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Hamiltonian i

H = ELQ un-o, (n=r/r).

basis set: Spinor Spherical Harmonics

: 1
& 5, jm) =3l i £ 55,6

727

as suggested by [H,J| =0, with J = L + %0'.

strong coupling: Large-p limit
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Stone's hamiltonian describes a solenoid, which is rotating about its centre of
mass where a spin—% particle is placed.
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Interpretation of the model
(Stone 1986, Aitchinson 1987)

Stone's hamiltonian describes a solenoid, which is rotating about its centre of
mass where a spin—% particle is placed. Dynamical regimes — p small: the
solenoid and the particle spin independently; p large: spin slaved to the direction
of the solenoid. Note that — This physical picture implies the coupling B - o,
which is space and time even. Such a symmetry should be contrasted with that
of n - o, which is space and time odd.
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Exotic features of the model

It provides a simple quantum-mechanical example in which the Berry phase gives
rise to Wess-Zumino terms (Path-integral formulation). Indeed, for large pu,
Stone's Hamiltonian describes the motion of a constrained spin, which is
equivalent to motion of a charged particle about a magnetic monopole

(Leinaas 1978).
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A different interpretation of Stone’s Hamiltonian

It describes a different effect: site magnetoelectricity. Such a phenomenon
occurs in crystalline and molecular systems when space-inversion symmetry is
locally broken and co-existence of electric and magnetic moments is permitted by
the pertinent site point group. An effective magnetoelectric interaction
between these two moments would be described by Stone’s Hamiltonian provided
we identify n with a unitary electric-dipole moment. (The electric charge e is
merged into w.) This new interpretation of the model does not affect its
dynamical regimes, which remain those of the rotating solenoid with B
replaced by n.

Magnetoelectricity is characterised by a local order parameter (to be identified),
which is odd under both space inversion and time reversal, being thereby invariant
under the combined action of these transolrmation.

e Magnetoelectricity of the (large-.) ground state of Stone’s model.
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microscopic magnetoelectric behaviour of crystals can be investigated

using near-edge absorption of x rays, which implies excitations of inner-shell
electrons to empty valence states.
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Relevant experimental work

As demonstrated by Goulon and his collaborators (Goulon et al. 2000, 2002),
microscopic magnetoelectric behaviour of crystals can be investigated
using near-edge absorption of x rays, which implies excitations of inner-shell
electrons to empty valence states. As is known, this experimental technique is site
selective, a feature resulting from the tuning of x-ray energy at a given inner-shell
threshold. Sensitivity to the long-range order of local magnetoelectric order
parameters is obtained by recording dichroic signals which stem from an
interference between electric-dipole and electric-quadrupole transitions. As
a consequence, scalars (e.g. n - o) are not probed by these experiments, which
detect the long-range order of local (on-site) magnetoelectric order parameters
represented by one-particle irreducible tensors of rank 1,2 and 3. (E1E2
contributions to the p - A resonant scattering amplitude in the forward direction.)
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Order parameters

One set of these order parameters specifically serves our purposes: the magnetic
quadrupoles (rank-2 tensors). In the LS-coupling scheme, they read

Mf) — [’I’L,L](Q), Mgz) — [n, S](z) |

/\/lg?) = %[z‘[ﬂL,L]@)) S| /\/lg) _ @Hn’ 02))3), g2

as shown by recent theoretical work on x-ray dichroism and resonant scattering
in noncentrosymmetric crystals (Carra et al. 2003, Marri and Carra 2004).
([,]®) — Clebsch-Gordan coupling of irreducible tensors; S = Zo;

Q =+(nxL—Lxn), orbital anapole; Q@) = [L, L]® , orbital quadrupole.)
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Artist’s view of a magnetic quadrupole
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A set of vector order parameters will also be considered in connection with Stone's
model. Its elements are defined by (Marri and Carra, 2004) in LS coupling.
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A set of vector order parameters will also be considered in connection with Stone's
model. Its elements are defined by (Marri and Carra, 2004) in LS coupling. These

irreducible tensors have polar (electric) symmetry, i.e., they are space odd and
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More order parameters

A set of vector order parameters will also be considered in connection with Stone's
model. Its elements are defined by (Marri and Carra, 2004) in LS coupling. These

irreducible tensors have polar (electric) symmetry, i.e., they are space odd and
time even.

n, Ps=Q.x8, Pr=-22[n L[]® 5O

[Order parameters: definition (2nd quant.)

