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Introduction Single particle spectra far from transition
Mott-Hubbard metal-insulator transition Weak interaction, metallic region metallic solutions Iin:sl-fla]tirjgl s!cﬂ'utlio?sl
= correlation-driven transition from paramagnetic metallic to paramagnetic = Hubbard bands appear already for U =D _ I T

Insulating phase = no significant effects on collective modes
= essential features captured by the single-band Hubbard model (overdamped by Landau damping)
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Strong interaction, insulating region

= charge and collective modes are well
separated Iin energy

-> Nno significant interplay Is to be expected

Dynamic mean-field theory (DMFT)

= non-perturbative approximation which becomes exact in the limit d — oo
= neglects spatial correlations, retains the dynamic correlations

= |attice problem is mapped onto an effective single-impurity model

Spectral densities for the single-band Hubbard model
1) (A 1) at half band-filling and zero temperature deep in the
ng, — = }

T AT AT oA -
H = Z Tn (Cnacn—HJ +h.c. ) +V Z (CdJCOJ + h. C-) T U(ndT 9 9 metallic (red lines) and deep in the insulating regime
n,o o (blue lines) calculated using a spin chain with 320 sites

embedded |n a Self_conS|Stent|y determlned medlum (160 fermionic sites). The dashed violet lines shows
NRG-results [3].

GM(w) = Gy (W), IPM(w) =I5 (w)

= effective single-impurity model must be solved for a single-particle
Green function
= several numerical and analytical methods were applied as impurity solvers

Focus of investigation

E : b Region close to transition
= gspectral densities close to the metal-insulator transition

= no upturn [6] In the insulating

= Interplay of electronic degrees of freedom with collective modes in a highly solution close to
correlated metal U, = (2.38 + 0.02) D
Investigated model = sharp peaks at inner edges of
= single-band Hubbard model at half band-filling and zero temperature on a the Hubbard bands in the
Bethe lattice with infinite coordination metallic solution close to
transition at

Motivation
=  Dynamic DMRG: well controlled energy resolution at all energy scales

UC2 — (3.07 T O.l) D
= preformed pseudo-gap in the

meta_llllc SO|U'[I.OI’] paSS_eS _ Spectral densities for the single-band Hubbard model at half
continuously into the insulating band-filling and zero temperature of the metallic (red solid) and

gap the insulating solution (dashed blue) between U_, and U, .
Methods _
Interpretation
Self-consistency cycle = signature of collective
= |terative determination of the hybridization function excitations with heavy
12 | | guasiparticles involved
[(z) = 2 L's(2) > impurity-solver = due to the energy an antibound
T 2 Tself.consistency ? l state or resonance of heavy
1 : - - .
z — 2 Hub guasiparticles with a collective
Z — T ,F(Z)_t Gy (2) (;Hub — (And : : i :
(%) ¢ o (2) = Gog(2) spin excitation is expected
Impurity solver -> tentatively antipolaron
" uses spin representation of the Smgle'lmpu”ty Anderson Hamiltonian [1] 5 Sce_nﬁ”g C?I‘LObO_FCcl’:lted bi/(the Dotted area: two-solution region. Left curves: metallic quasi-
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n vanishes ratner iInearty Wit perturbation up to U* [4]. Right curves: insulating gap A or
: Z rather than quadratically or pseudo-gap in the metal (violet line with diamonds); blue line
" based on correction vector DMRG - with squares: DMRG; dashed magmata line: perturbation up to
cubically el |
1 A B , 1/U? [5]. Inset: weight S of the peaks at inner Hubbard band
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GZ(z) = (¥y|Syle(z)) particle-hole symmetry > G, (z) = G (2) — GZ(—2)
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Conclusions

= the obtained spectral density is broadened and has to be deconvolved | | | | | |
= high-resolution calculation of the dynamic mean-field equations for the half-

Least-bias deconvolution filled Hubbard model reveals a clear signature of collective excitations close to
= continuous and positive semi-definite ansatz for the spectral density [2] the metal-to-insulator transition
po(w) =exp |p+ ) A ' s effect of collective excitations is seen as sharp peaks at the inner edges of the
= (C D7 Hubbard bands

o r peaks evidence a strong interaction between charge and collective degrees of
= maximize -5 = / dw p_(w)lnp_(w) freedom

tentative interpretation: antibound state (antipolaron)

o

under the side conditions pé”i)(wi) = / d¢ - [(wnfz()?+ .
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