Interpreting Stone's model of Berry phases

Paolo Carra
European Synchrotron Radiation Facility, Grenoble, France

Table of Contents

Stone's model \quad Diagonalisation	Exotic features of the model		
Interpretation of Stone's Hamiltonian	Experimental work	Order	
parameters	More order parameters	A transformation Unit	
tensors	ij order parameters	Magnetoelectricity	Conclusions

Stone's model

Stone's model

Hamiltonian

Stone's model

Hamiltonian

$$
H=\frac{1}{2 I} \boldsymbol{L}^{2}
$$

Stone's model

Hamiltonian

$$
H=\frac{1}{2 I} L^{2}-\mu n \cdot \sigma,
$$

Stone's model

Hamiltonian

$$
H=\frac{1}{2 I} \boldsymbol{L}^{2}-\mu n \cdot \sigma, \quad(\boldsymbol{n}=\mathbf{r} / r)
$$

Stone's model

Hamiltonian

$$
H=\frac{1}{2 I} \boldsymbol{L}^{2}-\mu n \cdot \sigma, \quad(\boldsymbol{n}=\mathbf{r} / r)
$$

basis set:

Stone's model

Hamiltonian

$$
H=\frac{1}{2 I} L^{2}-\mu n \cdot \sigma, \quad(n=\mathbf{r} / r) .
$$

basis set: Spinor Spherical Harmonics

Stone's model

Hamiltonian

$$
H=\frac{1}{2 I} \boldsymbol{L}^{2}-\mu n \cdot \sigma, \quad(\boldsymbol{n}=\mathbf{r} / r) .
$$

basis set: Spinor Spherical Harmonics

$$
\left|j \pm \frac{1}{2}, j m\right\rangle=\sum_{m^{\prime}, \xi} C_{j \pm \frac{1}{2}, m^{\prime} ; \frac{1}{2}, \xi}^{j, \xi}\left|j \pm \frac{1}{2}, m^{\prime}\right\rangle\left|\frac{1}{2}, \xi\right\rangle
$$

Stone's model

Hamiltonian

$$
H=\frac{1}{2 I} \boldsymbol{L}^{2}-\mu n \cdot \sigma, \quad(\boldsymbol{n}=\mathbf{r} / r) .
$$

basis set: Spinor Spherical Harmonics

$$
\left|j \pm \frac{1}{2}, j m\right\rangle=\sum_{m^{\prime}, \xi} C_{j \pm \frac{1}{2}, m^{\prime} ; \frac{1}{2}, \xi}^{j, \xi}\left|j \pm \frac{1}{2}, m^{\prime}\right\rangle\left|\frac{1}{2}, \xi\right\rangle
$$

as suggested by $[H, \boldsymbol{J}]=0$, with $\boldsymbol{J}=\boldsymbol{L}+\frac{1}{2} \boldsymbol{\sigma}$.

Stone's model

Hamiltonian

$$
H=\frac{1}{2 I} \boldsymbol{L}^{2}-\mu n \cdot \sigma, \quad(\boldsymbol{n}=\mathbf{r} / r) .
$$

basis set: Spinor Spherical Harmonics

$$
\left|j \pm \frac{1}{2}, j m\right\rangle=\sum_{m^{\prime}, \xi} C_{j \pm \frac{1}{2}, m^{\prime} ; \frac{1}{2}, \xi}^{j, \xi}\left|j \pm \frac{1}{2}, m^{\prime}\right\rangle\left|\frac{1}{2}, \xi\right\rangle
$$

as suggested by $[H, \boldsymbol{J}]=0$, with $\boldsymbol{J}=\boldsymbol{L}+\frac{1}{2} \boldsymbol{\sigma}$.
strong coupling:

Stone's model

Hamiltonian

$$
H=\frac{1}{2 I} \boldsymbol{L}^{2}-\mu n \cdot \sigma, \quad(\boldsymbol{n}=\mathbf{r} / r) .
$$

basis set: Spinor Spherical Harmonics

$$
\left|j \pm \frac{1}{2}, j m\right\rangle=\sum_{m^{\prime}, \xi} C_{j \pm \frac{1}{2}, m^{\prime} ; \frac{1}{2}, \xi}^{j, \xi}\left|j \pm \frac{1}{2}, m^{\prime}\right\rangle\left|\frac{1}{2}, \xi\right\rangle
$$

as suggested by $[H, \boldsymbol{J}]=0$, with $\boldsymbol{J}=\boldsymbol{L}+\frac{1}{2} \boldsymbol{\sigma}$.
strong coupling: Large- μ limit

Diagonalisation

Diagonalisation

Use

Diagonalisation

Use

$$
\boldsymbol{n} \cdot \boldsymbol{\sigma}\left|j \pm \frac{1}{2}, j m\right\rangle=-\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Diagonalisation

Use

$$
\boldsymbol{n} \cdot \boldsymbol{\sigma}\left|j \pm \frac{1}{2}, j m\right\rangle=-\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Ground state (large μ)

Diagonalisation

Use

$$
\boldsymbol{n} \cdot \boldsymbol{\sigma}\left|j \pm \frac{1}{2}, j m\right\rangle=-\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Ground state $($ large $\mu) \quad|g\rangle_{-}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle-\left|j-\frac{1}{2}, j m\right\rangle\right)$,

Diagonalisation

Use

$$
\boldsymbol{n} \cdot \boldsymbol{\sigma}\left|j \pm \frac{1}{2}, j m\right\rangle=-\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Ground state $($ large $\mu) \quad|g\rangle_{-}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle-\left|j-\frac{1}{2}, j m\right\rangle\right), \quad(E=-\mu)$

Diagonalisation

Use

$$
n \cdot \boldsymbol{\sigma}\left|j \pm \frac{1}{2}, j m\right\rangle=-\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Ground state $($ large $\mu) \quad|g\rangle_{-}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle-\left|j-\frac{1}{2}, j m\right\rangle\right), \quad(E=-\mu)$

Interpretation of the model
(Stone 1986, Aitchinson 1987)

Diagonalisation

Use

$$
\boldsymbol{n} \cdot \boldsymbol{\sigma}\left|j \pm \frac{1}{2}, j m\right\rangle=-\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Ground state $($ large $\mu) \quad|g\rangle_{-}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle-\left|j-\frac{1}{2}, j m\right\rangle\right), \quad(E=-\mu)$

Interpretation of the model

(Stone 1986, Aitchinson 1987)
Stone's hamiltonian describes a solenoid, which is rotating about its centre of mass where a spin- $\frac{1}{2}$ particle is placed.

