in scattering L, S, M<sub>L</sub>, M<sub>S</sub>,  $\pi$ ,  $\alpha$  (all others that may apply)
- j: a solution label
  - E: energy

$$\psi_{jE}^{\Gamma} = \sum_{i=1}^{n} \phi_{i}^{\Gamma} (X_{N}; \hat{r}_{N+1} \sigma_{N+1}) r_{N+1}^{-1} F_{ij}^{\Gamma} (r_{N+1}) + \sum_{i=1}^{n} \chi_{i}^{\Gamma} (X_{N+1}) c_{ij}^{\Gamma}$$

- $\phi_i$ : state of scattering target, coupled with  $\ell$  and  $\sigma$  of scattered electron to a total L and total S
- A: antisymmetrisation operator
- F: radial wavefunction for scattered electron

$$\psi_{jE}^{\Gamma} = \sum_{i=1}^{n} \phi_{i}^{\Gamma} (X_{N}; \hat{r}_{N+1} \sigma_{N+1}) r_{N+1}^{-1} F_{ij}^{\Gamma} (r_{N+1}) + \sum_{i=1}^{m} \chi_{i}^{\Gamma} (X_{N+1}) c_{ij}^{\Gamma}$$

- χ<sub>i</sub>: "correlation" function involving all electrons to improve near-nucleus wavefunction, where close-coupling description is less accurate
- c<sub>ij</sub>: expansion coefficients

#### **Closed channels**

- Channels without escape are common.
  - Use K-matrix formalism F = s + cN
  - n open channels
  - m closed channels

C

$$N = \begin{pmatrix} K \\ L \end{pmatrix}$$

$$s_{ij}(r) \xrightarrow[r \to \infty]{} \frac{\delta_{ij}}{\sqrt{k_i}} \sin \vartheta_i, \quad i = 1, ..., n + m \quad j = 1, ..., n$$

$$c_{ij}(r) \xrightarrow[r \to \infty]{} \frac{\delta_{ij}}{\sqrt{k_i}} \cos \vartheta_i, \quad i = 1, ..., n + m, \quad j = 1, ..., n$$

- $c_{ij}(r) \xrightarrow[r \to \infty]{} \delta_{ij} e^{-\varphi_i}, \qquad i = 1, ..., n + m, \quad j = n + 1, ..., n + m$
- $\vartheta_i = k_i r + \text{corrections}$  $\varphi_i = |k_i| r + \text{corrections}$

### **Closed channels**

Insertion into

F = RF'

allows us to transform an (n+m)-by-(n+m) Rmatrix into a n-by-n K-matrix and S-matrix.

• Multi-channel R-matrix given by

$$R_{ik} = \sum_{j} \psi_{ij}(a) \frac{1}{2(E_j - E)} \psi_{kj}(a)$$

where  $\psi_{kj}(a)$  is boundary amplitude of innerregion eigenstate j associated with channel k

## Orbitals

- Needed:
  - Accurate wavefunction for total system
  - Accurate wavefunction for target
  - No overconvergence of one vs. the other
- Number of functions needed to describe F: around 25 75.
- To keep calculations feasible, use small number of functions to describe target states.
- Start by specifying an orbital list used for target-state generation. In Ne, 1s, 2s, 2p, 3s, 3p, 3d

## Orbitals

- Target states described using a small CI basis set.
  - Basis set formed by configuration list
  - Example 2-state calculations of Ne<sup>+</sup> 1s<sup>2</sup>2s<sup>2</sup>2p<sup>5</sup> and 1s<sup>2</sup>2s2p<sup>6</sup>
  - Configuration list 1s<sup>2</sup>2s<sup>2</sup>2p<sup>5</sup>, 1s<sup>2</sup>2s<sup>2</sup>2p<sup>5</sup>, 1s<sup>2</sup>2p<sup>6</sup> (+ single/double excitations to 3s, 3p and 3d)
- Ground-state orbitals, 1s, 2s, 2p, typically HF orbitals
- Depending on the nature of the calculations, 3s, 3p and 3d: physical orbitals OR pseudo-orbitals to optimise 1s<sup>2</sup>2s<sup>2</sup>2p<sup>5</sup>, 1s<sup>2</sup>2s2p<sup>6</sup>

## **Correlation functions**

- Multi-electron wavefunction has 2 terms
  - Scattering functions
  - Correlation functions
- Correlation functions obtained by adding an extra orbital (from the input orbital list) to an entry in the configuration list
- All allowed combinations are included.

