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:

Outline: • Continued Fraction, Padé Approximant and Fermi 
Liquid Terminator

• Single Band versus Multiband Dyson Equation
• PAM as Doped Charge Transfer Insulator
• Hartree and Hubbard-1 approximations
• Obtaining higher sumrules
• Minimal scenario to capture singlet-triplet splitting



Mathematical tools:   <n-1/n> ,    <n-1/n>D ,    {n/n+1}D
Continued Fraction Expansion (CFE )  ….. truncated

Iterative steps to obtain the CFE of  a scalar Green function G0(k,ω)
First step: Determine center of gravity ω1 and variance s2 of G0(k,ω) 

G0
-1 = ω − ω1 − s2

2G1(k,ω)
Iterate: Determine C.o.G. ω2n-1 and variance s2n of Gn-1(k,ω) 

Gn-1
-1 = ω − ω2n−1 − s2n

2Gn(k,ω)
Three kinds of truncation:

1) Set s2n
2Gn(k,ω)=0 to obtain Padé approximant <n-1/n>

2) Set s2n
2Gn(k,ω)=iD to obtain 

broadened Padé approximant <n-1/n>D

3) Set ω2n−1 + s2n
2Gn(k,ω) = ω2n−1 +s2n

2/(ω - ω2n+1)
to obtain (n+1)-Pole  approximant {n/n+1} 
with Fermi Liquid terminator

Algorithm:  J. Electron Spectroscopy 117-118, 13 (2001)



Previous implementations with one band models 
Momentum resolved spectra and phenomenological non-FL selfenergy (See review paper)

• Approximation {1/2}D was used for TiTe2 
{1/2}D + non-FL Terminator

• Approximation {2/3}D allows to model was used for BISCO
a QP band with strongly asymmetric 
background (see figure)
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Phenomenological modeling of low energy Fermi Liquid behaviour in a 
hole-doped Hubbard model. Quasiparticle resonances and incoherent 

background. Fermi surface crossing defined by the vanishing of    (k,0). 
The quasiparticle weight  equals the ratio of energy scales    /    .∆∗ ∆
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Destruction of FL behaviour tuned by a power-law exponent nu. 
Vanishing residue, but finite resonance weight         

distributed along branchcuts. For nuŠ0.25 => marginal FL. 
Scenario used to interprete lineshapes in Bi-2212.

Andreas Müller, PhD Thesis, Shaker Verlag Aachen (2000). 
Computer programs for linefitting can be found there. 
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Byzcuk et al.

Selfenergy and integrated DOS of 
Hubbard model in approximation {3/4}.

Comparison to Augsburg phenomenology 
(Byzcuk et al. Int.J.Mod.Phys. B 16 (2002) 3759)

- Check of Herglotz property and numerical 
(NRG) result both in favour of our ansatz

Phenomenological spectrum for Hubbard model
(unpublished)
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n

Obtaining a Strongly Correlated Metal 
by doping the Charge Transfer Insulator

Six generic cases encountered 
in transition metal oxides

A’

Minimal scenario for cases (a,A), (a,A’) and (a,B): One band Hubbard model

Minimal scenario for cases (b,A),  (b,A’) and (b,B): Two-band periodic Anderson model.

Aspect of charge transfer: Strongly correlated orbital “d” is coupled via hopping or 
hybridisation with non-interacting ligand orbital “p”. Cases (b,A) and (b,A’): Large U; 

doping relative to n=3 (1 hole/site), no symmetry n>3 n<3. Relevant for high Tc cuprates.



Dyson Equation 
G-1= ω - Σ(k,ω)

• Dyson equation is a matrix, block diagonal in k, spanned by 
orbitals l (usually a finite set obtained from “downfolding”)

• Hubbard U, local repulsion: Two-body interaction in one spin-
degenerate local orbital l=“d” (higher degeneracy also possible)

• Hopping: One-body hopping terms couple an arbitrary number 
of ligand orbitals l=“p” to the correlated orbital. Direct hopping 
often much smaller than transfer through the ligands 

• The PAM has a non-trivial zero bandwidth limit: a two orbital 
local molecule. But, in general, local hybridisation V not realistic. 

• For indices (l,l’)=(p,p’), (p,d) and (p’,d), elements (G-1)ll’  in this 
matrix are bare, unrenormalized one-body terms, except for a 
shift in the diagonal, due to the chemical potential µ

• Only the element (G-1)dd =  ω − Σ dd(k,ω) is renormalized.



Fermi Surface determined by manybody 
eigenvalues at T=0

Σ(k,0) is a hermitean matrix 
• Diagonalisation yields Eigenvektors uil(k) and their Eigenvalues 

ηi(k), forming bands.
• Labeling of quasiparticles in multiorbital case : Each vanishing 

eigenvalue defines one QP-band.
• Representation of the Dyson equation in the priviledged frame of 

the uil(k) (unitary transformation):

• (G-1) ij = ( ω − ηi(k))δij − uid(k) δΣ dd(k,ω) udj(k)
• Twobandmodels i=±:     Set ep(k)-Σdd(k,0) = Acos(2θ) 

V= Asin(2θ)                          
then u+p = u-d= cos(θ) and   u+d=-u-p = sin(θ) covers all 
possible cases. Angle θ characterises degree of hybridisation.

• PAM: Only one of the eigenvalues can cross zero.