Diagonalisation

Use

$$
\boldsymbol{n} \cdot \boldsymbol{\sigma}\left|j \pm \frac{1}{2}, j m\right\rangle=-\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Ground state $($ large $\mu) \quad|g\rangle_{-}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle-\left|j-\frac{1}{2}, j m\right\rangle\right), \quad(E=-\mu)$

Interpretation of the model

(Stone 1986, Aitchinson 1987)
Stone's hamiltonian describes a solenoid, which is rotating about its centre of mass where a spin $-\frac{1}{2}$ particle is placed. Dynamical regimes \rightarrow

Diagonalisation

Use

$$
\boldsymbol{n} \cdot \boldsymbol{\sigma}\left|j \pm \frac{1}{2}, j m\right\rangle=-\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Ground state $($ large $\mu) \quad|g\rangle_{-}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle-\left|j-\frac{1}{2}, j m\right\rangle\right), \quad(E=-\mu)$

Interpretation of the model

(Stone 1986, Aitchinson 1987)
Stone's hamiltonian describes a solenoid, which is rotating about its centre of mass where a spin- $\frac{1}{2}$ particle is placed. Dynamical regimes $\rightarrow \mu$ small: the solenoid and the particle spin independently;

Diagonalisation

Use

$$
\boldsymbol{n} \cdot \boldsymbol{\sigma}\left|j \pm \frac{1}{2}, j m\right\rangle=-\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Ground state $($ large $\mu) \quad|g\rangle_{-}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle-\left|j-\frac{1}{2}, j m\right\rangle\right), \quad(E=-\mu)$

Interpretation of the model

(Stone 1986, Aitchinson 1987)
Stone's hamiltonian describes a solenoid, which is rotating about its centre of mass where a spin- $\frac{1}{2}$ particle is placed. Dynamical regimes $\rightarrow \mu$ small: the solenoid and the particle spin independently; μ large: spin slaved to the direction of the solenoid.

Diagonalisation

Use

$$
\boldsymbol{n} \cdot \boldsymbol{\sigma}\left|j \pm \frac{1}{2}, j m\right\rangle=-\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Ground state $($ large $\mu) \quad|g\rangle_{-}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle-\left|j-\frac{1}{2}, j m\right\rangle\right), \quad(E=-\mu)$

Interpretation of the model

(Stone 1986, Aitchinson 1987)
Stone's hamiltonian describes a solenoid, which is rotating about its centre of mass where a spin- $\frac{1}{2}$ particle is placed. Dynamical regimes $\rightarrow \mu$ small: the solenoid and the particle spin independently; μ large: spin slaved to the direction of the solenoid. Note that \rightarrow

Diagonalisation

Use

$$
\boldsymbol{n} \cdot \boldsymbol{\sigma}\left|j \pm \frac{1}{2}, j m\right\rangle=-\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Ground state $($ large $\mu) \quad|g\rangle_{-}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle-\left|j-\frac{1}{2}, j m\right\rangle\right), \quad(E=-\mu)$

Interpretation of the model

(Stone 1986, Aitchinson 1987)
Stone's hamiltonian describes a solenoid, which is rotating about its centre of mass where a spin- $\frac{1}{2}$ particle is placed. Dynamical regimes $\rightarrow \mu$ small: the solenoid and the particle spin independently; μ large: spin slaved to the direction of the solenoid. Note that \rightarrow This physical picture implies the coupling $B \cdot \sigma$, which is space and time even.

Diagonalisation

Use

$$
\boldsymbol{n} \cdot \boldsymbol{\sigma}\left|j \pm \frac{1}{2}, j m\right\rangle=-\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Ground state (large μ)

$$
|g\rangle_{-}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle-\left|j-\frac{1}{2}, j m\right\rangle\right), \quad(E=-\mu)
$$

Interpretation of the model

(Stone 1986, Aitchinson 1987)
Stone's hamiltonian describes a solenoid, which is rotating about its centre of mass where a spin- $\frac{1}{2}$ particle is placed. Dynamical regimes $\rightarrow \mu$ small: the solenoid and the particle spin independently; μ large: spin slaved to the direction of the solenoid. Note that \rightarrow This physical picture implies the coupling $B \cdot \sigma$, which is space and time even. Such a symmetry should be contrasted with that of $n \cdot \sigma$, which is space and time odd.

Exotic features of the model

Exotic features of the model

It provides a simple quantum-mechanical example in which the Berry phase

Exotic features of the model

It provides a simple quantum-mechanical example in which the Berry phase gives rise to Wess-Zumino terms (Path-integral formulation)

Exotic features of the model

It provides a simple quantum-mechanical example in which the Berry phase gives rise to Wess-Zumino terms (Path-integral formulation). Indeed, for large μ, Stone's Hamiltonian describes the motion of a constrained spin

Exotic features of the model

It provides a simple quantum-mechanical example in which the Berry phase gives rise to Wess-Zumino terms (Path-integral formulation). Indeed, for large μ, Stone's Hamiltonian describes the motion of a constrained spin, which is equivalent to motion of a charged particle about a magnetic monopole (Leinaas 1978).

A different interpretation of Stone's Hamiltonian

A different interpretation of Stone's Hamiltonian

It describes a different effect: site magnetoelectricity.

A different interpretation of Stone's Hamiltonian

It describes a different effect: site magnetoelectricity. Such a phenomenon occurs in crystalline and molecular systems when space-inversion symmetry is locally broken and co-existence of electric and magnetic moments is permitted by the pertinent site point group.

