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Crystal orbital algebraic diagrammatic construction (CO-ADC)

One-particle Green’s function in crystal momentum
representation:
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•The one-particle Green’s function contains less information
than the many-particle wave function:

– Exact correlated band structures are given by the poles
of Gpq(~k, ω).

–The exact ground-state energy and the exact ground-
state expectation values of one-particle operators can be
expressed in terms of Gpq(~k, t, t′).

•Gpq(~k, ω) can be evaluated perturbatively in terms of Gold-
stone diagrams which is the central approximation em-
ployed.

Intermediate change of representation:

• Introduction of the self-energy Σ(~k, ω) by the Dyson equa-
tion.

G(~k, ω) = G
0(~k, ω) + G

0(~k, ω)Σ(~k, ω) G(~k, ω)

•Electron correlations are predominantly local!

•Generalized Wannier orbitals are the conceptual equivalent
to localized molecular orbitals.

• Localized orbitals have been utilized successfully in linear
scaling methods to compute ground-state energies of large
molecules.

•Thus represent self-energy in terms of Wannier orbitals.

• Full translational symmetry adaption.

• Exploitation of the invariance under lattice translations of
the individual terms in the self-energy.

Algebraic diagrammatic construction (ADC) for crys-
tal orbitals:

•Ansatz for the self-energy (ADC form) [1, 2].
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•The Lehmann representation of the one-particle Green’s
function G(~k, ω) which yields the quasi-particle band struc-
ture is determined from the Hermitian eigenvalue problem:

B(~k)X(~k) = X(~k)E(~k)
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•Allows a numerically stable determination of poles.

•Non-perturbative description: perturbation theory only

serves to construct an intermediate state representation of
the Hamiltonian which is diagonalized subsequently.

•Describes correlation effects beyond the quasi-particle pic-
ture: strong correlation and electronic resonances [3, 4].

Configuration selection:

•The problem of assembling Σ(~k, ω) is infinite.

•Configuration selection is needed to obtain a linear scaling
configuration space.

•The summand in the analytic expression of the second order
self-energy diagrams can be used as a selection criterion:

V~0 % ~g1 κ [~g2 α ~g3 β] V
∗
~R σ ~g1 κ [~g2 α ~g3 β]

ω−ε~g2 α−ε~g3 β+ε~g1 κ
n~g1 κ n̄~g2 α n̄~g3 β .

•Truncation of the configuration space implies a finite-range
of the Coulomb interaction.

•Only a certain number of non-degenerate states are de-
cribed.

•The computational effort to determine excited states in
crystals scales linearly, if only a few a priori chosen states
are considered, but, generally, the problem is a quadratical

scaling problem!

References:

[1] J. Schirmer, L. S. Cederbaum, and O. Walter, Phys. Rev. A
28 1237 (1983)

[2] C. Buth, U. Birkenheuer, M. Albrecht, and P. Fulde, sub-
mitted to Phys. Rev. B., arXiv: cond-mat/0409078

[3] C. Buth, R. Santra, and L. S. Cederbaum, J. Chem. Phys.,
119 7763 (2003), arXiv: physics/0306123

[4] C. Buth, R. Santra, and L. S. Cederbaum, J. Chem. Phys.,
119 10575 (2003), arXiv: physics/0303100

Ab initio quasi-particle band structures of a (HF)∞ chain and a bulk LiF crystal

Band structure of (HF)∞ chains:

•Zig-zag chain, basis set cc-pVDZ.
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•Excitations from the valence orbitals of the origin unit cell
plus the nearest and next nearest neighbour unit cells.

(*) Quasi-particle band structure obtained with an effective
Hamiltonian approach by Bezugly and Birkenheuer.

•Valence bands shift significantly upwards.

• Slight increase of the width of the isolated band complexes.

•Excitations from the origin unit cell alone already describes
the band structure of (HF)∞ satisfactorily.

•The inclusion of excitations in the nearest neighbour cells
has only a minor influence on the band structure, ≈ 0.1–
0.3 eV, at the Γ point.

•Very good agreement between CO-ADC(2,2) and the ef-
fective Hamiltonian quasi-particle band structures.

Band structure of a LiF crystal:

•Rock-salt structure, basis set STO-6G.

• Excitations from the valence orbitals of the origin unit cell.

• Excitations from the valence orbitals of the origin unit cell
plus the nearest and next nearest neighbour unit cells.

•The fundamental band gap is reduced significantly due to
electron correlations.

• Excitations in neighbouring unit cells are essential.

•The width of the F 2p band complex is hardly influenced by
electron correlations.

•Good agreement with experimental results.

Localized orbitals:

•The Fock matrix in terms of localized molecular or crystal
orbitals is not diagonal.

•Exact transformation of the ADC equations leads to an
ADC(∞,2) matrix with roughly 50% non-zero entries. Con-
sequently a selective diagonalization is very expensive.

•Off-diagonal Fock matrix elements are treated perturba-
tively in the construction of the ADC form.

• Ionization potentials and electron affinities of a hydrogen
fluoride molecule, basis set cc-pVDZ.

•Very good agreement of ADC(2,2) and ADC(∞,2) results
for outer valence IPs and the lowest EA.

•Deviation of ADC(2,2) IP in the inner valence around 40 eV.

•Only ADC(3,2) and ADC(∞,2) describe strong correlation
(breakdown of the molecular orbital picture of ionization)
properly and are generally in excellent agreement.

•ADC(2,2) → ADC(3,2) leads to an overall improvement in
accuracy of IPs and EAs by an order of magnitude with
respect to ADC(∞,2).

•A more accurate treatment is not required!