—

k 1 k
O = Y 5 (@10 )gltm)o)e) iy + .| |
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More order parameters

A set of vector order parameters will also be considered in connection with Stone's
model. Its elements are defined by (Marri and Carra, 2004) in LS coupling. These

irreducible tensors have polar (electric) symmetry, i.e., they are space odd and
time even.

n, Ps=Q.x8, Pr=-22[n L[]® 5O

[Order parameters: definition (2nd quant.)

©0P), = 3 3 [@10m (0% im)o)e] teel

l’m’a’clma
LU =1+1

m,m/, 0,0’

with ¢; _ and ¢, fermionic operators. ]
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A canonical transformation

Magnetoelectric properties of Stone’'s Hamiltonian in the large p limit.

For this purpose: show that the symmetry property of the scalar n - o, when
acting on the spinor spherical harmonics, extends to irreducible tensors (local

order parameters) of higher rank = magnetoelectric behaviour of |g) _ readily

inferred.
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Magnetoelectric properties of Stone’'s Hamiltonian in the large p limit.

For this purpose: show that the symmetry property of the scalar n - o, when
acting on the spinor spherical harmonics, extends to irreducible tensors (local
order parameters) of higher rank = magnetoelectric behaviour of |g) _ readily

inferred.
The basis set |j + %,jm) provides a convenient framework for describing

parity-breaking electron hybridisation (e.g. pd mixing in transition-metal
oxides), in the jj coupling scheme. (n-o/2=n-J,asn-L =0.)
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For this purpose: show that the symmetry property of the scalar n - o, when
acting on the spinor spherical harmonics, extends to irreducible tensors (local
order parameters) of higher rank = magnetoelectric behaviour of |g) _ readily
inferred.

The basis set |j + %,jm} provides a convenient framework for describing
parity-breaking electron hybridisation (e.g. pd mixing in transition-metal

oxides), in the jj coupling scheme. (n-o/2=n-J,asn-L =0.)

e Determine form of order parameters in jj coupling
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A canonical transformation

Magnetoelectric properties of Stone’'s Hamiltonian in the large p limit.

For this purpose: show that the symmetry property of the scalar n - o, when
acting on the spinor spherical harmonics, extends to irreducible tensors (local
order parameters) of higher rank = magnetoelectric behaviour of |g) _ readily
inferred.

The basis set |j + %,jm} provides a convenient framework for describing
parity-breaking electron hybridisation (e.g. pd mixing in transition-metal

oxides), in the jj coupling scheme. (n-o/2=n-J,asn-L =0.)

e Determine form of order parameters in jj coupling
e LS— jj transformations (Edmonds 1974)
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Unit tensors

Coupled double Tensors (Judd, 1967)

wéxy)z(l/’ l) — Z Cx£ ynCl z 1 CZ’A’ I l’)J ’Cle + h.c (LS)
€7n7A7A/70-’O-
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Unit tensors

Coupled double Tensors (Judd, 1967)

wéxy)z(l/’ l) — Z Cx£ ynCl z 1 CZ’A’ I l’)J ’Cle + h.c (LS)
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and
vé“)z(l’,l) N O iy m B (5)
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Unit tensors

Coupled double Tensors (Judd, 1967)

wéxy)z(l/’ l) — Z Cx£ ynCl z 1 CZ’A’ I l’)J ’Cle + h.c (LS)
€7n7A7A/70-’O-

and
vé“)z(l’,l) N O iy m B (5)

mm

where ¢, = (—1)"*279¢_ _and ¢ . = (=1)7"™¢, . (irreducibility).

Jm
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Unit tensors (cont’d)

Importance of unit tensors: LS and jj order parameters can be expressed as
multiples of them (Wigner-Eckart theorem);
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Unit tensors (cont’d)

Importance of unit tensors: LS and jj order parameters can be expressed as
multiples of them (Wigner-Eckart theorem); e.g.

>
w02 ) = — ‘f MP D).

Il V0 112
vV lOlO Uil
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Unit tensors (cont’d)

Importance of unit tensors: LS and jj order parameters can be expressed as
multiples of them (Wigner-Eckart theorem); e.g.

2
V2 MP 1.

w(20)2(l’, )= - /0 J112
VIL+1)Cig { Ul

LS — jj transformation

I U =x
. ol e
w1 =) (1) 2y, 5,502 5 L oy poUDEE),
. ] j/ >

JsJ
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Unit tensors (cont’d)

Importance of unit tensors: LS and jj order parameters can be expressed as
multiples of them (Wigner-Eckart theorem); e.g.

