Phenomenological Spectral Function for Multiband Systems

The Case of the Periodic Anderson Model (PAM)

Konrad Matho
Centre de Recherches sur les Très Basses Températures CNRS Grenoble France

Outline: - Continued Fraction, Padé Approximant and Fermi Liquid Terminator

- Single Band versus Multiband Dyson Equation
- PAM as Doped Charge Transfer Insulator
- Hartree and Hubbard-1 approximations
- Obtaining higher sumrules
- Minimal scenario to capture singlet-triplet splitting

Mathematical tools: $<n-1 / n>, \quad<n-1 / n>_{D}, \quad\{n / n+1\}_{D}$ Continued Fraction Expansion (CFE) truncated Iterative steps to obtain the CFE of a scalar Green function $G_{0}(k, \omega)$ First step: Determine center of gravity ω_{1} and variance s_{2} of $G_{0}(k, \omega)$

$$
\mathbf{G}_{\mathbf{0}}{ }^{-1}=\omega-\omega_{1}-\mathbf{s}_{\mathbf{2}}{ }^{2} \mathbf{G}_{\mathbf{1}}(\mathbf{k}, \omega)
$$

Iterate: Determine C.o.G. $\omega_{2 n-1}$ and variance $s_{2 n}$ of $G_{n-1}(k, \omega)$

$$
G_{n-1}^{-1}=\omega-\omega_{2 n-1}-s_{2 n}^{2} G_{n}(k, \omega)
$$

Three kinds of truncation:

1) Set $s_{2 n}{ }^{2} G_{n}(k, \omega)=0$ to obtain Padé approximant $<\mathbf{n}-1 / n>$
2) Set $s_{2 n}{ }^{2} G_{n}(k, \omega)=i D$ to obtain broadened Padé approximant $<\mathbf{n}-1 / \mathbf{n}>_{\text {D }}$
3) Set $\omega_{2 \mathbf{n}-1}+\mathbf{s}_{2 \mathbf{n}}{ }^{2} \mathbf{G}_{\mathbf{n}}(\mathbf{k}, \omega)=\underline{\omega}_{2 \mathbf{n}-1}+\underline{\mathbf{s}}_{2 \mathbf{n}}^{2} /\left(\omega-\underline{\omega}_{2 \mathbf{n}+1}\right)$ to obtain ($\mathbf{n}+1$)-Pole approximant $\{\mathbf{n} / \mathbf{n}+1\}$ with Fermi Liquid terminator
Algorithm: J. Electron Spectroscopy 117-118, 13 (2001)

Previous implementations with one band models

Momentum resolved spectra and phenomenological non-FL selfenergy (See review paper)

- Approximation $\{1 / 2\}_{D}$ was used for TiTe2
- Approximation $\{2 / 3\}_{\mathrm{D}}$ allows to model $\{1 / 2\}_{\mathrm{D}}+$ non-FL Terminator a QP band with strongly asymmetric background (see figure)

Phenomenological modeling of low energy Fermi Liquid behaviour in a hole-doped Hubbard model. Quasiparticle resonances and incoherent background. Fermi surface crossing defined by the vanishing of (k,0) Σ The quasiparticle weight equals the ratio of energy scales $/ \Delta^{*} \Delta$

Phenomenological spectrum for Hubbard model (unpublished)

Selfenergy and integrated DOS of
Hubbard model in approximation $\{3 / 4\}$.
Comparison to Augsburg phenomenology
(Byzcuk et al. Int.J.Mod.Phys. B 16 (2002) 3759)

 010

- Check of Herglotz property and numerical (NRG) result both in favour of our ansatz

obtaining a Strongly Correlated Metal by doping the Charge Transfer Insulator

(b) Charge Transfer Insulator

Six generic cases encountered

 in transition metal oxidesMinimal scenario for cases $(a, A),\left(a, A^{\prime}\right)$ and (a, B) : One band Hubbard model Minimal scenario for cases (\mathbf{b}, A), ($\left(\mathrm{b}, \mathrm{A}^{\prime}\right)$ and (b, B) : Two-band periodic Anderson model.