A different interpretation of Stone's Hamiltonian

It describes a different effect: site magnetoelectricity. Such a phenomenon occurs in crystalline and molecular systems when space-inversion symmetry is locally broken and co-existence of electric and magnetic moments is permitted by the pertinent site point group. An effective magnetoelectric interaction between these two moments would be described by Stone's Hamiltonian provided we identify \boldsymbol{n} with a unitary electric-dipole moment. (The electric charge e is merged into μ.)

A different interpretation of Stone's Hamiltonian

It describes a different effect: site magnetoelectricity. Such a phenomenon occurs in crystalline and molecular systems when space-inversion symmetry is locally broken and co-existence of electric and magnetic moments is permitted by the pertinent site point group. An effective magnetoelectric interaction between these two moments would be described by Stone's Hamiltonian provided we identify \boldsymbol{n} with a unitary electric-dipole moment. (The electric charge e is merged into μ.) This new interpretation of the model does not affect its dynamical regimes, which remain those of the rotating solenoid with B replaced by n.

A different interpretation of Stone's Hamiltonian

It describes a different effect: site magnetoelectricity. Such a phenomenon occurs in crystalline and molecular systems when space-inversion symmetry is locally broken and co-existence of electric and magnetic moments is permitted by the pertinent site point group. An effective magnetoelectric interaction between these two moments would be described by Stone's Hamiltonian provided we identify \boldsymbol{n} with a unitary electric-dipole moment. (The electric charge e is merged into μ.) This new interpretation of the model does not affect its dynamical regimes, which remain those of the rotating solenoid with B replaced by n.

Magnetoelectricity is characterised by a local order parameter (to be identified), which is odd under both space inversion and time reversal, being thereby invariant under the combined action of these transolrmation.

A different interpretation of Stone's Hamiltonian

It describes a different effect: site magnetoelectricity. Such a phenomenon occurs in crystalline and molecular systems when space-inversion symmetry is locally broken and co-existence of electric and magnetic moments is permitted by the pertinent site point group. An effective magnetoelectric interaction between these two moments would be described by Stone's Hamiltonian provided we identify \boldsymbol{n} with a unitary electric-dipole moment. (The electric charge e is merged into μ.) This new interpretation of the model does not affect its dynamical regimes, which remain those of the rotating solenoid with B replaced by n.

Magnetoelectricity is characterised by a local order parameter (to be identified), which is odd under both space inversion and time reversal, being thereby invariant under the combined action of these transolrmation.

- Magnetoelectricity of the (large- μ) ground state of Stone's model.

Relevant experimental work

Relevant experimental work

As demonstrated by Goulon and his collaborators (Goulon et al. 2000, 2002), microscopic magnetoelectric behaviour of crystals can be investigated using near-edge absorption of x rays, which implies excitations of inner-shell electrons to empty valence states.

Relevant experimental work

As demonstrated by Goulon and his collaborators (Goulon et al. 2000, 2002), microscopic magnetoelectric behaviour of crystals can be investigated using near-edge absorption of x rays, which implies excitations of inner-shell electrons to empty valence states. As is known, this experimental technique is site selective, a feature resulting from the tuning of x-ray energy at a given inner-shell threshold.

Relevant experimental work

As demonstrated by Goulon and his collaborators (Goulon et al. 2000, 2002), microscopic magnetoelectric behaviour of crystals can be investigated using near-edge absorption of x rays, which implies excitations of inner-shell electrons to empty valence states. As is known, this experimental technique is site selective, a feature resulting from the tuning of x-ray energy at a given inner-shell threshold. Sensitivity to the long-range order of local magnetoelectric order parameters is obtained by recording dichroic signals which stem from an interference between electric-dipole and electric-quadrupole transitions.

Relevant experimental work

As demonstrated by Goulon and his collaborators (Goulon et al. 2000, 2002), microscopic magnetoelectric behaviour of crystals can be investigated using near-edge absorption of x rays, which implies excitations of inner-shell electrons to empty valence states. As is known, this experimental technique is site selective, a feature resulting from the tuning of x-ray energy at a given inner-shell threshold. Sensitivity to the long-range order of local magnetoelectric order parameters is obtained by recording dichroic signals which stem from an interference between electric-dipole and electric-quadrupole transitions. As a consequence, scalars (e.g. $n \cdot \sigma$) are not probed by these experiments, which detect the long-range order of local (on-site) magnetoelectric order parameters represented by one-particle irreducible tensors of rank 1,2 and 3. (E1E2 contributions to the $\boldsymbol{p} \cdot \boldsymbol{A}$ resonant scattering amplitude in the forward direction.)

Order parameters

Order parameters

One set of these order parameters specifically serves our purposes: the magnetic quadrupoles (rank-2 tensors). In the LS-coupling scheme, they read

Order parameters

One set of these order parameters specifically serves our purposes: the magnetic quadrupoles (rank-2 tensors). In the LS-coupling scheme, they read

$$
\mathcal{M}_{L}^{(2)} \equiv[n, L]^{(2)},
$$

Order parameters

One set of these order parameters specifically serves our purposes: the magnetic quadrupoles (rank-2 tensors). In the LS-coupling scheme, they read

$$
\mathcal{M}_{L}^{(2)} \equiv[n, L]^{(2)}, \quad \mathcal{M}_{S}^{(2)} \equiv[n, S]^{(2)},
$$

Order parameters

One set of these order parameters specifically serves our purposes: the magnetic quadrupoles (rank-2 tensors). In the LS-coupling scheme, they read

$$
\begin{aligned}
& \mathcal{M}_{L}^{(2)} \equiv[\boldsymbol{n}, \boldsymbol{L}]^{(2)}, \quad \mathcal{M}_{S}^{(2)} \equiv[\boldsymbol{n}, \boldsymbol{S}]^{(2)}, \\
& \mathcal{M}_{T}^{(2)} \equiv \frac{\sqrt{3}}{\sqrt{2}}\left[i\left[\Omega_{L}, \boldsymbol{L}\right]^{(2)}, \boldsymbol{S}\right]^{(2)},
\end{aligned}
$$

