Theory for the elementary excitations in hole- and electron-doped cuprates: The kink in ARPES and its relation to the resonance peak

Dirk Manske¹ and Ilya Eremin²

¹ ETH Zürich (Switzerland) and Max-Planck-Institute for Solid State Research, Stuttgart (Germany)
 ² TU Braunschweig and Max-Planck-Institute for the Physics of Complex Systems, Dresden (Germany)

Kink feature in high- T_c cuprates:

why only observed in hole-doped cuprates?
are the various kinks fingerprints of spin fluctuations?

• how to understand the anisotropy in **k**-space and *d*-wave pairing simultaneously? Anisotropic spin excitations in high- T_c cuprates:

Fermi-liquid theory? stripe scenario? new experiments on fully untwinned YBCO earlier data on partially twinned YBCO by Mook *et al.* (Nature, 2000) reveal 1D excitations

Keimer's new results (Nature 2004):

Resonance peak below T_c in high- T_c cuprates:

feedback effect of superconductivity?

why is the resonance peak only observed in holedoped cuprates with a constant ratio for ω_{res}/T_c ?

what is the dispersion of the resonance peak? (are bilayer effects important?)

Are the kinks related to the resonance peak and characteristic for other unconventional superconductors like Sr_2RuO_4 ?

- INS data show 2D magnetic fluctuations
- but strong anisotropy
- \longrightarrow one-dimensional width and amplitude anisotropy (dependent on excitation energy)

Is a Schrieffer-Scalapino-Wilkins-like analysis for high- T_c cuprates possible?

[see D. Manske *et al.*, PRB **67**, 134520 (2003)]

Generalized Eliashberg equations for spin fluctuation-mediated Cooper-pairing (FLEX approximation)

Aim:

• understanding of the kink features and d-wave

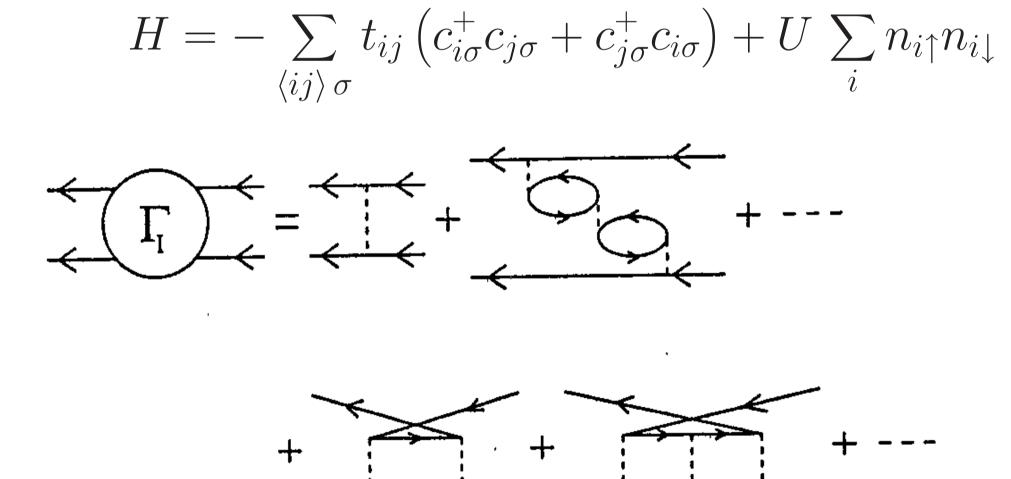
• understanding of the resonance peak, its dispersion, and the strong magnetic anisotropy