Aspect of charge transfer: Strongly correlated orbital "d" is coupled via hopping or hybridisation with non-interacting ligand orbital " p ". Cases (b, A) and (b, A^{\prime} '): Large \mathbf{U}; doping relative to $n=3$ (1 hole/site), no symmetry $n>3 n<3$. Relevant for high T_{c} cuprates.

Dyson Equation $G^{-1}=\omega-\Sigma(k, \omega)$

- Dyson equation is a matrix, block diagonal in k , spanned by orbitals 1 (usually a finite set obtained from "downfolding")
- Hubbard U, local repulsion: Two-body interaction in one spindegenerate local orbital I="d" (higher degeneracy also possible)
- Hopping: One-body hopping terms couple an arbitrary number of ligand orbitals $\mathrm{I}=$ " p " to the correlated orbital. Direct hopping often much smaller than transfer through the ligands
- The PAM has a non-trivial zero bandwidth limit: a two orbital local molecule. But, in general, local hybridisation V not realistic.
- For indices $\left(\mathbf{l}, \mathbf{l}^{\prime}\right)=\left(\mathbf{p}, \mathbf{p}^{\mathbf{\prime}}\right),(\mathbf{p}, \mathbf{d})$ and $\left(\mathbf{p}^{\prime}, \mathbf{d}\right)$, elements $\left(\mathrm{G}^{-1}\right)_{\mathrm{I}}$ in this matrix are bare, unrenormalized one-body terms, except for a shift in the diagonal, due to the chemical potential μ
- Only the element $\left(\mathrm{G}^{-1}\right)_{\mathrm{dd}}=\omega-\Sigma_{\mathrm{dd}}(\mathrm{k}, \omega)$ is renormalized.

Fermi Surface determined by manybody

eigenvalues at $\mathrm{T}=0$

$\Sigma(\mathrm{k}, 0)$ is a hermitean matrix

- Diagonalisation yields Eigenvektors $\mathrm{u}_{\mathrm{il}}(\mathrm{k})$ and their Eigenvalues $\eta_{\mathrm{i}}(\mathrm{k})$, forming bands.
- Labeling of quasiparticles in multiorbital case : Each vanishing eigenvalue defines one QP-band.
- Representation of the Dyson equation in the priviledged frame of the $\mathrm{u}_{\mathrm{il}}(\mathrm{k})$ (unitary transformation):
- ($\left.\mathbf{G}^{-1}\right)_{\mathrm{ij}}=\left(\omega-\eta_{\mathrm{i}}(\mathrm{k})\right) \delta_{\mathrm{ij}}-\mathrm{u}_{\mathrm{id}}(\mathrm{k}) \delta \Sigma_{\mathbf{d d}}(\mathbf{k}, \omega) \mathrm{u}_{\mathrm{dj}}(\mathrm{k})$
- Twobandmodels $\mathrm{i}= \pm: \quad \operatorname{Set} \mathrm{ep}(\mathrm{k})-\Sigma_{\mathrm{dd}}(\mathrm{k}, 0)=\operatorname{Acos}(2 \theta)$

$$
V=A \sin (2 \theta)
$$

then $\mathrm{u}_{+\mathrm{p}}=\mathrm{u}_{-\mathrm{d}}=\cos (\theta)$ and $\mathrm{u}_{+\mathrm{d}}=-\mathrm{u}_{-\mathrm{p}}=\sin (\theta)$ covers all possible cases. Angle θ characterises degree of hybridisation.

- PAM: Only one of the eigenvalues can cross zero.