Order parameters

One set of these order parameters specifically serves our purposes: the magnetic quadrupoles (rank-2 tensors). In the LS-coupling scheme, they read

$$
\begin{aligned}
& \mathcal{M}_{L}^{(2)} \equiv[\boldsymbol{n}, \boldsymbol{L}]^{(2)}, \quad \mathcal{M}_{S}^{(2)} \equiv[\boldsymbol{n}, \boldsymbol{S}]^{(2)}, \\
& \mathcal{M}_{T}^{(2)} \equiv \frac{\sqrt{3}}{\sqrt{2}}\left[i\left[\Omega_{L}, \boldsymbol{L}\right]^{(2)}, \boldsymbol{S}\right]^{(2)}, \quad \mathcal{M}_{F}^{(2)} \equiv \frac{\sqrt{35}}{2}\left[\left[\boldsymbol{n}, \mathcal{Q}^{(2)}\right]^{(3)}, \boldsymbol{S}\right]^{(2)}
\end{aligned}
$$

Order parameters

One set of these order parameters specifically serves our purposes: the magnetic quadrupoles (rank-2 tensors). In the LS-coupling scheme, they read

$$
\begin{aligned}
& \mathcal{M}_{L}^{(2)} \equiv[\boldsymbol{n}, \boldsymbol{L}]^{(2)}, \quad \mathcal{M}_{S}^{(2)} \equiv[\boldsymbol{n}, \boldsymbol{S}]^{(2)}, \\
& \mathcal{M}_{T}^{(2)} \equiv \frac{\sqrt{3}}{\sqrt{2}}\left[i\left[\boldsymbol{\Omega}_{L}, \boldsymbol{L}\right]^{(2)}, \boldsymbol{S}\right]^{(2)}, \quad \mathcal{M}_{F}^{(2)} \equiv \frac{\sqrt{35}}{2}\left[\left[\boldsymbol{n}, \mathcal{Q}^{(2)}\right]^{(3)}, \boldsymbol{S}\right]^{(2)}
\end{aligned}
$$

as shown by recent theoretical work on x-ray dichroism and resonant scattering in noncentrosymmetric crystals (Carra et al. 2003, Marri and Carra 2004). ([, $]^{(k)} \rightarrow$ Clebsch-Gordan coupling of irreducible tensors; $S=\frac{1}{2} \sigma$; $\Omega_{L} \equiv \frac{1}{2}(\boldsymbol{n} \times \boldsymbol{L}-\boldsymbol{L} \times \boldsymbol{n})$, orbital anapole; $\mathcal{Q}^{(2)} \equiv[\boldsymbol{L}, \boldsymbol{L}]^{(2)}$, orbital quadrupole.)

More order parameters

More order parameters

A set of vector order parameters will also be considered in connection with Stone's model. Its elements are defined by (Marri and Carra, 2004) in LS coupling.

More order parameters

A set of vector order parameters will also be considered in connection with Stone's model. Its elements are defined by (Marri and Carra, 2004) in LS coupling. These irreducible tensors have polar (electric) symmetry, i.e., they are space odd and time even.

More order parameters

A set of vector order parameters will also be considered in connection with Stone's model. Its elements are defined by (Marri and Carra, 2004) in LS coupling. These irreducible tensors have polar (electric) symmetry, i.e., they are space odd and time even.
n

More order parameters

A set of vector order parameters will also be considered in connection with Stone's model. Its elements are defined by (Marri and Carra, 2004) in LS coupling. These irreducible tensors have polar (electric) symmetry, i.e., they are space odd and time even.

$$
n, \quad P_{S} \equiv \Omega_{L} \times S,
$$

More order parameters

A set of vector order parameters will also be considered in connection with Stone's model. Its elements are defined by (Marri and Carra, 2004) in LS coupling. These irreducible tensors have polar (electric) symmetry, i.e., they are space odd and time even.

$$
n, \quad P_{S} \equiv \Omega_{L} \times S, \quad P_{T} \equiv-\frac{2 \sqrt{5}}{\sqrt{3}}\left[[n, L]^{(2)}, S\right]^{(1)}
$$

More order parameters

A set of vector order parameters will also be considered in connection with Stone's model. Its elements are defined by (Marri and Carra, 2004) in LS coupling. These irreducible tensors have polar (electric) symmetry, i.e., they are space odd and time even.

$$
n, \quad P_{S} \equiv \Omega_{L} \times S, \quad P_{T} \equiv-\frac{2 \sqrt{5}}{\sqrt{3}}\left[[\boldsymbol{n}, L]^{(2)}, S\right]^{(1)}
$$

More order parameters

A set of vector order parameters will also be considered in connection with Stone's model. Its elements are defined by (Marri and Carra, 2004) in LS coupling. These irreducible tensors have polar (electric) symmetry, i.e., they are space odd and time even.

$$
n, \quad P_{S} \equiv \Omega_{L} \times S, \quad \boldsymbol{P}_{T} \equiv-\frac{2 \sqrt{5}}{\sqrt{3}}\left[[\boldsymbol{n}, L]^{(2)}, \boldsymbol{S}\right]^{(1)}
$$

[Order parameters: definition (2nd quant.)

$$
\left(\boldsymbol{O}_{L}^{(k)}\right)_{q}=\sum_{\substack{l, l^{\prime}= \pm \pm 1 \\ m, m^{\prime}, \sigma, \sigma^{\prime}}} \frac{1}{2}\left[\left\langle\sigma^{\prime}\right|\left\langle l^{\prime} m^{\prime}\right|\left(\boldsymbol{O}_{L}^{(k)}\right)_{q}|l m\rangle|\sigma\rangle c_{l^{\prime} m^{\prime} \sigma^{\prime}}^{\dagger} c_{l m \sigma}+\text { c.c. }\right],
$$

More order parameters

A set of vector order parameters will also be considered in connection with Stone's model. Its elements are defined by (Marri and Carra, 2004) in LS coupling. These irreducible tensors have polar (electric) symmetry, i.e., they are space odd and time even.