2
V2 MP 1.

i / 112
V(T + 1)Czlo?10 { Ul

w(20)2(l/, l) —

LS — jj transformation

I U =x
. ol e
w1 =) (1) 2y, 5,502 5 L oy poUDEE),
. ] j/ >

JsJ

with [a,....,b] = (2a+1)--- (2b+1).
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Equations

¢ jj Magnetic quadrupole:

Paolo Carra - Interpreting Stone's model of Berry phases - / March 31, 2005 PPower4 Software



Equations

¢ jj Magnetic quadrupole:

System of four equations. Solve for j = jand ' =1+1
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Equations

¢ jj Magnetic quadrupole:

System of four equations. Solve for j = jand ' =1+1

— 1 (140 =1\ [1+1U+3\ 2
Mf,)(l’,l):g< 5 )( 5 Mg>(z',1)+§M<T>(z',z)

1 1
o MP D) - ZMP T

N _g(zz +1)(2 +1) {[n, TN 022025, + [, J) 024202 5l’al+1} |
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Equations (cont’d)
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Equations (cont’d)

e jj Electric dipole:
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Equations (cont’d)

e jj Electric dipole:

System of three equations. Solve for j' = jand I’ =1+1
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Equations (cont’d)

e jj Electric dipole:

System of three equations. Solve for j' = jand I’ =1+1

~

Py, =n(,])+ Psl',l) — 2Pr(I',])

3(l+10+1 AT V141
( 2 ) |:nJ 2 25l/’l_1 +nJ 2 25l/,l—|—1i|
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Magnetoelectricity of Stone’s model (large 1)
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Magnetoelectricity of Stone’s model (large 1)

After some algebra, we find

1 3 =G+, 1
S MO, 1)) + £, jm) = U D21 i,
[,I/'=l+x1 2 \/6 2
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Magnetoelectricity of Stone’s model (large 1)

After some algebra, we find

2 . .
S MP0.l ,Jm> & lFgam),

LU=l+1

showing that |g) = % (l7 4+ 3,dm) — |7 — 3,jm)) is an eigenstate of the
jj-coupled magnetic quadrupole operator;
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Magnetoelectricity of Stone’s model (large 1)

After some algebra, we find

3 =G+, 1
[,I/'=l+x1

showing that |¢g) = % (l7 4+ %,jm) —|j — 2,7m)) is an eigenstate of the
jj-coupled magnetic quadrupole operator; in other words, the large-u ground
state of Stone’s Hamiltonian is magnetoelectric.
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Magnetoelectricity of Stone’s model (large 1)

After some algebra, we find

3 =g+, 1

./\/12)l’ i 5 Jm —.jm),
> )2ld £ 5,9m) = Ve JF 55 0m)

LU=l+1

showing that |¢g) = % (l7 4+ %,jm) —|j — 2,7m)) is an eigenstate of the
jj-coupled magnetic quadrupole operator; in other words, the large-u ground
state of Stone’s Hamiltonian is magnetoelectric.

Our conclusion is further supported by what follows.
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Consider the jj electric dipole.
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Consider the jj electric dipole. We have

~ o1 N
Z PJ(llal)OU + §7Jm> — _ml.] + §7Jm>7
LU/=Il+£1
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Consider the jj electric dipole. We have

~ o1 N
Z PJ(l/7l)0|J + §7jm> — _m|] + §7Jm>7
LU/=Il+£1

|g)— is thus characterised by the simultaneous presence of an electric and a
magnetic moment in a parallel (as expected) configuration.
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Consider the jj electric dipole. We have

~ o1 N
Z PJ(l/7l)0|J + §7jm> — _m|] + §7Jm>7
LU/=Il+£1

|g)— is thus characterised by the simultaneous presence of an electric and a
magnetic moment in a parallel (as expected) configuration.

[Reversing the sign of the coupling constant in Stone's model (1 — —pu, large w)
would change the ground state to |g) = % (17 + z.gm) +|j — %,jm>), which is
characterised by an antiparallel alighement of the moments and by a
magnetic quadrupole with opposite sign.]
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Consider the jj electric dipole. We have

~ o1 N
Z PJ(Z/7Z)0|J + §7jm> — _m|] + §7jm>7
LU/=Il+£1

|g)— is thus characterised by the simultaneous presence of an electric and a
magnetic moment in a parallel (as expected) configuration.

