Electronic Structure, Magnetism and Superconductivity in Na_xCoO₂

Igor Mazin, Michelle Johannes

(Naval Research Laboratory)

David Singh (ORNL)

Acknowledgements: D. Agterberg (UWM) A. Liebsch (Juelich) M.J. Mehl (NRL) D.A. Papaconstantopoulos (NRL)

Nesting, spin fluctuations, and odd-gap superconductivity in Na_xCoO₂·yH₂O

Igor Mazin, Michelle Johannes, and David Singh (Naval Research Laboratory)

> Collaborators: M. Mehl, D. Papaconstantopoulos

> > Acknowledgment: Dan Agterberg

Outline

The Distorted Octahedral Environment of Co lons

But Na_xCoO₂ behaves almost *oppositely*...

Na content phase diagram

At x=0 system is a nonmagnetic metal
At x=1 compound does not form
At x=0.5 system is insulating

EXPECTED •At x =0, system is a magnetic insulator •At x=1, system is a band insulator •For x < 0.5, system is a magnetic metal •For x > 0.5, system is a simple metal

OBSERVED •For x < 0.5, system is a simple metal •For x > 0.5, system go through a sequence of magnetic metallic phases

The calculated phase diagram of Na_xCoO₂

x = 0.3	x = 0.5	x = 0.7
LDA: FM	LDA: FM	LDA: FM
Exp: PM	Exp: AFM	Exp: PM
$\gamma_{th} = 11.8 \text{ mJ/mol K}^2$ $\gamma_{exp} \sim 15 \text{ mJ/mol K}^2$ $\lambda = 0.27$	$\gamma_{th} = 13.0 \text{ mJ/mol K}^2$ Exp: Insulator	$\gamma_{th} = 9.1 \text{ mJ/mol K}^2$ $\gamma_{exp} \sim 27 \text{ mJ/mol K}^2$ $\lambda = 1.96$

itinerant

localized

LDA typically finds *smaller* magnetic moments than experiment Exception: the vicinity of a quantum critical point

Consistent overestimation of magnetism suggests spin fluctuations

Multi-Orbital Nature of Fermi Surfaces

$$e_{g}' = (xy) + e^{\pm 2\pi i/3}(yz) + e^{\pm 4\pi i/3}(zx)$$

Two distinct Fermi surface types are predicted by calculation.

Specific heat

Practically all data at x<0.5 are consistent with weak or no correlations

Practically all data at x>0.5 are consistent with strong correlations

Calculations (not very accurate) show gradual decay towards (hypothetical) NaCoO₂

Exp. (not very reliable) show a strong enhancement near x=0.7

At x=0.3, 70% of DOS comes from the small e' pockets!

Comparison with Experiment

M.Z. Hasan et al

The large (a_{1g}) Fermi Surface is clearly seen by ARPES The smaller (e_g') surfaces are absent

WHY?

- Correlations beyond LDA
- Surface effects (relaxation, surface bands, Na content)
- Matrix elements

Strongly correlated systems are characterized by large U/t

What is U in $Na_x CoO_2$?

LMTO: 3.7 eV (for all 5 d-bands)

Narrow t_{2g} bands screened by Empty e_g orbitals ... U < 3.7eV (A.Liebsch)

LDA+U: Corrects on-site Coulomb repulsion

Gets good FS match for U=4 eV (P. Zhang, PRL 93 236402)

But U=4 eV > $U_C = 3eV$ for unobserved charge disproportionation (K-W. Lee PRL 94 026403)

For U<2.5 eV, small pockets remain

<u>Spin fluctuations:</u> Renormalize bands, similarly to phonons Fermi surface is preserved, less weight

Optics: A Probe of Bulk Electronic Structure

There are three basic peaks: α , β , γ .

Peak shifts with changing Na content are reproduced.

Peak heights and energy positions are exaggerated.

α

How does electronic correlation manifest itself?

Application of LDA+U *worsens* agreement with experiment.

Mott-Hubbard type correlation is not exhibited for any x!

Dynamical Mean Field Theory gives a very different picture of correlation effects:

ARPES measurements have either s or p polarized light

For p-polarized light, the dipole matrix element is substantially different for the two symmetries.

(A. Liebsch)

Bulk calculations suggest that surface relaxation of O ions could diminish or eliminate small FS pockets

- Na_xCoO₂ has an unusual magnetic phase diagram
- The system does not behave as a Mott-Hubbard insulator, despite a rather narrow t_{2g} bandwidth
- The LDA+U method *worsens* agreement with optical measurements
- Dynamical correlations show weight transfer from $a_{1g} \rightarrow e_{g}'$ *i.e.* holes grow!
- Calculations, in conjunction with experiment, suggest the presence of spin fluctuations

What kind of superconductor is Na_{0.35}CoO₂•yH₂O?

Pairing state: Singlet? Triplet?

Order parameter: *s*,*p*,*d*,*f* ...?

singlet order parameter with s-wave symmetry is realized in NavCoO2 $_{\rm W}$ H2O $_{\rm IPSI}$ 72 $_{\rm 2453}$ (2003)			
an unconventional superconducting symmetry with line nodes - <i>cond-mat/0410517 (2004)</i>			
<i>mat/0408426 (2004)</i>			
Possible singlet to triplet pairing transition in NaxCoO2 H2O - <i>PR B70. 144516 (2005)</i> Evidence of nodal supe H2O - <i>PR B71, 20504</i>	conductivity in NaxCoO2.yH(2)O probed by muon spin rotation and relaxation - <i>PR B70, 13458 (2005)</i> conductivity in Na0.35CoO2 . 1.3 005)		
magnetic fluctuations play an imp	portant role in the occurrence of 05		
- JPSJ 74 (2005)	ducting NaxCoO2 a clear candidate pairing - <i>cond-mat/0503010 (2005)</i>		

What pairing states can we exclude?

All remaining states are triplet *f* $\frac{f \text{ states}}{2k_x(k_x^2 - 3k_y^2)}$ $\hat{z}k_y(k_y^2 - 3k_x^2)$

Both f states are axial

Knight Shift can distinguish:

- Spin direction is \perp to vector order parameter
- KS constant across T_C for planar spins (axial order parameter)
- KS decreases across T_C for axial spins (planar order parameter)

Presently, results are contradictory

There is growing evidence that SF have a role in the superconductivity:

- •Curie-Weiss like behavior of $1/T_1$ (above T_C), with negative θ
- •Correlation of T_C with magnetic fluctuations as measured by NQR
- •Direct neutron observation of spin fluctuations in related compounds
- •LDA calculations indicate proximity to quantum critical point

Details of pairing/pair-breaking in a particular system depend on:

i) Fermiologyii) spin fluctuation spectrum - Imχ(q,ω)