# Scattering functions

 Scattering functions: product of a target state plus a continuum function

Continuum function obtained from diagonalistion of a B-spline basis set in a model potential over the inner region. Bloch operator is included.

- Orthogonality with orbitals
  - Orbitals are projected onto B-spline basis set
  - Diagonalisation proceeds in a manner, which guarantees orthogonality with these orbitals (Rentley PRA 1)

(Bentley PRA 1993/4)

- Asymptotic expansion may only be sufficiently accurate at a large distance from nucleus
- Multi-electron effects only significant close to nucleus
- Efficient calculation:
  - Determine R-matrix reasonably close to nucleus
  - Propagate R-matrix to the larger distance

 R-matrix propagation requires the Schrödinger equation on an interval with a left and a right boundary (L<sub>L</sub> and L<sub>R</sub> Bloch operators):

$$(H-LL+LR-E)F = (LR-LL)F$$

• Rewrite in terms of Green's function

$$F = (H - L_{L} + L_{R} - E)^{-1} (L_{R} - L_{L})F$$
$$= G \frac{1}{2} (F_{R}' - F_{L}')$$

- Simplify equation by determining the Green's function in Rydberg rather than au.  $F = G(F'_R - F'_L)$
- Now evaluate equation at L and R boundary

$$F_{R} = G_{RR}F_{R}' - G_{RL}F_{L}'$$

$$F_{\rm L} = G_{\rm LR} F_{\rm R}' - G_{\rm LL} F_{\rm L}'$$

• R-matrix equations

$$F_{R} = RF'_{R}$$
$$F_{L} = RF'_{L}$$

• Now express  $R_R$  as function of  $R_L$ , G' s:

$$\begin{split} F_{L} &= R_{L}F'_{L} = G_{LR}F'_{R} - G_{LL}F'_{L} \\ F'_{L} &= \left(R_{L} + G_{LL}\right)^{-1}G_{LR}F'_{R} \\ F_{R} &= G_{RR}F'_{R} - G_{RL}F'_{L} \\ F_{R} &= G_{RR}F'_{R} - G_{RL}\left(R_{L} + G_{LL}\right)^{-1}G_{LR}F'_{R} \\ F_{R} &= R_{R}F'_{R} \\ R_{R} &= G_{RR} - G_{RL}\left(R_{L} + G_{LL}\right)^{-1}G_{LR} \\ \text{and a propagation scheme for the R-matrix} \end{split}$$

• Start from the non-relativistic time-dependent Schrödinger equation:

$$i\hbar \frac{\partial \psi}{\partial t} = H\psi$$

• Approximated in a Crank-Nicolson form as

$$(H_{q+1/2} - E)\Psi_{q+1} = -(H_{q+1/2} + E)\Psi_q$$
$$E = \frac{2i}{\Delta t}$$

• For the inner region, this can be written as

$$\Psi_{q+1} = \frac{1}{\left(H_{q+1/2} + L_b - E\right)} \left(L_b \Psi_{q+1} - \left(H_{q+1/2} + E\right) \Psi_q\right)$$

which resembles the earlier equations, but with an extra inhomogeneous term

Additional term leads to slightly more complicated propagation equations

# Theory

 Projection onto the outer region channels at the boundary of the inner region gives

$$F_{q+1}(a) = R \frac{dF_{q+1}}{dr} \bigg|_{r=a} + T$$

- R: time-dependent equivalent of standard R-matrix, flow of unknown wave function through boundary
- T: vector describing flow from the inner region flow of known wave function
- F: wave function at time-step q+1 Boundary condition: at large r, F(r) = 0

