Strong Correlations and ARPES: Recent Progress in Theory and Experiment Dresden, April 4-8, 2005

## Understanding thermodynamic and transport properties of underdoped cuprates from ARPES data

A. Fujimori University of Tokyo

- T. Yoshida (U. of Tokyo)
- X.-J. Zhou, Z.-X. Shen (Stanford U.)
- Z. Hussain (ALS)
- T. Kakeshita, S. Uchida (U. of Tokyo)
- H. Eisaki (AIST)
- S. Komiya, Y. Ando (CRIEPI)

Discussion: H. Fukuyama (Tohoku U.) Y. Yanase, M. Ogata (U. of Tokyo)



## Outline

- Introduction
  - Conventional Fermi liquids
- Pseudogap and Fermi arc
- Thermodynamic properties
  - Electronic specific heats
- Transport properties
  - Doping dependence
  - Impurity effects
- Conclusion

## Normal Fermi-liquid systems SrVO<sub>3</sub> and Ca<sub>1-x</sub>Sr<sub>x</sub>VO<sub>3</sub>









I. H. Inoue et al., PRL '02

## Mass renormalization in ARPES spectra of SrVO<sub>3</sub>



### ARPES spectra and transport of 2D free electrons on Si $\sqrt{3}\times\sqrt{3}$ -Ag



T. Hirahara, I. Matsuda, M. Ueno, S. Hasegawa, Surf. Sci. '04 PRB, in press

### Phase diagram of high- $T_C$ cuprates

La2-xSrxCuO4



## Phase diagram, Fermi surface and d-wave gap/pseudogap in high- $T_C$ cuprates



Band structure and Fermi surface:  $E(\mathbf{k}) = -2t(\cos k_x a + \cos k_y a)$  $- 4t'\cos k_x a \cos k_y a - 2t''(\cos 2k_x a + \cos 2k_y a)$ 

#### Peudogap and Fermi arc in La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4</sub>



# Quasi-particle forming the Fermi arc in the nodal region



Fermi velocity of nodal QP is doping-independent ! X.J. Zhou et al., Nature '03

### Peudogap and Fermi arc in La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4</sub>



### Peudogap in the anti-nodal region



Tight binding fit

## "Remnant" Fermi-surface crossing in lightlydoped La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4</sub>

La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4</sub> x=0.03



### Fermi surface, "remnant" Fermi surface





Tight binding fit:  $E(\mathbf{k}) = -2t(\cos k_x a + \cos k_y a)$ -  $4t'\cos k_x a \cos k_y a - 2t''(\cos 2k_x a + \cos 2k_y a)$ 

— Tight-binding fit

Intensity peak in k-space

## Pseudogap behaviors of La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4</sub>



### **Density of QPs and electronic specific heats**



γ: N. Momono et al., Physica C '94

# Unusual metallic transport in lightly-doped cuprates



Y. Ando et al. PRL '01

## Mean-free path, Fermi velocity and scattering rate from ARPES data



T. Yoshida et al., PRL '03

# Doping and momentum dependence of MDC width

Mean free path  $l = 1/\Delta k$ 



### **Boltzmann transport**



$$\sigma \propto e^2 \int_{\rm FS} \tau v_x \cos \theta dS$$
  
=  $ne^2 \langle 2\tau v_{\rm F} \cos^2 \theta / k_{\rm F} \rangle_{\rm FS}$   
=  $ne^2 \langle 2l \cos^2 \theta / k_{\rm F} \rangle_{\rm FS}$   
=  $ne^2 \langle 2\cos^2 \theta / k_{\rm F} \Delta k \rangle_{\rm FS}$ 

$$\Delta k = 1/l$$

#### **Boltzmann transport**



- $1/\tau_{ARPES} > 1/\tau_{tr}$ • surface defects ?
- surface defects  $k_z$  dispersion ?

## Summary

- Thermodynamics
  - Density of QPs extracted from ARPES is compared with electronic specific heats.
  - Psuedogap removes part of QPs from  $E_{\rm F}$ .
- Transport
  - ARPES MDC width is compared with DC resistivity (using Boltzmann theory).
  - Pseudogap removes part of charge carriers.
  - ARPES MDC width is generally larger than that expected from transport.
  - ARPES MDC width is consistent with residual resistivity due to Zn impurities.