[Reversing the sign of the coupling constant in Stone's model (1 — —pu, large w)
would change the ground state to |g) = % (17 + z.gm) +|j — %,jm>), which is
characterised by an antiparallel alighement of the moments and by a
magnetic quadrupole with opposite sign.]

Standard Relations
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Consider the jj electric dipole. We have

~ o1 N
Z PJ(Z/7Z)0|J + §7jm> — _m|] + §7Jm>7
LU/=Il+£1

|g)— is thus characterised by the simultaneous presence of an electric and a
magnetic moment in a parallel (as expected) configuration.

[Reversing the sign of the coupling constant in Stone's model (1 — —pu, large w)
would change the ground state to |g) = % (17 + z.gm) +|j — %,jm>), which is
characterised by an antiparallel alighement of the moments and by a
magnetic quadrupole with opposite sign.]

Standard Relations

3m? —j(j + 1)

Jlgm) = mljm), [T, TP |jm) = NG 5m)
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Consider the jj electric dipole. We have

~ o1 N
Z PJ(Z/7Z)O|J + §7jm> — _m|] + §7Jm>7
LU/=Il+£1

|g)— is thus characterised by the simultaneous presence of an electric and a
magnetic moment in a parallel (as expected) configuration.

[Reversing the sign of the coupling constant in Stone's model (1 — —pu, large w)
would change the ground state to |g) = % (17 4+ 5, jm) +1j — 5,7m)), which is
characterised by an antiparallel alighement of the moments and by a
magnetic quadrupole with opposite sign.]

Standard Relations

3m? —j(j+ 1)

Jlgm) = mljm), [T, TP |jm) = 75 5m)

Symmetry: Rotation group - SU(n)
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Conclusions
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Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a
problem of a magnetic moment constrained by an electric field.
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Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a
problem of a magnetic moment constrained by an electric field. In turn, this
is equivalent to the problem of a charged particle moving in the field of a
magnetic monopole, both classically and quantum mechanically (Leinaas 1978).
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Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a
problem of a magnetic moment constrained by an electric field. In turn, this
is equivalent to the problem of a charged particle moving in the field of a
magnetic monopole, both classically and quantum mechanically (Leinaas 1978).
This seems to tally with recent work on magnetic monopoles in crystal momentum
space [Fang et al., Science, 302, 92 (2003)].
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Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a
problem of a magnetic moment constrained by an electric field. In turn, this
is equivalent to the problem of a charged particle moving in the field of a
magnetic monopole, both classically and quantum mechanically (Leinaas 1978).
This seems to tally with recent work on magnetic monopoles in crystal momentum
space [Fang et al., Science, 302, 92 (2003)].

According to our findings, Stone's model provides a good starting point in the
study of interactions between (local) electric and magnetic moments in crystals.
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Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a
problem of a magnetic moment constrained by an electric field. In turn, this
is equivalent to the problem of a charged particle moving in the field of a
magnetic monopole, both classically and quantum mechanically (Leinaas 1978).
This seems to tally with recent work on magnetic monopoles in crystal momentum
space [Fang et al., Science, 302, 92 (2003)].

According to our findings, Stone's model provides a good starting point in the
study of interactions between (local) electric and magnetic moments in crystals.
For this purpose, an extension of the model to a lattice of sites is now needed.
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Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a
problem of a magnetic moment constrained by an electric field. In turn, this
is equivalent to the problem of a charged particle moving in the field of a
magnetic monopole, both classically and quantum mechanically (Leinaas 1978).
This seems to tally with recent work on magnetic monopoles in crystal momentum
space [Fang et al., Science, 302, 92 (2003)].

According to our findings, Stone's model provides a good starting point in the
study of interactions between (local) electric and magnetic moments in crystals.
For this purpose, an extension of the model to a lattice of sites is now needed.
Such a model, characterised by an order parameter which violates space
inversion and time reversal,
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Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a
problem of a magnetic moment constrained by an electric field. In turn, this
is equivalent to the problem of a charged particle moving in the field of a
magnetic monopole, both classically and quantum mechanically (Leinaas 1978).
This seems to tally with recent work on magnetic monopoles in crystal momentum
space [Fang et al., Science, 302, 92 (2003)].

According to our findings, Stone's model provides a good starting point in the
study of interactions between (local) electric and magnetic moments in crystals.
For this purpose, an extension of the model to a lattice of sites is now needed.
Such a model, characterised by an order parameter which violates space
inversion and time reversal, could be relevant in the analysis of electronic
properties of transition-metal oxides.
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