Exact relations between Greenfunctions in 
the twoband case (including PAM):

Gpp=ω - εp(k) -Vk
2/(ω−Σ dd(k,ω))

Gdd=ω - Σ dd(k,ω)-Vk
2/(ω− εp(k)) 

To obtain the CFE expansion of Gpp, set: 
• G0 = Gpp
• Sofar, in the spirit of DMFT, k-dependence 

other than εp(k) was neglected
• G1 =1/(ω−Σ dd(ω))  in the iterative process



Input U, V, W, ∆, n
• U = local interaction Udd

(repulsive)
• V = hybridisation Vpd

(k-independent)
• W = 4t = halfwidth of bandstates 

{Ek}  on 2-dimensional lattice
• Ep(k) = ∆ +Ek = bare p-band 

(V=0)
• Ed = - ∆ = bare d-level (k-

independent)
• n=3+X = filling per lattice site        

I X I <1
• {kF} = Fermi surface: k C {kF} 

when Ek=µ0(n)

Selfconsistent chemical potential
µ(n)
Selfconsistent filling of d-level
m(n) = <ndσ >  (per spin)
Density of states ρ(ε)
Partial k-resolved spectra
Aij(k,ε)
Partial densities ρij(ε) 

Output  µ, m, ρ(ε)
Aij(k,ε), ρij(ε), 

Relevant regime is 2∆ < U < 4∆ 
Charge transfer gap roughly determined by ∆ CT = U-2∆



Hartree approximation as 
uncorrelated reference system: Padé <1/2>

• Exact sumrule:                 
ω3 = mU - ∆ - µ

• Hartree is obtained 
by setting G2 = 0

• Although 
selfconsistently 
determined, values 
of m and µ are 
incorrect 
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Hubbard-I: Padé <2/3> is first systematic 
approximation showing correlations

• Next exact sumrule:
s4

2 = m (1-m) U2

• Approximate 
sumrule (a kinetic 
energy term 
neglected):                         
ω5 = (1-m) U  - µ

• Then, setting G3 = 0, 
a Hubbard-I type 
solution is obtained

Typical selfconsistent 
Hubbard-1

Exaggerates charge transfer
Suppresses hybridisation

Violates Luttinger sumrule

0,01

1

100

0

1

-4 -2 0 2

p-DOS

d-DOS

p-fill

d-fill

D
O

S filling

ε  =     − µE



1 1,5 2 2,5 3 3,5
0,4

0,5

0,6

0,7

0,8
Hartr-W=1

Hubb-W=1

n

m

Partial filling m: A revealing problem 
"Selfconsistency is necessary but not sufficient"

For further 
understanding:
Go to the zero 

bandwidth 
limit, where 
Hartree and 

Hubbard-1 can 
be compared to 
exact solution



1 2 3 4 N

Level scheme at crossover      N=2  <--->  N=3
Groundstate probabilities       P

2
= 1-v      P

3
= v

Mixed valence n=r+v  r=[n]=2   0<v<1

S=1

S=0

S=1/2

S=0

S=0

S=0

S=1/2

S=1/2

S=1/2

Gapless  transition rate:  R
o
 = R

o<
(n) + R

o>
(n)

alias  "zero bias conductance peak"

Triplet

Singlet
"Zhang-Rice"

hole       particle
like     

excitations    

P2=1-v P3=v

Particle removal
and particle addition:
All possible transitions
in the zero bandwidth
limit
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Zero bandwidth 
limit

Average <n>=2.8

A “zero bias peak” at ε=0 
characterises the 

configurational crossover 
between n=2 and n=3.

The exact partial Green
functions

Gdd(ω) and Gpp(ω)
are Padés of order 

<7/8>
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Partial filling m: A revealing problem 
Exact solution in the zero bandwidth limit



How many sumrules from the 
Zero bandwidth limit 

is it useful to keep ?
Compare Padé approximants 

<2/3> Hubbard-1 :
No “zero bias peak”. Reason 
for violation of Luttinger SR !

No singlet-triplet splitting

<3/4> : Adopted approx.
Produces the correct 
“zero bias peak” and 

singlet-triplet splitting

<7/8> : Exact
But: local finestructure does 

not survive hopping (finite W)
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DOS{4/5}
D
 Influence D (here=0.5)

Use local sumrules from
Padé <3/4> at W=0 to obtain 
solution for PAM with finite 
bandwidth at approximation 

level {4/�5}D

Because of correct zero bias
peak, a tiny shift of µ is enough 

to reach selfconsistency

Hubbard satellites, 
predominantly of d-

character. Valence states, 
predominantly of c-

character
(label c was previously p). 

CT-gap around ε≈+1. 
QP band with singlet

character around ε ≈0, 
valence band with triplet 
character around ε≈-1,

separated by a quasigap
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Conclusions I
Zoom on DOS in the

valence region

n=2.8 : Hole doping 
relative to a parent CT-
insulator with one hole 

per site.
Position of Van Hove 

singularity in the center 
of the QP-band  in 
agreement with the 
Luttinger sumrule.

Momentum resolved 
spectra (also with k-

dependent Vk ) can be 
modeled.

Contact me for eventual
applications and 
collaborations.
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Partial filling m: A revealing problem 
Approximate solution with {4/5}

Conclusions II 
Selfconsistent d-filling m: 
Outcome for m depends 
crucially on Padé order, 

not crucially on 
bandwidth 0≤W≤1

Hartree: No correlations. Bad 
everywhere, except in low hole 
density limit n  --> 4. Warning 
for density functional method!

Hubbard-1: Correlation effect 
overestimated.

O.k. for particle doping, bad for 
hole doping. CT-crossover not at 

integer n=3 !

Sumrules up to Padé <3/4> 
taken over from molecule (MO):
Yields selfconsistent analytical

solution for PAM at finite 
bandwidth. 

Correct CT- crossover at n=3. 
Proposal: Check closeness to 

exact solution by NRG 
The continuous curves are the selfconsistent W=0 limits
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