Getting the chemistry into Hubbard Hamiltonians via DF Wannier-like functions

1. Electron localization in $3d^1$ perovskites

E. Pavarini¹, A. Yamasaki², J. Nuss², and O. K. Andersen², A. I. Lichtenstein³, S. Biermann⁴, A. Poteryaev⁴, A. Georges⁴.

¹INFM-Dipartimento di Fisica "A. Volta," Pavia, Italy ²Max-Planck-Institut FKF, Stuttgart, FRG ³Theoretische Physik 1, Universität Hamburg ⁴Ecole Polytechnique, Paris

Phys. Rev. Lett. **92,** 176403 (2004) New Journal of Physics (submitted), cond-mat/0504today

Orthorhombic 3d¹ Perovskites

NMTO downfolding to t_{2g} Wannier functions

Mostly Experiments:				
Pioneering work	Goodenough	Magnetism and the Chemical Bond (1963)		
Photoemission	Fujimori <i>et al</i>	PRL 69, 1796 (1992)		
Photoemission in La $_{1-x}$ Sr $_x$ TiO $_3$	Fujimori <i>et al</i>	PRB 46, 9841 (1992)		
Photoemission in Y $_{1-x}$ Ca $_x$ TiO $_3$	Morikawa <i>et al</i>	PRB 54, 8446 (1996)		
Review of Mott transitions	Imada, Fujimori, Tokura	RMP 70, 1039 (1998)		
Optical gaps in La/YTiO_3 Optical σ , m^*/m in Sr/CaVO_3	Okimoto <i>et al</i> Makino <i>et al</i>	PRB 51, 9581 (1995) PRB 58, 4384 (1998)		
Photoemission in $Ca_{1-x}Sr_xVO_3$	Maiti <i>et al</i>	EL 55, 246 (2001)		
Photoemission in $Ca_{1-x}Sr_xVO_3$	Sekiyama <i>et al</i>	cond-mat/0206471		
NMR, OO in Y $\not{\!\!\! I} q$ TiO $_3$	Itoh <i>et al</i>	JPSJ 68, 2783 (1999)		
Neutr scat, isotr SW in LaTiO $_3$	Keimer <i>et al</i>	PRL 85, 3946 (2000)		
Res x-ray, $\phi \phi$ in LaTiO $_3$	"	"		
Pol neutr scat, OO YTiO ₃	Akimitsu <i>et al</i>	JPSJ 70, 3475 (2001)		
Neutr scat, isotr SW in YTiO ₃	Ulrich <i>et al</i>	PRL 89, 167202 (2002)		
Orbital Liquid Theory, LaTiO ₃	Khaliullin, Maekawa	PRL 85, 3950 (2000)		
Orbital Liquid Theory, YTiO ₃	Khaliullin, Okamoto	PRL 89, 167201 (2002)		

Computational Method

Such properties may be described by a multi-band Hubbard Hamiltonian:

$$H = H^{LDA} + \frac{1}{2} \sum_{imm'\sigma\sigma'}' U_{imm'} \hat{n}_{im\sigma} \hat{n}_{im'\sigma'} - d.c.$$

 H^{LDA} is the one-electron part given by the local approximation to densityfunctional theory (LDA), which should provide the proper *chemistry*. From the Kohn-Sham Hilbert space, we separate a subspace of *localized orbitals* (*im*) for which the *on-site* (*i*) *Coulomb interaction* is included. H depends on how these orbitals are chosen.

We use localized Wannier functions generated by downfolding and formation of Nth-order muffin-tin orbitals (NMTOs).¹

H is solved in the single-site dynamical mean-field approximation (DMFT)², which is based on the $d = \infty$ limit of the Hubbard model.³

- ¹Andersen and Saha-Dasgupta, PRB 62, 16219 (2000).
- ²Georges, Kotliar, Krauth, Rozenberg, Rev. Mod. Phys. 68, 13 (1996); Anisimov et al,
- J. Phys.Cond .Mat. 9, 7359; Liechtenstein and Katsnelson, PRB 57, 6884 (1998) ³Metzner and Vollhardt PRL 62, 324 (1989).

LDA+DMFT (U=5.0 eV, J_H~0.66 eV, k_BT=0.1) and comparison with experiments

Is the electron localization just caused by the reduction of *W*?

LDA+DMFT U=3.5, 4.0, 4.5, 4.75, 5.0, 6.0 eV

No, $\frac{U_c - 2J}{W}$ decreases!

