Angle Resolved Photoemission studies of the Charge Density Wave in RTe_3 (R = Y, La, Ce...)

Véronique Brouet 1,2,3

¹ Laboratoire de physique des solides d'Orsay (France)

W.L. Yang^{2,3,} X.J. Zhou^{2,3}, Z. Hussain³, Z.X. Shen^{2,3}

² Advanced Light Source, Lawrence Berkeley National Laboratory (USA)
³ Stanford Synchrotron Radiation Laboratory, Stanford University (USA)

N. Ru, K.Y. Shin and I.R. Fisher

Stanford University (USA)

Angle Resolved Photoemission studies of the Charge Density Wave in RTe_3 (R = Y, La, Ce...)

- RTe₂ and RTe₃ structure
- RTe₃ electronic structure determined by ARPES
- Location and magnitude of the CDW gap along the Fermi Surface
- Residual metallic pockets due to imperfect nesting

RTe₂ and RTe₃ structure

Transport anisotropy

N. Ru, I.R. Fisher

Charge density wave detected by transmission electron microscopy (300 K)

SmTe₃, - Satellites pour q = 1.4 ??a E. DiMasi, M.C. Aronson, J.F. Mansfield, B. Foran and S. Lee, Phys. Rev. B 52, 14516 (95)

RTe₃ electronic structure

Electronic structure in a plane

More realistic FS calculation

Fermi Surface in YTe₃ (S. Dugdale, Bristol university)

Spectral weight integrated between E_f and E_f -200 meV

First observation (in SmTe₃): Gweon et al. *Physical Review Letters* **81**, 886 (1998)

Folding of CeTe₃ Fermi Surface

The low intensity of the folded Fermi Surface reflects the 2D character of the compound **Location of the CDW gaps**

Gap opening on the best nested parts of the Fermi Surface (I)

Gap opening on the best nested parts of the Fermi Surface (II)

The gap opens on parts of the Fermi Surface exhibiting the best "nesting"

Q=1.4 ?/a corresponds to the satellites seen by TEM

YTe₃ Fermi Surface h?=35eV - 20K - A para.

The gap is found along ky.

Evolution of the CDW properties as a function of rare earth

Gap measured by ARPES

 $N(E_f)$ increases with the lattice parameter, which probably stabilizes the CDW. This supports the description as a nesting driven CDW (also DiMasi et al. PRB 95). **Imperfect nesting : residual metallic pockets in CeTe₃**

Imperfect nesting

Residual metallicity

The size of the metallic pockets can be deduced for example from de Haas van Alphen oscillations.

Oscillations in magnetization of LaTe₃

N. Ru, I.R. Fisher, A. McKenzie

Imperfect nesting

Residual metallicity

The size of the metallic pockets can be deduced for example from de Haas van Alphen oscillations.

Folded and shadow bands

Crossing of CDW shadow bands in metallic parts of the CDW

YTe₃

Determination of metallic pockets

The Fermi surface seems to be made out of « arcs », but a closed contour is expected.

Metallic pockets

ARPES allows to get the details of the Fermi Surface pockets

V. Brouet et al., PRL 93 126405 (2004)

Conclusion

- ARPES gives support for the charge density wave in $CeTe_3$ to be described as a nesting driven Fermi Surface instability.

- The detailed topology of the residual Fermi surface has been obtained.

- RTe_3 might be an interesting example of 2D Fermi liquid to study further.