$$
n, \quad P_{S} \equiv \Omega_{L} \times S, \quad \boldsymbol{P}_{T} \equiv-\frac{2 \sqrt{5}}{\sqrt{3}}\left[[\boldsymbol{n}, L]^{(2)}, \boldsymbol{S}\right]^{(1)}
$$

[Order parameters: definition (2nd quant.)

$$
\left(\boldsymbol{O}_{L}^{(k)}\right)_{q}=\sum_{\substack{l, l^{\prime} l \pm 1 \\ m, m^{\prime}, \sigma, \sigma^{\prime}}} \frac{1}{2}\left[\left\langle\sigma^{\prime}\right|\left\langle l^{\prime} m^{\prime}\right|\left(\boldsymbol{O}_{L}^{(k)}\right)_{q}|l m\rangle|\sigma\rangle c_{l^{\prime} m^{\prime} \sigma^{\prime}}^{\dagger} c_{l m \sigma}+\text { c.c. }\right],
$$

with $c_{l m \sigma}^{\dagger}$ and $c_{l m \sigma}$ fermionic operators.]

A canonical transformation

A canonical transformation

Magnetoelectric properties of Stone's Hamiltonian in the large μ limit.

A canonical transformation

Magnetoelectric properties of Stone's Hamiltonian in the large μ limit. For this purpose: show that the symmetry property of the scalar $n \cdot \sigma$, when acting on the spinor spherical harmonics, extends to irreducible tensors (local order parameters) of higher rank \Rightarrow magnetoelectric behaviour of $|g\rangle_{-}$readily inferred.

A canonical transformation

Magnetoelectric properties of Stone's Hamiltonian in the large μ limit. For this purpose: show that the symmetry property of the scalar $n \cdot \sigma$, when acting on the spinor spherical harmonics, extends to irreducible tensors (local order parameters) of higher rank \Rightarrow magnetoelectric behaviour of $|g\rangle_{-}$readily inferred.

The basis set $\left|j \pm \frac{1}{2}, j m\right\rangle$ provides a convenient framework for describing parity-breaking electron hybridisation (e.g. pd mixing in transition-metal oxides), in the jj coupling scheme. $(\boldsymbol{n} \cdot \boldsymbol{\sigma} / 2=\boldsymbol{n} \cdot \boldsymbol{J}$, as $\boldsymbol{n} \cdot \boldsymbol{L}=0$.)

A canonical transformation

Magnetoelectric properties of Stone's Hamiltonian in the large μ limit. For this purpose: show that the symmetry property of the scalar $n \cdot \sigma$, when acting on the spinor spherical harmonics, extends to irreducible tensors (local order parameters) of higher rank \Rightarrow magnetoelectric behaviour of $|g\rangle_{-}$readily inferred.

The basis set $\left|j \pm \frac{1}{2}, j m\right\rangle$ provides a convenient framework for describing parity-breaking electron hybridisation (e.g. pd mixing in transition-metal oxides), in the jj coupling scheme. $(\boldsymbol{n} \cdot \boldsymbol{\sigma} / 2=\boldsymbol{n} \cdot \boldsymbol{J}$, as $\boldsymbol{n} \cdot \boldsymbol{L}=0$.)

- Determine form of order parameters in jJ coupling

A canonical transformation

Magnetoelectric properties of Stone's Hamiltonian in the large μ limit. For this purpose: show that the symmetry property of the scalar $n \cdot \sigma$, when acting on the spinor spherical harmonics, extends to irreducible tensors (local order parameters) of higher rank \Rightarrow magnetoelectric behaviour of $|g\rangle_{-}$readily inferred.

The basis set $\left|j \pm \frac{1}{2}, j m\right\rangle$ provides a convenient framework for describing parity-breaking electron hybridisation (e.g. pd mixing in transition-metal oxides), in the jj coupling scheme. $(\boldsymbol{n} \cdot \boldsymbol{\sigma} / 2=\boldsymbol{n} \cdot \boldsymbol{J}$, as $\boldsymbol{n} \cdot \boldsymbol{L}=0$.)

- Determine form of order parameters in jj coupling
- LS \rightarrow jj transformations (Edmonds 1974)

Unit tensors

Unit tensors

Coupled double Tensors (Judd, 1967)

$$
\begin{equation*}
w_{\zeta}^{(x y) z}\left(l^{\prime}, l\right)=\sum_{\xi, \eta, \lambda, \lambda^{\prime}, \sigma, \sigma^{\prime}} C_{x \xi ; y \eta}^{z \zeta} C_{\frac{1}{2} \sigma^{\prime} ; \frac{1}{2} \sigma}^{y \eta} C_{l \lambda^{\prime} ; l \lambda}^{x \xi} \lambda_{l^{\prime} \lambda^{\prime} \sigma^{\prime}}^{\dagger} \tilde{c}_{l \lambda \sigma}+\text { h.c. }, \tag{LS}
\end{equation*}
$$

Unit tensors

Coupled double Tensors (Judd, 1967)

$$
\begin{equation*}
w_{\zeta}^{(x y) z}\left(l^{\prime}, l\right)=\sum_{\xi, \eta, \lambda, \lambda^{\prime}, \sigma, \sigma^{\prime}} C_{x \xi ; y \eta}^{z \zeta} C_{\frac{1}{2} \sigma^{\prime} ; \frac{1}{2} \sigma}^{y \eta} C_{l^{\prime} \lambda^{\prime} ; l \lambda}^{x \xi} c_{l^{\prime} \lambda^{\prime} \sigma^{\prime}}^{\dagger} \tilde{c}_{l \lambda \sigma}+\text { h.c. }, \tag{LS}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{\zeta}^{\left(j^{\prime} j\right) z}\left(l^{\prime}, l\right)=\sum_{m, m^{\prime}} C_{j^{\prime} m^{\prime} ; j m}^{z \zeta} c_{l^{\prime}, j^{\prime} m^{\prime}}^{\dagger} \tilde{c}_{l, j m}+\text { h.c. } \tag{jj}
\end{equation*}
$$