Microscopic theory for Cooper-pairing

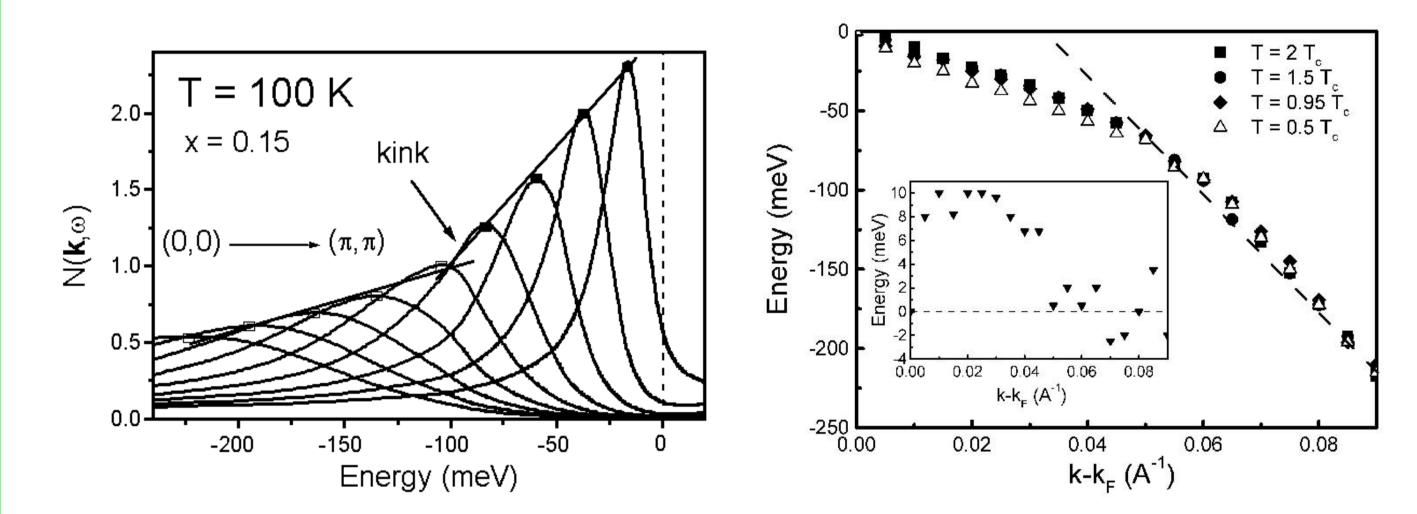
Bethe-Salpeter equation (solved self-consistently using the Hubbard model): $H = \sum_{i=1}^{n} t_{i} \left(c^{+} c_{i} + c^{+} c_{i} \right) + U \sum_{i=1}^{n} c_{i} c_{i}$ **Results for the resonance peak and magnetic anisotropy**

spin excitation (calculated self-consistently)

 $\operatorname{Im} \chi_0(\mathbf{Q},\omega)$



leads to a kink in the nodal direction (above and below T_c , PRL 2001):



antinodal direction: kink occurs only below T_c (feedback effect, PRB 2003)

