

Quasiparticle vanishing driven by geometrical frustration

Luis O. Manuel

Instituto de Física Rosario Rosario, Argentina

Collaborators:

Adolfo E. Trumper Claudio J. Gazza

CORPES'05

Outline

Introduction: Hole dynamics in antiferromagnets

How does the frustration affect the hole dynamics?

Model and methods

Hole spectral functions: quasiparticle and string excitations

Quasiparticle wave function

Conclusions

Mott insulators

Hubbard model
$$H = \sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Low energy physics of a Mott insulator

The low energy physics is dominated by spin fluctuations

Heisenberg model (localized spins)

$$H = \sum_{\langle ij \rangle} J_{ij} \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}} \qquad J_{ij} = \frac{4t_{ij}^2}{U}$$

Square lattice \rightarrow Nèel order is the ground state, e.g. La₂CuO₄

Triangular lattice → geometrical frustration might prevent magnetic long range order

Ground state of a triangular antiferromagnet

In 1973 P. W. Anderson proposed a **Resonant Valence Bond State (RVB)**

$$= \frac{1}{2} \left[\uparrow \downarrow \rangle - \left| \downarrow \uparrow \rangle \right]$$

...but the ground state is a "simple" semiclassical **120° Néel order** (Bernu at al, PRL '92, Trumper et al, PRL '99)

In the square lattice antiferromagnet the spin polaron is always well defined (Martinez & Horsch PRB '91, Dagotto RMP '94).

ARPES seems to confirm this picture, e.g. Sr₂CuO₂Cl₂

(Wells et al, PRL '95)

How does the frustration affect the hole dynamics?

Let's look what happens when a hole is doped in an antiferromagnet on a triangular lattice

Model and method

We use the *t-J* model in local spin quantization axis, assuming a 120° Néel order

Representations: hole → spinless fermion spin fluctuations → Holstein-Primakov bosons

$$\hat{c}_{i\uparrow} = h_i^{\dagger} \qquad \hat{c}_{i\downarrow}^{\dagger} = h_i S_i^{-}$$

$$S_i^x \sim \frac{1}{2} (a_i^{\dagger} + a_i) \qquad S_i^y \sim \frac{i}{2} (a_i^{\dagger} - a_i) \qquad S_i^z = \frac{1}{2} - a_i^{\dagger} a_i$$

Effective Hamiltonian

$$H = \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} h_{\mathbf{k}}^{\dagger} h_{\mathbf{k}} + \sum_{\mathbf{q}} \omega_{\mathbf{q}} \alpha_{\mathbf{q}}^{\dagger} \alpha_{\mathbf{q}} - t \sqrt{\frac{3}{N_s}} \sum_{\mathbf{k}, \mathbf{q}} \left[M_{\mathbf{k}\mathbf{q}} h_{\mathbf{k}}^{\dagger} h_{\mathbf{k}-\mathbf{q}} \alpha_{\mathbf{q}} + h.c. \right]$$

Free hopping (due to non-collinearity) Free magnon energy

hole-magnon interaction

Model and method (contd.)

$$\epsilon_{\mathbf{k}} = -3t\gamma_{\mathbf{k}} \qquad \gamma_{\mathbf{k}} = \frac{1}{3}\Sigma_{\mathbf{e}}\cos(\mathbf{k}\cdot\mathbf{e})$$

half of the tight-binding energy dispersion in the triangular lattice

$$\omega_{\mathbf{q}} = \frac{3}{2} J \sqrt{(1 - \gamma_{\mathbf{q}})(1 + 2\gamma_{\mathbf{q}})}$$
spin wave dispersion

$$M_{\mathbf{kq}} = i(\beta_{\mathbf{k}}v_{-\mathbf{q}} - \beta_{\mathbf{k}-\mathbf{q}}u_{\mathbf{q}}) \qquad \beta_{\mathbf{k}} = \Sigma_{\mathbf{e}}\sin(\mathbf{k}\cdot\mathbf{e})$$

hole-magnon vertex interaction

u and v are the usual Bogoliubov coefficients

Two mechanisms for hole motion

Magnon-assisted hopping (hole-magnon interaction)

Ļ

spin-polaron origin in non-frustrated antiferromagnets Free hopping: no absorption or emission of magnons (due to the non-collinearity)

