Wave-vector dependence of hybridization in Ce and Yb compounds as observed by angle-resolved photoemission

C. Laubschat, TU Dresden, Germany

| H  | Periodic System |                                                                                                                 |     |      |     |     |      |     |     |     |     |     |     |     |         | 2<br>He |     |
|----|-----------------|-----------------------------------------------------------------------------------------------------------------|-----|------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|---------|---------|-----|
| 3  | 4               |                                                                                                                 | 1 0 | 71 I | UU  |     | 5    | 6   | 7   | 8   | 9   | 10  |     |     |         |         |     |
| Li | Be              |                                                                                                                 | of  | th   |     | FI  | В    | С   | N   | 0   | F   | Ne  |     |     |         |         |     |
| 11 | 12              |                                                                                                                 |     | LI   |     |     | 13   | 14  | 3.6 | 16  | 17  | 18  |     |     |         |         |     |
| Na | Mg              | an ta ang an tao ng alawang menang tatu teongka ana ang anti-tapan pining ang ang ang ang ang ang ang ang ang a |     |      |     |     |      |     |     |     |     |     | Si  | P   | S       | CI      | Ar  |
| 19 | 20              | 21                                                                                                              | 22  | 23   | 24  | 25  | 26   | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34      | 35      | 36  |
| K  | Ca              | Sc                                                                                                              | Ti  | V    | Cr  | Mn  | Fe   | Co  | Ni  | Cu  | Zn  | Ga  | Ge  | As  | Se      | Br      | Kr  |
| 37 | 38              | 39                                                                                                              | 40  | 41   | 42  | 43  | 44   | 45  | 46  | 47  | 48  | 49  | 50  | 61  | - 62 (j | 63      | 54  |
| Rb | Sr              | Y                                                                                                               | Zr  | Nb   | Мо  | Тс  | Ru   | Rh  | Pd  | Ag  | Cd  | In  | Sn  | Sb  | Te      | -1      | Xe  |
| 55 | 56              | 57                                                                                                              | 72  | 73   | 74  | 75  | - 76 | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84      | 85      | 86  |
| Cs | Ba              | La                                                                                                              | Hf  | Та   | W   | Re  | Os   | Ir  | Pt  | Au  | Hg  | Ti  | Pb  | Bi  | Po      | At      | Rn  |
| 87 | 88              | 89                                                                                                              | 104 | 105  | 106 | 107 | 108  | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116     | 117     | 118 |
| Fr | Ra              | Ac                                                                                                              | Rf  | Db   | Sg  | Bh  | Hs   | Mt  | Ds  | Rg  | Uub | Uut | Uuq | Uup | Uuh     | Uus     | Uuo |



10



#### rare-earth elements:

- filling of 4f states
- no f-f overlap
- localized behavior in solid state
- hopping interaction with valence electrons may lead to
- heavy-fermion behavior





 interacting f-states: coexistence of different final-states described within the Single Impurity Anderson Model (SIAM)

# The (Periodic) Anderson Model (PAM) :

 $H = \sum \varepsilon(\mathbf{k}) d^{+}_{\mathbf{k}\sigma} d_{\mathbf{k}\sigma} + \sum \varepsilon_{f}(\mathbf{k}) f^{+}_{\mathbf{k}\sigma} f_{\mathbf{k}\sigma}$  $\mathbf{k}, \sigma$  $\mathbf{k}, \sigma$ 

 $+\frac{U_{ff}}{2}\sum n_{i,\sigma}^f n_{i,-\sigma}^f$ 

 $+\sum_{\mathbf{k},\sigma} V_{\mathbf{k}}(\varepsilon) \left( d^{+}_{\mathbf{k}\sigma} f_{\mathbf{k}\sigma} + f^{+}_{\mathbf{k}\sigma} d_{\mathbf{k}\sigma} \right)$ 

Imer<sup>\*</sup>-approach to Single-Impurity Anderson Model Simplest case: f-state ( $\epsilon$ ) interacts ( $\Delta$ ) with only one vb-state at E<sub>F</sub> (Imer)

$$|\mathbf{4f^0}\rangle := \begin{pmatrix} 1\\ 0 \end{pmatrix}, |\mathbf{4f^1}\rangle := \begin{pmatrix} 0\\ 1 \end{pmatrix}, \mathbf{H}:= \begin{bmatrix} 0 & \Delta\\ \Delta & \varepsilon \end{bmatrix}$$