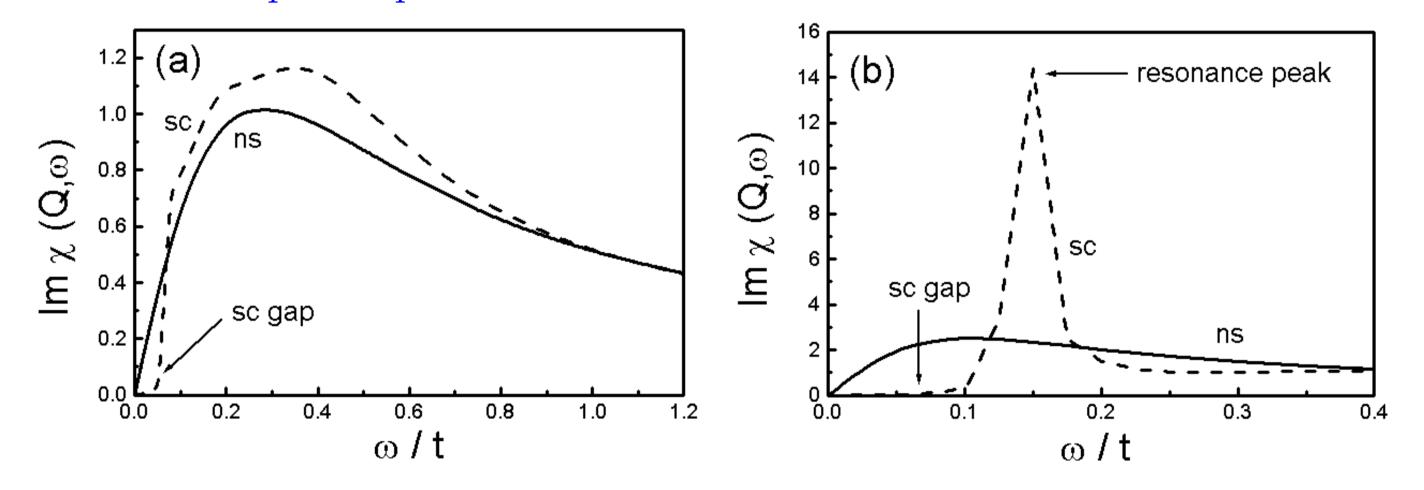
$$\operatorname{Im} \chi(\mathbf{Q}, \omega) = \frac{\operatorname{Im} \chi_0(\mathbf{Q}, \omega)}{(1 - U \operatorname{Re} \chi_0(\mathbf{Q}, \omega))^2 + U^2 (\operatorname{Im} \chi_0(\mathbf{Q}, \omega)^2)}$$

may become resonant if

$$\frac{1}{U_{cr}} = \operatorname{Re} \, \chi_0(\mathbf{q} = \mathbf{Q}, \omega = \omega_{res})$$

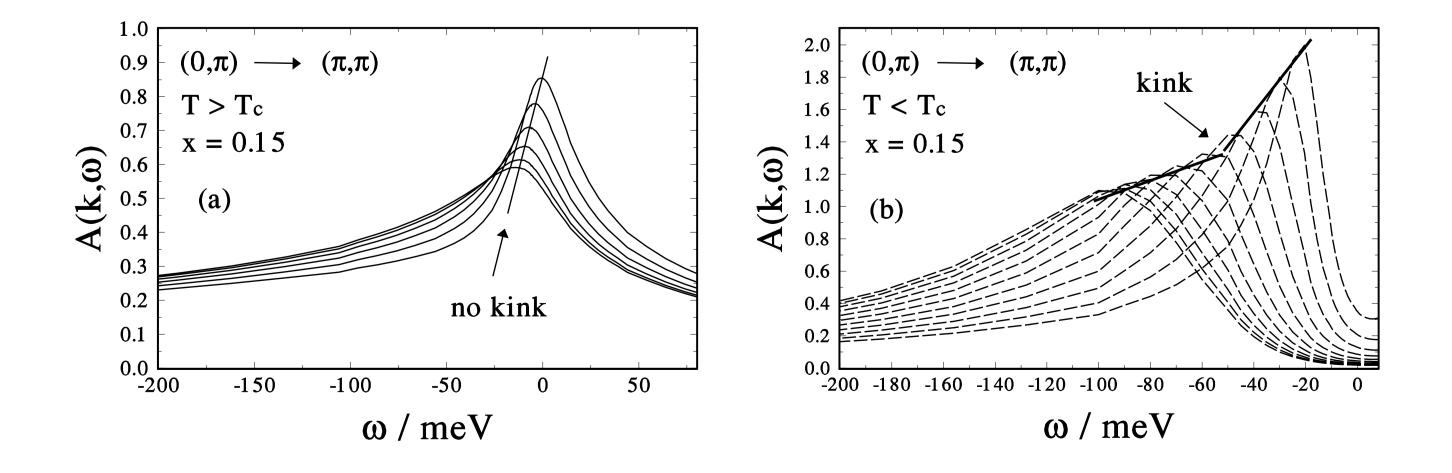
is (nearly) fulfilled.

