Green’s function approach to ab initio band structures .
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One-particle Green’s function in crystal momentum
representation:

Gq(k, t,1) = (=) (U Tleg, (t) el (¢)] | 05")

e The one-particle Green's function contains less information
than the many-particle wave function:

— Exact correlated band structures are given by the poles
of Gp,(k,w).

— The exact ground-state energy and the exact ground-
state expectation values of one-particle operators can be
expressed in terms of G, (k,t,t').

o qu(g, w) can be evaluated perturbatively in terms of Gold-
stone diagrams which is the central approximation em-
ployed.

Intermediate change of representation:

e Introduction of the self-energy E(E, w) by the Dyson equa-
tion.

G(k,w) = Gk, w) + Gk, w) T(k,w) G(k, w)
e Electron correlations are predominantly local!

e Generalized Wannier orbitals are the conceptual equivalent
to localized molecular orbitals.

e Localized orbitals have been utilized successfully in linear
scaling methods to compute ground-state energies of large
molecules.

e Thus represent self-energy in terms of Wannier orbitals.

e Full translational symmetry adaption.

e Exploitation of the invariance under lattice translations of
the individual terms in the self-energy.

Algebraic diagrammatic construction (ADC) for crys-
tal orbitals:

e Ansatz for the self-energy (ADC form) [1, 2].
Y(k,w) = Z%°k) + Mt (k,w) + M~ (k,w)
M*(k,w) = UT(k) (w1 — K*(k) — C*(k)) "' U (k)

e The Lehmann representation of the one-particle Green's
function G(k, w) which yields the quasi-particle band struc-
ture is determined from the Hermitian eigenvalue problem:

B(k)X (k) = X (k)E(k)

( (F+3®)(k) Uk U—f(k) \
B(k) = UT(k) (Kt+CH(k) 0
\ U~ (k) 0 (K~ + C)(k) )

e Allows a numerically stable determination of poles.

e Non-perturbative description: perturbation theory only
serves to construct an intermediate state representation of
the Hamiltonian which is diagonalized subsequently.

e Describes correlation effects beyond the quasi-particle pic-
ture: strong correlation and electronic resonances |3, 4].

Configuration selection:

o The problem of assembling (&, w) is infinite.

e Configuration selection is needed to obtain a linear scaling
configuration space.

e [he summand in the analytic expression of the second order
self-energy diagrams can be used as a selection criterion:
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e Truncation of the configuration space implies a finite-range
of the Coulomb interaction.

e Only a certain number of non-degenerate states are de-

cribed.

e [he computational effort to determine excited states in
crystals scales linearly, if only a few a priori chosen states
are considered, but, generally, the problem is a quadratical
scaling problem!
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Band structure of (HF)., chains:

e /ig-zag chain, basis set cc-pVD/Z.
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e Excitations from the valence orbitals of the origin unit cell
plus the nearest and next nearest neighbour unit cells.
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(*) Quasi-particle band structure obtained with an effective
Hamiltonian approach by BEZUGLY and BIRKENHEUER.

e Valence bands shift significantly upwards.
e Slight increase of the width of the isolated band complexes.

e Excitations from the origin unit cell alone already describes
the band structure of (HF)., satisfactorily.

e [ he inclusion of excitations in the nearest neighbour cells
has only a minor influence on the band structure, ~ 0.1-
0.3eV, at the I' point.

e Very good agreement between CO-ADC(2,2) and the ef-
fective Hamiltonian quasi-particle band structures.

Band structure of a LiF crystal:

e Rock-salt structure, basis set STO-6G.

e Excitations from the valence orbitals of the origin unit cell.
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e Excitations from the valence orbitals of the origin unit cell
plus the nearest and next nearest neighbour unit cells.
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e The fundamental band gap is reduced significantly due to
electron correlations.

e Excitations in neighbouring unit cells are essential.

e [ he width of the F 2p band complex is hardly influenced by
electron correlations.

e Good agreement with experimental results.

Localized orbitals:

e [he Fock matrix in terms of localized molecular or crystal
orbitals is not diagonal.

e Exact transformation of the ADC equations leads to an
ADC(00,2) matrix with roughly 50% non-zero entries. Con-
sequently a selective diagonalization is very expensive.

e Off-diagonal Fock matrix elements are treated perturba-
tively in the construction of the ADC form.

e lonization potentials and electron affinities of a hydrogen
fluoride molecule, basis set cc-pVD/Z.
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e VVery good agreement of ADC(2,2) and ADC(o0,2) results
for outer valence IPs and the lowest EA.

e Deviation of ADC(2,2) IP in the inner valence around 40 V.

e Only ADC(3,2) and ADC(00,2) describe strong correlation

(breakdown of the molecular orbital picture of ionization)
properly and are generally in excellent agreement.

e ADC(2,2) — ADC(3,2) leads to an overall improvement in

accuracy of IPs and EAs by an order of magnitude with
respect to ADC(00,2).

e A more accurate treatment is not required!




