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ARPES: How to make it quantitative?

If it doesn’t work for Cu, forget it!
Does it work for Cu? for HTc s? for CDW s?

Modular approach: 
separately understand

- physics of initial state (‘everybody is interested’)
- physics of final state (‘nobody is interested’)
- physics of coupling (matrix elements) (‘nobody is interested’)

(what are the different problems)
(not so much new results / science, but “naive” questions)

F. Clerc, M. Bovet, C. Battaglia, L. Despont, H. Cercellier, M.G. Garnier
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What we would like to do…

Measure spectra

Self Energy Band dispersion
Peak width: inverse life time

Interpret line shape as
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What we would like to do…



Does it work for Cu?

… almost …

We know: It is not as simple as that !

Presently, what can we do?
(as experimentalists)
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Direct transitions / Free electron final state
What can we do? … consider …

Refraction

Given: hν, Φ, EB, θm; adjust V0 --> k is completely determined



Energy conservation:

Ef = Ei + hν

Momentum conservation:
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Surf. Sci. 307-309, 917 (1994)

Fermi surface mapping

Section along (110) plane in reciprocal space

In the photoemission process:

Courtesy J. Osterwalder
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Fermi surface mapping: Cu surfaces He I

Surf. Sci. 307-309, 917 (1994)



Cu(110)

Cu(100)

Fermi surface mapping: Cu surfaces He II

Wings!



Band mapping:  Cu(001)  He I

Missing band! - matrix elements ?



One-step model may account for this …

hν= 21.2 eV, unpolarized,
would be nice to have it 
for hν= 64 eV

Final state broadening



Is it because Cu is 3D?

What about 2D?

For Cu the situation is not too bad …

BUT: 
Free electron final state does NOT explain: 

- DOS features, - indirect transitions,
- Missing band

We need to consider:
-final state scattering
-lifetime broadening

-matrix elements



Bi2212: The joys of Fermi surface mapping …

… may turn into pitfalls ….

Quasi 2D system, a well-known example …

Phys. Rev. Lett. 72, 2757-2760 (1994)
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… complicated situation due to FS contour manifolds

Open or closed FS?



Raw data from Ding at 19 eV

Y.-D. Chuang et al. PRL 83 (1999) 3717

Data at 33 eV

k

E

Open or closed Fermi surface?



Borisenko et al., PRL 84 (2000) 4453 Fretwell et al., PRL 84 (2000) 4449
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High resolution
experiments

Bansil, Lindroos, PRL 83 (1999) 5154

Matrix elements 
play 

a crucial role



Bi2212: the situation is complicated despite its 2D character

We need to consider
-final state scattering (‘5x1’)-reconstruction

-matrix elements (hν - dependence)

Many different models deal with initial state physics
(calculate: wavefunctions, greensfunction, A(k,ω))

Final state scattering (LEED, ‘conventional’)
(calculate inverse LEED state for known structure)

We should have a modular approach:
Module for computing:

Inverse LEED state 
+ coupling to initial state 

from arbitrary model
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F. J. Di Salvo et al., Solid State Commun. 23, 825 (1977)
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No clear gap opening?

1x1 BZ

 Experiment: FS mapping

J.Voit et al. Science 290,501 (2001)
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No clear effect of CDW?

 Band mapping
 … what do we see in the experiment ...

Can we interprete this as A(k,ω) ?
What is ordinary / exotic?

Phys. Rev. B 69, 125117/1-125117/9 (2004)



realistic* DFT calculation accounting for CDW
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Even the smallest CDW amplitude
 creates new BZs

Reconstructed band structure 
does not help

Need to quantify weight on new bands !

Influence on A(k,ω) ?

Phys. Rev. B 67, 125105 (2003)



CDWs: the situation is complicated despite its 2D character

?How to know?
-what is due to large unit cell (CDW) in initial state
-what is due to large unit cell (CDW) in final state

-what is due to A(k,ω) / quasi particles
-whether low intensity is due to absence of QP or ME

Many different models go into initial state physics
(calculate: wavefunctions, greensfunction, A(k,ω))

-Module for: Inverse LEED state for large unit cell 
+ coupling (ME) to initial state

We should have a modular approach:

-Module for computing: A(k,ω) for large unit cell
Influence of potential with variable modulation strength



Experimental information on final states …
VLEED experiments !

VLEED experiments on Cu(110)

What can we do on the experimental side …



MgKα
excited

E-EF (eV)

secondaries

It works with secondary ARPES !

0o

60o

Em
iss

io
n 

an
gl

e
Experimental information on final states …

The good news  is … Phys. Rev. Lett., 93, 107601/1 - 107601/4 (2004)
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Photoemission … also for un-occupied states
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Conclusion / “Wish list”

Photoemission (for quantitative)
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Fermi surface- / spectral function- / empty band
 mapping

Create standard (like in XRD)
For final state calculation and Matrix elements, 

independent of initial state physics

democratisation  

Example
Given: 
- known (super)structure, different elements A, B,…
- known LDA bandstructure (generally accessible)
  or have a µ-model for physics
Would like to know: 
- what hν, polarization, BZ (geometry) ?
  To see best states A, B,… details of µ-model 

For arbitrary initial state physics (LDA, µ-model, etc. ) 
have a standard for final state calculation and Matrix elements