• results for electron- (no resonance peak, only feedback effect!) and hole-doped cuprates



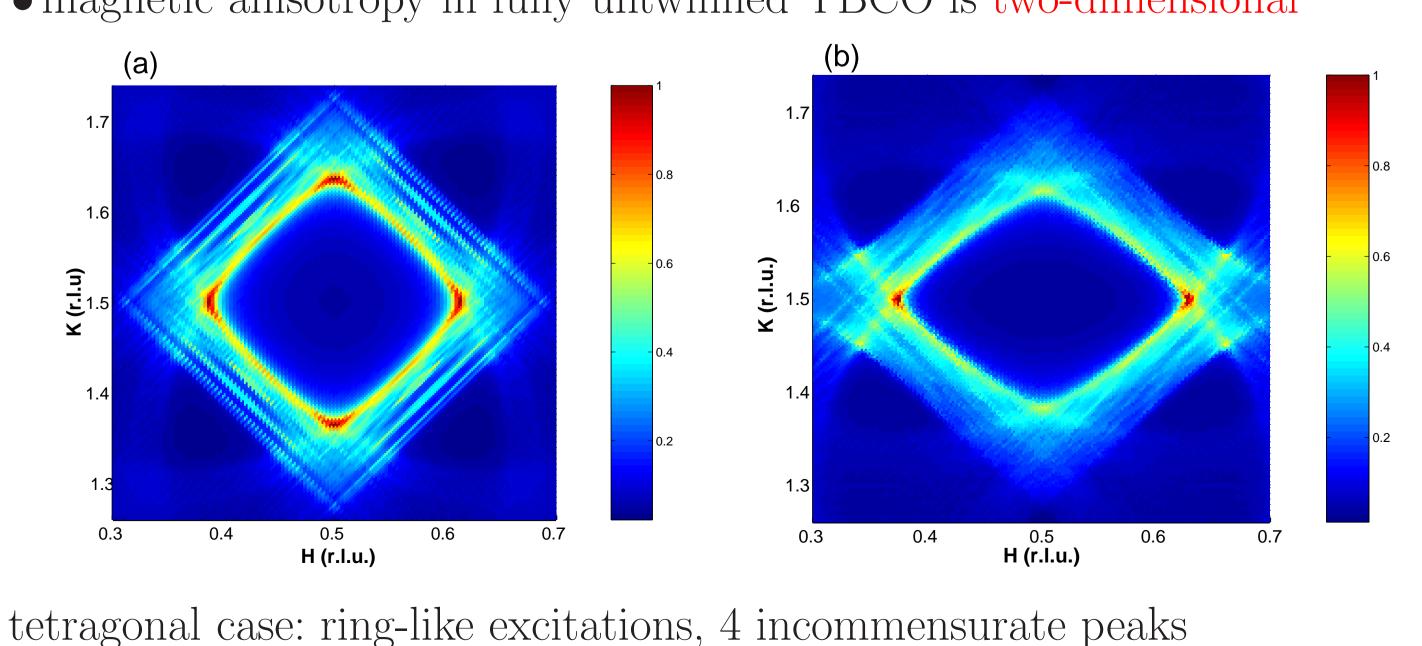
• we find a parabolic dispersion of the resonance peak and a constant ratio for ω_{res}/T_c in hole-doped cuprates

• magnetic anisotropy in fully untwinned YBCO is two-dimensional



kinks occur due to a renormalized energy dispersion $\omega_{\mathbf{k}} = \epsilon_{\mathbf{k}} + \operatorname{Re} \Sigma(\mathbf{k}, \omega)$ \Rightarrow fingerprints of spin fluctuations!

anisotropy in k-space and d-wave symmetry can be explained, but: \Rightarrow isotope effect (Lanzara *et al.*) \rightarrow **contribution of phonons?**



orthorombic case $(t_x \neq t_y)$: 2 peaks are suppressed \Rightarrow alternative explanation to the stripe scenario