Exact relations between Greenfunctions in the twoband case (including PAM):

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{pp}}=\omega-\varepsilon_{\mathrm{p}}(\mathrm{k})-\mathrm{V}_{\mathrm{k}}^{2} /\left(\omega-\Sigma_{\mathrm{dd}}(\mathrm{k}, \omega)\right) \\
& \mathrm{G}_{\mathrm{dd}}=\omega-\sum_{\mathrm{dd}}(\mathrm{k}, \omega)-\mathrm{V}_{\mathrm{k}}^{2} /\left(\omega-\varepsilon_{\mathrm{p}}(\mathrm{k})\right)
\end{aligned}
$$

To obtain the CFE expansion of G_{pp}, set:

- $\mathrm{G}_{0}=\mathrm{G}_{\mathrm{pp}}$
- Sofar, in the spirit of DMFT, k-dependence other than $\varepsilon_{\mathrm{p}}(\mathrm{k})$ was neglected
- $\mathbf{G}_{1}=\mathbf{1} /\left(\omega-\Sigma_{\mathrm{dd}}(\omega)\right)$ in the iterative process

Input U, V, W, Δ, n

- $\mathbf{U}=$ local interaction \mathbf{U}_{dd} (repulsive)
- $\mathbf{V}=$ hybridisation \mathbf{V}_{pd}
(k-independent)
- $\mathbf{W}=\mathbf{4 t}=$ halfwidth of bandstates $\left\{\mathrm{E}_{\mathrm{k}}\right\}$ on 2-dimensional lattice
- $\mathbf{E}_{\mathbf{p}}(\mathbf{k})=\Delta+\mathbf{E}_{\mathrm{k}}=$ bare \mathbf{p}-band ($\mathrm{V}=0$)
- $\mathbf{E}_{\mathrm{d}}=-\Delta=$ bare d-level (kindependent)
- $n=3+X=$ filling per lattice site I X I <1
- $\left\{\mathbf{k}_{\mathrm{F}}\right\}=$ Fermi surface: $\mathbf{k} \mathbf{C}\left\{\mathbf{k}_{\mathrm{F}}\right\}$ when $\mathbf{E}_{\mathbf{k}}=\mu_{0}(\mathbf{n})$

Output $\mu, \mathrm{m}, \rho(\varepsilon)$

$$
\mathrm{A}_{\mathrm{ij}}(\mathrm{k}, \varepsilon), \rho_{\mathrm{ij}}(\varepsilon),
$$

Selfconsistent chemical potential $\mu(\mathrm{n})$
Selfconsistent filling of d-level $\mathrm{m}(\mathrm{n})=<\mathrm{n}_{\mathrm{d} \sigma}>$ (per spin)
Density of states $\rho(\varepsilon)$
Partial k-resolved spectra $\mathrm{A}_{\mathrm{ij}}(\mathrm{k}, \varepsilon)$
Partial densities $\rho_{\mathrm{ij}}(\varepsilon)$

Relevant regime is $2 \Delta<\mathrm{U}<4 \Delta$
Charge transfer gap roughly determined by $\Delta_{\mathrm{CT}}=\mathrm{U}-2 \Delta$

Hartree approximation as

 uncorrelated reference system: Padé <1/2>- Exact sumrule:
$\omega_{3}=m U-\Delta-\mu$
- Hartree is obtained by setting $\mathrm{G}_{2}=0$
- Although selfconsistently determined, values of m and μ are incorrect

Typical selfconsistent Hartree
Accentuates hybridisation Fulfills Luttinger sumrule

$$
\begin{gathered}
\mathrm{U}=6 \quad \Delta=2 \quad \mathrm{~V}=\mathrm{W}=1 \\
\mathrm{n}=2.74
\end{gathered}
$$

Hubbard-I: Padé <2/3> is first systematic approximation showing correlations

- Next exact sumrule:

$$
\mathrm{s}_{4}{ }^{2}=\mathrm{m}(1-\mathrm{m}) \mathrm{U}^{2}
$$

- Approximate sumrule (a kinetic energy term neglected): $\omega_{5}=(1-m) U-\mu$
- Then, setting $\mathrm{G}_{3}=0$, a Hubbard-I type solution is obtained