- F: known at large r
- R,T known at inner region boundary

Divide the outer region into sub-regions Propagate R and T outward on boundaries



R-matrix is propagated outward again using

$$R_{R} = G_{RR} - G_{RL} (G_{LL} + R_{L})^{-1} G_{LR}$$

T-vector propagation:

$$T_{R} = J_{R} + G_{RL} (G_{LL} + R_{L})^{-1} (T_{L} - J_{L})$$

$$J(r) = -2 \int_{L}^{R} G(r, r') (H(r') + E) \psi(r') dr'$$

G denotes Green's function on subregion, R and L indicate right and left boundaries

- F: known at large r
- R,T known at all sub-region boundaries

Propagate F inward on sub-region boundaries F at boundaries  $\rightarrow$  subregion wavefunctions



F is propagated inward following

$$F_{L} = R_{L} (G_{LL} + R_{L})^{-1} \times \left[ G_{LR} R_{R}^{-1} (F_{R} - T_{R}) + G_{LL} R_{L}^{-1} T_{L} + J_{L} \right]$$

When F obtained on inner region boundary, use

$$\Psi_{q+1} = \frac{1}{\left(H_{q+1/2} + L_{b} - E\right)} \left(L_{b}\Psi_{q+1} - \left(H_{q+1/2} + E\right)\Psi_{q}\right)$$

to obtain  $\psi_{q+1}$  in the inner region

#### Atomic data

- Atomic data generated by R-matrix II codes using Bspline basis sets
  - Eigenstates for set of L, S,  $\pi$  symmetries
  - Boundary amplitudes / derivatives
  - Dipole matrix elements between eigenstates (Length / V)
- Initial state: inner region: eigenstate outer region: 0
- Outer region Green's functions time-consuming
  - Parallelised over outer region sectors
  - Communication: R, T and F
  - Scales well up to ~200 cores

## **R-matrix theory**

- Quick overview of R-matrix theory
- Many subtleties, so much not discussed
  - Buttle correction (avoid if possible: use B-splines)
  - Gauge of field
  - Long-range coupling of asymptotic wavefunctions
  - Double ionization
- Recently developed RMT approach links inner and outer region through another scheme

   High accuracy in both regions absolutely essential

#### Conclusions

- General idea about R-matrix theory and its mathematical foundations
- An overview of basic principles
- Show the origin of some of the frequent formulae in Rmatrix theory
- Beware of phases, factors of 2 !
- Atomic R-matrix codes written in Fano-Racah phase convention...

# Do it yourself

- s-wave scattering off a spherical well
   Phase shift is only possible comparison
- Scattering through a square barrier (1D)
  - 2-channel problem (left, right) K-matrix formalism (see closed orbitals): s: diagonal 2-by-2 matrix (sin kx) c: diagonal 2-by-2 matrix (cos kx) Derivatives: s' diagonal k cos kx c' diagonal –k sin kx

# Do it yourself

- Build the R-matrix
- Eigenfunctions within the barrier [-a,a] Boundary conditions ψ' (-a)=ψ' (a)=0.
- Diagonalisation of H+L<sub>R</sub>-L<sub>L</sub> gives (note the constant n=0 solution) :

$$E_{n} = \frac{1}{2} \left( \frac{n\pi}{2a} \right)^{2} + V, \qquad n = 0, ..., \infty$$
  
$$\psi_{n}(a) = \sqrt{\frac{1}{a}}, \psi_{n}(-a) = (-1)^{n} \sqrt{\frac{1}{a}}, \quad n = 1, ..., \infty$$
  
$$\psi_{n}(a) = \psi_{n}(-a) = \sqrt{\frac{1}{2a}}, \qquad n = 0$$