Unit tensors

Coupled double Tensors (Judd, 1967)

$$
\begin{equation*}
w_{\zeta}^{(x y) z}\left(l^{\prime}, l\right)=\sum_{\xi, \eta, \lambda, \lambda^{\prime}, \sigma, \sigma^{\prime}} C_{x \xi ; y \eta}^{z \zeta} C_{\frac{1}{2} \sigma^{\prime} ; \frac{1}{2} \sigma}^{y \eta} C_{l^{\prime} \lambda^{\prime} ; l \lambda}^{x \xi} c_{l^{\prime} \lambda^{\prime} \sigma^{\prime}}^{\dagger} \tilde{c}_{l \lambda \sigma}+\text { h.c. }, \tag{LS}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{\zeta}^{\left(j^{\prime} j\right) z}\left(l^{\prime}, l\right)=\sum_{m, m^{\prime}} C_{j^{\prime} m^{\prime} ; j m}^{z \zeta} c_{l^{\prime}, j^{\prime} m^{\prime}}^{\dagger} \tilde{c}_{l, j m}+\text { h.c. } \tag{jj}
\end{equation*}
$$

where $\tilde{c}_{l \lambda \sigma}=(-1)^{l-\lambda+\frac{1}{2}-\sigma} c_{l-\lambda-\sigma}$ and $\tilde{c}_{l, j m}=(-1)^{j-m} c_{l, j-m}$ (irreducibility).

Unit tensors (cont'd)

Unit tensors (cont'd)

Importance of unit tensors: LS and jj order parameters can be expressed as multiples of them (Wigner-Eckart theorem);

Unit tensors (cont'd)

Importance of unit tensors: LS and jj order parameters can be expressed as multiples of them (Wigner-Eckart theorem); e.g.

$$
w^{(20) 2}\left(l^{\prime}, l\right)=-\frac{\sqrt{2}}{\sqrt{l(l+1)} C_{l 0 ; 10}^{l^{\prime} 0}\left\{\begin{array}{cc}
1 & 1 \\
l^{\prime} & 1 \\
l
\end{array}\right\}} \mathcal{M}_{L}^{(2)}\left(l^{\prime}, l\right) .
$$

Unit tensors (cont'd)

Importance of unit tensors: LS and jj order parameters can be expressed as multiples of them (Wigner-Eckart theorem); e.g.

$$
w^{(20) 2}\left(l^{\prime}, l\right)=-\frac{\sqrt{2}}{\sqrt{l(l+1)} C_{l 0 ; 10}^{l^{\prime} 0}\left\{\begin{array}{cc}
1 & 1 \\
l^{\prime} & 1 \\
l
\end{array}\right\}} \mathcal{M}_{L}^{(2)}\left(l^{\prime}, l\right) .
$$

LS $\rightarrow \mathrm{j}$ transformation

$$
w^{(x y) z}\left(l^{\prime}, l\right)=\sum_{j, j^{\prime}}(-1)^{x+y+z}\left[x, y, j, j^{\prime}\right]^{\frac{1}{2}}\left\{\begin{array}{ccc}
l & l^{\prime} & x \\
\frac{1}{2} & \frac{1}{2} & y \\
j & j^{\prime} & z
\end{array}\right\} v^{\left(j^{\prime} j\right) z}\left(l^{\prime}, l\right),
$$

Unit tensors (cont'd)

Importance of unit tensors: LS and jj order parameters can be expressed as multiples of them (Wigner-Eckart theorem); e.g.

$$
w^{(20) 2}\left(l^{\prime}, l\right)=-\frac{\sqrt{2}}{\sqrt{l(l+1)} C_{l 0 ; 10}^{l^{\prime} 0}\left\{\begin{array}{cc}
1 & 1 \\
l^{\prime} & 1 \\
l
\end{array}\right\}} \mathcal{M}_{L}^{(2)}\left(l^{\prime}, l\right) .
$$

LS $\rightarrow \mathrm{j}$ transformation

$$
w^{(x y) z}\left(l^{\prime}, l\right)=\sum_{j, j^{\prime}}(-1)^{x+y+z}\left[x, y, j, j^{\prime}\right]^{\frac{1}{2}}\left\{\begin{array}{ccc}
l & l^{\prime} & x \\
\frac{1}{2} & \frac{1}{2} & y \\
j & j^{\prime} & z
\end{array}\right\} v^{\left(j^{\prime} j\right) z}\left(l^{\prime}, l\right),
$$

with $[a, \ldots, b]=(2 a+1) \cdots(2 b+1)$.

Equations

Equations

- jj Magnetic quadrupole:

Equations

- jj Magnetic quadrupole:

System of four equations. Solve for $j^{\prime}=j$ and $l^{\prime}=l \pm 1$

Equations

- jj Magnetic quadrupole:

System of four equations. Solve for $j^{\prime}=j$ and $l^{\prime}=l \pm 1$

$$
\begin{aligned}
& \widetilde{\mathcal{M}}_{J}^{(2)}\left(l^{\prime}, l\right)=\frac{1}{5}\left(\frac{l+l^{\prime}-1}{2}\right)\left(\frac{l+l^{\prime}+3}{2}\right) \mathcal{M}_{S}^{(2)}\left(l^{\prime}, l\right)+\frac{2}{3} \mathcal{M}_{T}^{(2)}\left(l^{\prime}, l\right) \\
& +\frac{1}{5} \mathcal{M}_{F}^{(2)}\left(l^{\prime}, l\right)-\frac{1}{2} \mathcal{M}_{L}^{(2)}\left(l^{\prime}, l\right) \\
& =-\frac{3}{2}(2 l+1)\left(2 l^{\prime}+1\right)\left\{[\boldsymbol{n}, \boldsymbol{J}]^{\left(l^{\prime}+\frac{1}{2}, l-\frac{1}{2}\right) 2} \delta_{l^{\prime}, l-1}+[\boldsymbol{n}, \boldsymbol{J}]^{\left(l^{\prime}-\frac{1}{2}, l+\frac{1}{2}\right) 2} \delta_{l^{\prime}, l+1}\right\} .
\end{aligned}
$$