**Diagonalization:** 

$$|\mathbf{e}\rangle := \begin{pmatrix} e_0 \\ e_1 \end{pmatrix}, \quad |\mathbf{g}\rangle := \begin{pmatrix} g_0 \\ g_1 \end{pmatrix}, \quad \mathbf{H} := \begin{bmatrix} E_e & 0 \\ 0 & E_g \end{bmatrix}$$
$$\mathbf{E}_{\mathbf{e}} \cdot \mathbf{E}_{\mathbf{g}} = \sqrt{\varepsilon^2 + 4\Delta^2}$$
$$\mathbf{I}_{\mathbf{g}} / \mathbf{I}_{\mathbf{e}} \cong \frac{\Delta^2}{\varepsilon^2 - \Delta^2} \qquad \mathbf{n}_{\mathbf{f}} = \mathbf{1} \cdot \frac{\Delta^2}{\varepsilon^2}$$

•J.-M. Imer & E. Wouilloud, Z. Phys. B 66, 133 (1987)





Improved-approach\*:

#### Consideration of :

- density of states modelled by discrete valence band states
- spin-orbit interaction
- double occupation of f-state

#### results in

 almost perfect agreement with descriptions in the light of the Schoenhammer-Gunnarsson approach





### Angle-resolved resonant photoemission: $CePd_3(111)$



Wave-vector dependent intensity variations of Fermi-level peak!

## Improved approach:

- Assumption of k-conservation upon hybridization
- Application of the model to a *k*-resolved partial density of states !







#### f-character of Pd-derived valence bands at the La (Ce) site

Fermi level crossings of bands lead to strong hybridization at the respective k-points

# Heavy-Fermion system YbIr<sub>2</sub>Si<sub>2</sub> 0 Energy (eV) -1 -2 ٧ -3 Х Г Μ a = 403.5 (1) pm

 $k_r$ 

 $\overline{k}_{y}$ 

c = 983.0 (3) pm z (Si)= 0.3788 (6) Space group I4/mmm (Nr. 139) ThCr2Si2 Type



## k-dependent hybridization in $YbIr_2Si_2$











































- Good agreement between theory and experiment!
- Fermi-level peak far away from
  Γ may be caused by:
  i) thermal excitations
  - i) thermal excitations
  - ii) interactions of unoccupied f and VB states
  - iii) partial integration over k due to finite  ${\rm U}_{\rm ff}$





- In the limit of negligible hybridization 4f states behave as core-levels.
- Hybridization effects are usually handled in the light of the Single Impurity Anderson Model (SIAM).
- Angle-resolved photoemission data show that hybridization depends on and varies with wave-vector.
- Data analysis is possible within a simple approach to the Periodic Anderson Model (PAM) that has the form of SIAM but with direction dependent hybridization.
- Similar direction dependent approaches may explain anisotropies of other physical properties of mixed-valence and heavy-fermion systems.



## TU-Dresden:

S. Danzenbächer M. Heber Yu. Kucherenko S.L. Molodtsov D. Vyalikh

MPI cPfS:

Z. Hossain C. Geibel

Bessy:

R. Follath

# Stanford University

N. Mannella X.J. Zhou W. Yang Z.-X. Shen

Work supported by DFG, SFB 463





# Interactions of localized moments:



#### Anderson model:

hopping between localized and itinerant states

#### **RKKY** interaction:

oscillatoric spin polarization of conduction electrons  $\rightarrow$  magnetic order

# Kondo-effect:

screening of local moment  $\rightarrow$  increase of resistivity below T<sub>K</sub>  $\rightarrow$  large density of states at E<sub>F</sub>  $\rightarrow$  large specific heat



 $\rightarrow$  heavy fermion behavior

### f-d interaction in Pr and Nd systems



Laubschat et al., J. Electr. Spectr. Rel. Phen. 128 (2003) 45