Self-consistent Born approximation (SCBA)

We calculate the hole **spectral function**

$$A_{\mathbf{k}}(\omega) = -\frac{1}{\pi} Im G^{h}_{\mathbf{k}}(\omega)$$

$$G^{h}_{\mathbf{k}}(\omega) = \langle AF | h_{\mathbf{k}} \frac{1}{(\omega + i\eta^{+} - H)} h^{\dagger}_{\mathbf{k}} | AF \rangle$$

solving the self-consistent equation for the self-energy

$$\Sigma_{\mathbf{k}}(\omega) = \frac{3t^2}{N_s} \sum_{\mathbf{q}} \frac{\mid M_{\mathbf{kq}} \mid^2}{\omega - \omega_{\mathbf{q}} - \epsilon_{\mathbf{k}-\mathbf{q}} - \Sigma_{\mathbf{k}-\mathbf{q}}(\omega - \omega_{\mathbf{q}})}$$

Quasiparticle weight (How much of the hole survives)

$$z_{\mathbf{k}} = \left(1 - \frac{\partial \Sigma_{\mathbf{k}}(\omega)}{\partial \omega}\right)^{-1} | E_{\mathbf{k}} = \Sigma_{\mathbf{k}}(E_{\mathbf{k}})$$

Comparison SCBA vs exact results

N = **21** sites

SCBA vs exact results

N = **21** sites

Hole spectral functions: negative t

Quasiparticle energy dispersion: negative *t*

Quasiparticle energy dispersion

Hole spectral functions: positive *t*

Quasiparticle weight vs J/t

Quasiparticle weight: finite size effects

For positive t and in the weak coupling regime there are very strong finite size effects for momenta around the magnetic wave vector K

Momentum dependence of the quasiparticle weight

J/|t| = 2.0

Strings excitations: Only for negative *t* **!**

For J < |t| there will be a lot of "wrong" strings, leading to long lived resonances

Like a particle bounded by a linear potential

Quasiparticle energy scaling with J/t

For an antiferromagnetic spin polaron $E_{up} \sim (J/t)^{2/3}$

For a ferromagnetic spin polaron ("ferron") $E_{qp} \sim (J/t)^{1/2}$

In the thermodynamic limit we have found

> t < 0 → $E_{qp} \sim (J/t)^{0.64}$ → enhanced local AF environment around the hole > t > 0 → $E_{qp} \sim (J/t)^{0.54}$ → enhanced ferromagnetic environment

...while for small cluster sizes (N < 21) we have found the opposite behaviour, as in Koretsune & Ogata, PRL'02.

Quasiparticle wavefunction

We solve the Schrodinger equation for the spin polaron in the retraceable paths approximation [Ramsak & Horsch PRB'93, Reiter PRB'94]

$$H|\Psi_{\mathbf{k}}\rangle = E_{\mathbf{k}}|\Psi_{\mathbf{k}}\rangle$$

Normalization condition

$$\langle \Psi_{\mathbf{k}} | \Psi_{\mathbf{k}} \rangle = \sum_{n} A_{\mathbf{k}}^{(n)} = 1$$

weight of the *n*-magnon contribution

In particular $\rightarrow A_{\mathbf{k}}^{(0)} = \langle \Psi_{\mathbf{k}} | h_{\mathbf{k}}^{\dagger} | AF \rangle \equiv z_{\mathbf{k}}$

How many magnons?

Positive *t*

Three magnons are enough!

One magnon even for J >> t

$$S_{\mathbf{k}}^{(n)} = \sum_{m=0}^{n} A_{\mathbf{k}}^{(m)}$$

How many magnons?

Magnon proliferation even for a relative large J/t!

Conclusions

The magnetic frustration induces qualitative changes in the hole dynamics:

- $t < 0 \rightarrow$ well defined quasiparticle and string excitations
- $t > 0 \rightarrow$ no quasiparticle, no strings, magnon proliferation

We give firm evidence that non-conventional excitations can be found in *non-collinear* spin-crystal phases like the one present in the triangular antiferromagnet. There is no need of spin liquid phases!

Experiments? There is a plenty of strongly correlated materials with triangular topology: organic salts (BEDT-TTF)-X, cobaltates, silicon surfaces, etc, etc. Our findings could be of revelance for these compounds.