Equations (cont'd)

Equations (cont'd)

- jj Electric dipole:

Equations (cont'd)

- jj Electric dipole:

System of three equations. Solve for $j^{\prime}=j$ and $l^{\prime}=l \pm 1$

Equations (cont'd)

- jj Electric dipole:

System of three equations. Solve for $j^{\prime}=j$ and $l^{\prime}=l \pm 1$

$$
\begin{aligned}
& \widetilde{\boldsymbol{P}}_{J}\left(l^{\prime}, l\right)=n\left(l^{\prime}, l\right)+P_{S}\left(l^{\prime}, l\right)-2 \boldsymbol{P}_{T}\left(l^{\prime}, l\right) \\
& =-\frac{3\left(l+l^{\prime}+1\right)}{2}\left[n_{J}^{l^{\prime}+\frac{1}{2}, l-\frac{1}{2}} \delta_{l^{\prime}, l-1}+\boldsymbol{n}_{J}^{l^{\prime}-\frac{1}{2}, l+\frac{1}{2}} \delta_{l^{\prime}, l+1}\right]
\end{aligned}
$$

Magnetoelectricity of Stone's model (large μ)

Magnetoelectricity of Stone's model (large μ)

After some algebra, we find

$$
\sum_{l, l^{\prime}=l \pm 1} \widetilde{\mathcal{M}}_{J}^{(2)}\left(l^{\prime}, l\right)_{z}\left|j \pm \frac{1}{2}, j m\right\rangle=-\frac{3 m^{2}-j(j+1)}{\sqrt{6}}\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Magnetoelectricity of Stone's model (large μ)

After some algebra, we find

$$
\sum_{l, l^{\prime}=l \pm 1} \widetilde{\mathcal{M}}_{J}^{(2)}\left(l^{\prime}, l\right)_{z}\left|j \pm \frac{1}{2}, j m\right\rangle=-\frac{3 m^{2}-j(j+1)}{\sqrt{6}}\left|j \mp \frac{1}{2}, j m\right\rangle
$$

showing that $|g\rangle_{-}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle-\left|j-\frac{1}{2}, j m\right\rangle\right)$ is an eigenstate of the jj-coupled magnetic quadrupole operator;

Magnetoelectricity of Stone's model (large μ)

After some algebra, we find

$$
\sum_{l, l^{\prime}=l \pm 1} \widetilde{\mathcal{M}}_{J}^{(2)}\left(l^{\prime}, l\right)_{z}\left|j \pm \frac{1}{2}, j m\right\rangle=-\frac{3 m^{2}-j(j+1)}{\sqrt{6}}\left|j \mp \frac{1}{2}, j m\right\rangle
$$

showing that $|g\rangle_{-}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle-\left|j-\frac{1}{2}, j m\right\rangle\right)$ is an eigenstate of the jj-coupled magnetic quadrupole operator; in other words, the large- μ ground state of Stone's Hamiltonian is magnetoelectric.

Magnetoelectricity of Stone's model (large μ)

After some algebra, we find

$$
\sum_{l, l^{\prime}=l \pm 1} \widetilde{\mathcal{M}}_{J}^{(2)}\left(l^{\prime}, l\right)_{z}\left|j \pm \frac{1}{2}, j m\right\rangle=-\frac{3 m^{2}-j(j+1)}{\sqrt{6}}\left|j \mp \frac{1}{2}, j m\right\rangle
$$

showing that $|g\rangle_{-}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle-\left|j-\frac{1}{2}, j m\right\rangle\right)$ is an eigenstate of the jj-coupled magnetic quadrupole operator; in other words, the large- μ ground state of Stone's Hamiltonian is magnetoelectric.

Our conclusion is further supported by what follows.

Consider the jj electric dipole.

Consider the jj electric dipole. We have

$$
\sum_{l, l^{\prime}=l \pm 1} \widetilde{\boldsymbol{P}}_{J}\left(l^{\prime}, l\right)_{0}\left|j \pm \frac{1}{2}, j m\right\rangle=-m\left|j \mp \frac{1}{2}, j m\right\rangle
$$

Consider the jj electric dipole. We have

$$
\sum_{l, l^{\prime}=l \pm 1} \widetilde{\boldsymbol{P}}_{J}\left(l^{\prime}, l\right)_{0}\left|j \pm \frac{1}{2}, j m\right\rangle=-m\left|j \mp \frac{1}{2}, j m\right\rangle
$$

$|g\rangle_{-}$is thus characterised by the simultaneous presence of an electric and a magnetic moment in a parallel (as expected) configuration.

Consider the jj electric dipole. We have

$$
\sum_{l, l^{\prime}=l \pm 1} \widetilde{\boldsymbol{P}}_{J}\left(l^{\prime}, l\right)_{0}\left|j \pm \frac{1}{2}, j m\right\rangle=-m\left|j \mp \frac{1}{2}, j m\right\rangle
$$

$|g\rangle_{-}$is thus characterised by the simultaneous presence of an electric and a magnetic moment in a parallel (as expected) configuration. [Reversing the sign of the coupling constant in Stone's model ($\mu \rightarrow-\mu$, large μ) would change the ground state to $|g\rangle_{+}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle+\left|j-\frac{1}{2}, j m\right\rangle\right)$, which is characterised by an antiparallel alignement of the moments and by a magnetic quadrupole with opposite sign.]

Consider the jj electric dipole. We have

$$
\sum_{l, l^{\prime}=l \pm 1} \widetilde{\boldsymbol{P}}_{J}\left(l^{\prime}, l\right)_{0}\left|j \pm \frac{1}{2}, j m\right\rangle=-m\left|j \mp \frac{1}{2}, j m\right\rangle,
$$

$|g\rangle_{-}$is thus characterised by the simultaneous presence of an electric and a magnetic moment in a parallel (as expected) configuration. [Reversing the sign of the coupling constant in Stone's model ($\mu \rightarrow-\mu$, large μ) would change the ground state to $|g\rangle_{+}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle+\left|j-\frac{1}{2}, j m\right\rangle\right)$, which is characterised by an antiparallel alignement of the moments and by a magnetic quadrupole with opposite sign.]

