Symmetry analysis of ARPES and EELS: probing the standard model of HTSC

R. Hayn

part A: Polarization dependent ARPES of Sr₂CuO₂Cl₂

H. Rosner¹, V. Yushankhai², H. Eschrig¹, S. Haffner¹, C. Dürr¹, M. Knupfer¹, M.S. Golden¹, J. Fink¹

part B: EELS of Sr₂CuO₂Cl₂ and Sr₂CuO₃

A. Moskvin³, S.-L. Drechsler², J. Malek⁴, R. Neudert¹, M. Knupfer¹, J. Fink¹

¹ IFW Dresden, ² JINR Dubna, ³ University Ekaterinburg, ⁴ IOP Prag

mirror planes

FIG. 5. LDA+U band structure: (a) minority spin (\uparrow); (b) majority spin (\downarrow).

group theory

point (π,π) (group D_{4h})

orbitals	representation	M_1
$d_{3z^2-r^2}$ \widetilde{p}_{σ}	A_{1g}	+
p_{π}	A_{2g}	—
$d_{x^2-y^2}$ p_{σ}	B_{1g}	_
$d_{_{XY}}$ $\widetilde{p}_{_{\pi}}$	B_{2g}	+
$d_{(x,y)z} p_z$	E_{g}	0
Ô	© ®	
• ⊕∞⊃	• • •	
pσ	$ ilde{p}_{\sigma}$	
⊙⊙⊕	⊕∞⊙	
• ⊕ <i>p</i> π	\tilde{p}_{π}	

Assignement

Comparison

point (π,π)

orbitals	LDA + U	Exp.	orbitals	LDA
$\left(p_{\sigma}d_{x^2-y^2}^{\downarrow}\right)(ZRS)$	0.65	-1.2	$\left(d_{x^2-y^2}p_{\sigma}\right)$	2.32
p_{π}	-2.43	-2.4	$\left(d_{xy}\widetilde{p}_{\pi}\right)$	-1.33
$\left(p_{z}d_{(x,y)z}\right)$	-2.98	-2.7	$\left(d_{(x,y)z}p_{z}\right)$	-1.58
$\left(\widetilde{p}_{\pi}d_{xy}\right)$	-3.35	-2.7	$\left(d_{3z^2-r^2}\widetilde{p}_{\sigma}\right)$	-1.87
$\left(p_{\sigma}d_{x^2-y^2}^{\uparrow}\right)(ZRT)$	- 4.94	-3.8	p_{π}	-2.12
$\left(d_{((x,y)z)}p_{z}\right)$	-6.62	- 5.8		

Zhang-Rice singlet dispersion

t t' t'' J model with ab-initio like parameters

life time – phonons : Rösch/Gunnarson Sawatzky, Shen

perpendicular polarization

no peak with parallel polarization

Assignment of <u>all</u> peaks by LDA+U (LDA does not work)

- First electron removal state of main valence band at (π,π) is p_{π} orbital (confirms Pothuizen et al)
- **ZRS** is best visible at $(\pi/2,\pi/2)$ and has lower binding energy

$$E_{lectron} E_{nergy} L_{loss} S_{pectroscopy}$$

$$I \propto \frac{1}{q^2} \left| \left\langle \psi_{exc} \left| e^{i\vec{q}\vec{r}} \right| \psi_{GS} \right\rangle \right|^2 \propto \frac{1}{q^2} \left| \left\langle \psi_{exc} \left| \vec{q}\vec{r} \right| \psi_{GS} \right\rangle \right|^2$$

dipole matrix element

EELS of Sr₂CuO₂Cl₂

optical conductivity (Choi et al)

large exciton dispersion in the standard model

$$|e_{u}(x)\rangle = \cos \alpha |e_{u}(\pi)\rangle + \sin \alpha |e_{u}(\sigma)\rangle$$

(dipole allowed)
 $\langle \psi_{exc} |e^{i\vec{q}\vec{r}} |\psi_{GS} \rangle = \langle e_{u}(x) |e^{i\vec{q}\vec{r}} |b_{1g}^{b} \rangle \propto \sin \frac{q_{x}a}{2} \propto q_{x}$

Cluster diagonalization

(standard parameters for cuprates, one plaquette)

Two center excitons

$$\left|b_{1g}^{2}\left(dp\right)\right\rangle = 0.95\left|pd\right\rangle - 0.25\left|dd\right\rangle - 0.19\left|pp\right\rangle$$

Assignment of peaks

Sr₂CuO₃

exact diagonalization

(transversal response for q=0, 4 plaquettes)

The CT gap in insulating parent cuprates is determined by nearly degenerate one-center, localized excitons (with oxygen p_{π} orbitals) and the two-center ZRS exciton.