Typical selfconsistent Hubbard-1
Exaggerates charge transfer
Suppresses hybridisation
Violates Luttinger sumrule

Partial filling m: A revealing problem
"Selfconsistency is necessary but not sufficient"

Mixed valence $n=r+v \quad r=[n]=2 \quad 0<v<1$
 in the zero bandwidth limit
"Zhang-Rice"
Singlet

alias "zero bias conductance peak"

Zero bandwidth

 limit
Average <n>=2.8

A "zero bias peak" at $\varepsilon=0$ characterises the configurational crossover between $\mathrm{n}=2$ and $\mathrm{n}=3$.

The exact partial Green functions
$G_{d d}(\omega)$ and $G_{p p}(\omega)$ are Padés of order <7/8>

Molecule at configurational crossover

Exact spectra of \mathbf{G}_{dd} and \mathbf{G}_{pp}

Partial filling m: A revealing problem

Exact solution in the zero bandwidth limit

How many sumrules from the Zero bandwidth limit
is it useful to keep? Compare Padé approximants

<2/3> Hubbard-1 :

No "zero bias peak". Reason for violation of Luttinger SR !

No singlet-triplet splitting
<3/4> : Adopted approx. Produces the correct "zero bias peak" and singlet-triplet splitting

$$
<7 / 8>\text { : Exact }
$$

But: local finestructure does not survive hopping (finite \mathbf{W})
to Padé approximants <2/3> and <3/4> U/Delta $=3.0$ V/Delta $=0.5 \quad \mathrm{n}=2.8$

Use local sumrules from Padé $<3 / 4>$ at $\mathrm{W}=0$ to obtain solution for PAM with finite bandwidth at approximation level $\{4 / 5\}_{\text {D }}$

Because of correct zero bias peak, a tiny shift of μ is enough to reach selfconsistency

Hubbard satellites, predominantly of dcharacter. Valence states, predominantly of ccharacter (label c was previously \mathbf{p}). CT-gap around $\varepsilon \approx+1$. QP band with singlet character around $\varepsilon \approx 0$, valence band with triplet character around $\varepsilon \approx-1$, separated by a quasigap

$$
\begin{gathered}
\mathrm{U}=6 \text { Delta=2 } \mathrm{V}=1 \\
(\mathrm{~W}=0.5 \mathrm{n}=2.8 \mathrm{Z}=0.1)=\text { Sce(a) } \\
\text { DOS }\{4 / 5\} \quad \text { Influence D (here }=0.5)
\end{gathered}
$$

Conclusions I

Zoom on DOS in the valence region
$\mathrm{n}=2.8$: Hole doping relative to a parent CTinsulator with one hole per site.
Position of Van Hove singularity in the center of the QP-band in agreement with the Luttinger sumrule.

Momentum resolved spectra (also with kdependent V_{k}) can be modeled.

Contact me for eventual applications and collaborations.

U=6 Delta=2 $\mathrm{V}=1$
(W=0.5 n=2.8 Z=0.1) =Sce(a)
$\operatorname{DOS}\{4 / 5\} \quad$ Influence D (here=0.1)

Conclusions II

Selfconsistent d-filling m:

Outcome for m depends crucially on Padé order, not crucially on bandwidth $0 \leq W \leq 1$

Hartree: No correlations. Bad everywhere, except in low hole density limit n --> 4. Warning for density functional method!

Hubbard-1: Correlation effect overestimated.
O.k. for particle doping, bad for hole doping. CT-crossover not at integer $\mathrm{n}=3$!

Sumrules up to Padé <3/4> taken over from molecule (MO): Yields selfconsistent analytical solution for PAM at finite bandwidth.
Correct CT- crossover at $\mathbf{n}=3$.
Proposal: Check closeness to exact solution by NRG

Partial filling m: A revealing problem
Approximate solution with $\{4 / 5\}$

The continuous curves are the selfconsistent $\mathbf{W}=0$ limits