Standard Relations

Consider the jj electric dipole. We have

$$
\sum_{l, l^{\prime}=l \pm 1} \widetilde{\boldsymbol{P}}_{J}\left(l^{\prime}, l\right)_{0}\left|j \pm \frac{1}{2}, j m\right\rangle=-m\left|j \mp \frac{1}{2}, j m\right\rangle,
$$

$|g\rangle_{-}$is thus characterised by the simultaneous presence of an electric and a magnetic moment in a parallel (as expected) configuration. [Reversing the sign of the coupling constant in Stone's model ($\mu \rightarrow-\mu$, large μ) would change the ground state to $|g\rangle_{+}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle+\left|j-\frac{1}{2}, j m\right\rangle\right)$, which is characterised by an antiparallel alignement of the moments and by a magnetic quadrupole with opposite sign.]

Standard Relations

$$
J_{z}|j m\rangle=m|j m\rangle, \quad[J, J]_{z}^{(2)}|j m\rangle=\frac{3 m^{2}-j(j+1)}{\sqrt{6}}|j m\rangle
$$

Consider the jj electric dipole. We have

$$
\sum_{l, l^{\prime}=l \pm 1} \widetilde{\boldsymbol{P}}_{J}\left(l^{\prime}, l\right)_{0}\left|j \pm \frac{1}{2}, j m\right\rangle=-m\left|j \mp \frac{1}{2}, j m\right\rangle
$$

$|g\rangle_{-}$is thus characterised by the simultaneous presence of an electric and a magnetic moment in a parallel (as expected) configuration. [Reversing the sign of the coupling constant in Stone's model $(\mu \rightarrow-\mu$, large μ) would change the ground state to $|g\rangle_{+}=\frac{1}{\sqrt{2}}\left(\left|j+\frac{1}{2}, j m\right\rangle+\left|j-\frac{1}{2}, j m\right\rangle\right)$, which is characterised by an antiparallel alignement of the moments and by a magnetic quadrupole with opposite sign.]

Standard Relations

$$
J_{z}|j m\rangle=m|j m\rangle, \quad[\boldsymbol{J}, \boldsymbol{J}]_{z}^{(2)}|j m\rangle=\frac{3 m^{2}-j(j+1)}{\sqrt{6}}|j m\rangle
$$

Symmetry: Rotation group - SU(n)

Conclusions

Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a problem of a magnetic moment constrained by an electric field.

Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a problem of a magnetic moment constrained by an electric field. In turn, this is equivalent to the problem of a charged particle moving in the field of a magnetic monopole, both classically and quantum mechanically (Leinaas 1978).

Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a problem of a magnetic moment constrained by an electric field. In turn, this is equivalent to the problem of a charged particle moving in the field of a magnetic monopole, both classically and quantum mechanically (Leinaas 1978). This seems to tally with recent work on magnetic monopoles in crystal momentum space [Fang et al., Science, 302, 92 (2003)].

Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a problem of a magnetic moment constrained by an electric field. In turn, this is equivalent to the problem of a charged particle moving in the field of a magnetic monopole, both classically and quantum mechanically (Leinaas 1978). This seems to tally with recent work on magnetic monopoles in crystal momentum space [Fang et al., Science, 302, 92 (2003)].

According to our findings, Stone's model provides a good starting point in the study of interactions between (local) electric and magnetic moments in crystals.

Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a problem of a magnetic moment constrained by an electric field. In turn, this is equivalent to the problem of a charged particle moving in the field of a magnetic monopole, both classically and quantum mechanically (Leinaas 1978). This seems to tally with recent work on magnetic monopoles in crystal momentum space [Fang et al., Science, 302, 92 (2003)].

According to our findings, Stone's model provides a good starting point in the study of interactions between (local) electric and magnetic moments in crystals. For this purpose, an extension of the model to a lattice of sites is now needed.

Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a problem of a magnetic moment constrained by an electric field. In turn, this is equivalent to the problem of a charged particle moving in the field of a magnetic monopole, both classically and quantum mechanically (Leinaas 1978). This seems to tally with recent work on magnetic monopoles in crystal momentum space [Fang et al., Science, 302, 92 (2003)].

According to our findings, Stone's model provides a good starting point in the study of interactions between (local) electric and magnetic moments in crystals. For this purpose, an extension of the model to a lattice of sites is now needed. Such a model, characterised by an order parameter which violates space inversion and time reversal,

Conclusions

In the strong coupling limit, the magnetoelectric interaction can be viewed as a problem of a magnetic moment constrained by an electric field. In turn, this is equivalent to the problem of a charged particle moving in the field of a magnetic monopole, both classically and quantum mechanically (Leinaas 1978). This seems to tally with recent work on magnetic monopoles in crystal momentum space [Fang et al., Science, 302, 92 (2003)].

According to our findings, Stone's model provides a good starting point in the study of interactions between (local) electric and magnetic moments in crystals. For this purpose, an extension of the model to a lattice of sites is now needed. Such a model, characterised by an order parameter which violates space inversion and time reversal, could be relevant in the analysis of electronic properties of transition-metal oxides.

References

Carra P, 2004 J. Phys. A: Math. Gen. 37, L183
Carra P, Jerez A and Marri I 2003 Phys. Rev. B 67045111
Goulon J Rogalev A Wilhelm F Goulon-Ginet C Benayoum G Paolasini L Brouder C Malgrange C and Metcalf P A 2000 Phys. Rev. Lett. 854385
Goulon J, Rogalev A, Wilhelm F, Goulon-Ginet C, Carra P, Cabaret D and Brouder C 2002 Phys. Rev. Lett. 88, 237401
Marri I and Carra P 2004 Phys. Rev. B 69, 113101