Bandwidths (rms), W, and Critical Coulomb repulsions (average), U'_c

	$SrVO_3$	$CaVO_3$	LaTiO3(Mac)	$LaTiO_3(Cwik)$	YTiO ₃
W (eV)	2.90	2.43	2.22	2.11	1.91
$U_c^\prime~({ m eV})$	> 4.6	4.4	3.4		2.5
U_c^\prime/W	> 1.59	1.81	1.53	_	1.31

From cubic SrVO₃ to distorted YTiO₃, U'_c/W decreases by almost 50%

Since with increasing degeneracy, there are more possiblities to hop in a many-electron system than in a one-electron system, larger U-values are needed to cause a Mott metal-insulator transition (Gunnarsson et al.). Reversely, splitting of a degenerate band leads to reduction of U_c .

LDA density-of-states matrix in the t_{2g} Wannier representation

Diagonalize the on-site term of H^{LDA} to get the crystal-field levels and their eigen-orbitals:

Diagonalize the LDA+DMFT density matrix for the Mott insulators to get orbital occupations:

The most occupied orbital turns out to be the essentially same as the one with the lowest energy (i.e. crystal-field level), but the DMFT increases its occupancy from the LDA value of about 0.5 to about 1, that is, the Coulomb correlations strongly suppress orbital fluctuations:

Crystal-field splittings, Δ_{12} and Δ_{23} , of the 3-fold degenerate t_{2q} -band

	$SrVO_3$	CaVO ₃	LaTiO3(Mac)	$LaTiO_3(Cwik)$	YTiO ₃
$\begin{array}{c} \Delta_{12} \ \Delta_{23} \end{array}$ (meV)	0 0	80 0	140 70	190 20	200 130
Δ_{12}/W	0	3%	6%	9%	10%

The crystal-field splitting needs merely be at the order of the reduced bandwidth: $\Delta \sim ZW = (m/m^*) W \sim (1 - U'/U'_c) W$ (Manini et al). The reduction of U'_c/W when going from a 3-fold, 1/6-filled degenerate band to a 1-fold, 1/2-filled degenerate band was estimated by Koch et al. to be 20% But we found almost 50%.

Orbital and Magnetic Orders

Superexchange: $J_{AF} \sim 4t^2/U$

 $t_{2q}^1 + t_{2q}^1 \longrightarrow t_{2q}^0 + t_{2q}^2$

$$(3|\mathcal{H}_{SE}|3) - (1|\mathcal{H}_{SE}|1) = t_{11}^2 \left(\frac{\frac{1}{3}}{U+2J} + \frac{\frac{2}{3}}{U-J}\right) + \frac{t_{12}^2 + t_{13}^2}{2} \left(\frac{1}{U-J} - \frac{1}{U-3J}\right)$$

U

$$(3|\mathcal{H}_{SE}|3) - (1|\mathcal{H}_{SE}|1) = t_{11}^2 \left(\frac{\frac{1}{3}}{U+2J} + \frac{\frac{2}{3}}{U-J}\right) + \frac{t_{12}^2 + t_{13}^2}{2} \left(\frac{1}{U-J} - \frac{1}{U-3J}\right)$$

Hopping integrals and superexchange couplings in meV

What causes the progressive reduction of t_{2g} bandwidth and splitting of the levels?

Bandwidth: Cation-oxygen covalency. Level splitting: Cation-transition ion covalency

What causes the progressive reduction of t_{2g} bandwidth and splitting of the levels?

Bandwidth: Cation-oxygen covalency. Level splitting: Cation-transition ion covalency

YTiO₃ bandstructure with and without the Jahn-Teller distortion:

The J-T distortion hardly influences the pseudogap!

Most recent work:

m^*/m : dHvA of FS, CaVO ₃	Inoue <i>et al</i>	PRL 88 , 236403 (2002)
<i>Photoemission bulk/surface:</i> TB+ <i>dia</i> DMFT, Sr/CaVO ₃ surf Photoemission, LDA+DMFT, Sr/CaVO ₃	Liebsch Sekiyama <i>et al</i>	PRL 90 , 096401 (2003) cond-mat/0312429
OO in LaTiO ₃ : M and specific heat, LaTiO ₃ , orb liquid? X-ray diff, JT in LaTiO ₃ , La-field \rightarrow OO Ti L _{2,3} x-ray abs., Ti-field = 0.12-0.30 eV	Fritsch <i>et al</i> Cwik <i>et al</i> Haverkort <i>et al.</i>	PRB 65 , 212405 (2002) cond-mat/0302087 cond-mat/0405516
HF model calc, A-field \rightarrow OO in LaTiO ₃ LDA+DMFT, Sr/CaVO ₃ and La/YTiO ₃ LDA+ <i>dia</i> DMFT, La _{1-x} Sr _x TiO ₃	Mochizuki, Imada This work Craco <i>et al</i>	PRL 91, 167203 (2003) cond-mat/0309102 cond-mat/0309370

The three last calculations reach the essentially the same conclusion concerning the orbital order in LaTiO3