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Nodal direction

Spin fluctuations or phonons?



A simple theory – fermions coupled to  a bosonic mode

What should we expect?
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Normal state

The self-energy The dispersion

• the dispersion has an S-shape
• an S-shape can be eliminated by a  large damping
• a large damping also reduces mass renormalization



Superconducting state

The self-energy

• the S-shape dispersion is even stronger
• high energy dispersion interpolates to k outside the Fermi surface

The dispersion
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Experiment

Sato et al, 2003 



Nodal 
direction

a crossover
(a smooth “kink”)
in the normal state 

some sharpening,
but still rather smooth

“kink” in the 
superconducting

state 

It doesn’t look like a mode



Antinodal   
direction

A crossover
(a smooth “kink”)
in the normal state 

The sharp, S-shape
dispersion in the
superconducting

state   

This looks like the effect of a mode,
but not completely

High energy dispersion 
interpolates  to k inside         
Fermi surface



Sato et al, 2003

TcTc

TcTc

S-shape dispersion
is correlated with 

T_c
(more accurately,

with T*)



Theory: what are the options

Bosonic mode is independent on electrons (phonons)

• one needs two different phonon modes (buckling and breathing)
• the coupling constant for the nodal direction must be small 0.3 =λ

(Devereaux et al)

One needs some other mode to account for a
large mass renormalization along the nodal direction

Bosonic mode is a collective mode of electrons (spin fluctuations)

“Mass media”:  spin fluctuations == spin resonance
(and as such, they are not that different from phonons) 

Actually, spin fluctuations are more complex





Collective spin fluctuations
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In the normal state, spin fluctuations
with momenta near              are 
Landau damped

) ,( ππ

(0,π)

(π,0) (π,π)

Q
h.s.

In the superconducting
state spin damping is generally
reduced due to gap opening,
and spin fluctuations with 
momenta near               become
sharp modes ( spin waves)  
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Normal state
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flattens

a bare
dispersion

a smooth crossover in the      
fermionic dispersion 



Superconducting state

1.  antinodal region
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Keimer et al,   Bi2212



Feedback on antinodal fermions
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Antinodal self-energy Antinodal dispersion
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S – shape dispersion!

Interpolates to k inside Fermi surface



Superconducting state

2.  nodal direction

regions  antinodal and nodal  
between   is scatteringmain   The
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Nodal self-energy Nodal dispersion
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Superconducting state

Nodal  dispersion

kink



Normal state

a bare
dispersion

Superconducting state, nodal direction



Real part of the self-energy, extracted from ARPES data

P.D. Johnson et al



The doping dependence

1. S-shape along antinode should increase with underdoping
The susceptibility at           increases) ,( ππ

2. Nodal direction, low frequencies
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nodal velocity is weakly doping independent
(Dessau, Shen)

2. Nodal direction, high frequencies
Mott (or SDW) physics
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Coupling vs doping (nodal direction)

overdopedunderdoped



Conclusions

Dispersion anomalies in the cuprates can be
explained by the interaction with spin fluctuations

Normal state: 
• overdamped spin fluctuations
• a smooth crossover in the dispersion

Superconducting state:

• Antinodal fermions  couple to spin resonance

• Nodal fermions do not couple to spin resonance
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