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The Distorted Octahedral Environment of Co lons
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CoO0,: Co#* (3d°) => Mott insulator?

NaCoO,: Co3*(3d®) => band insulator

But Na_Co0QO, behaves almost oppositely...



Na content phase diagram
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The calculated phase diagram of Na,CoO,

x=0.3 x=0.5 X=0.7
LDA: FM LDA: FM LDA: FM
Exp: PM Exp: AFM Exp: PM
Y 2 _ 2 Y _ 2
th = 11.8m]/molK Yy = 13.0m]/mol K th = 91 mJ/molK
'Yexp_ ~ 15 m]/mol K2 Yexp ~  27m]/mol K2
Exp: Insulator
A=0.27 A =1.96
itinerant localized

LDA typically finds smaller magnetic moments than experiment
Exception: the vicinity of a quantum critical point

Consistent overestimation of magnetism suggests spin fluctuations



Multi-Orbital Nature of Fermi Surfaces

Na, ,CoO0O,
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Specific heat

30 — N Calculations (not very accurate)

25 1/ show gradual decay towards
(hypothetical) NaCoO,
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NExp. (not very reliable) show a
strong enhancement near x=0.7

At x=0.3, 70% of DOS comes from
| the small e’ pockets!
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Comparison with Experiment
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The large (a,, )Fermi Surface is clearly seen by ARPES

The smaller (e,’) surfaces are absent

WHY?
* Correlations beyond LDA

 Surface effects (relaxation, surface bands, Na content)

* Matrix elements



How does correlation affect the electronic structure?

Strongly correlated systems are characterized by large U/t

What 1s U in Na,Co0O,? LMTO: 3.7 eV (for all 5 d-bands)

Narrow t,, bands screened by
Empty e, orbitals ... U <3.7¢V

(A.Liebsch)
LDA+U: Corrects on-site Coulomb repulsion

Gets good FS match for U=4 eV  (P. Zhang, PRL 93 236402)

But U=4 eV > U, = 3eV for unobserved charge disproportionation
(K-W. Lee PRL 94 026403)

For U<2.5 eV, small pockets remain

Spin fluctuations: Renormalize bands, similarly to phonons
Fermi surface 1s preserved, less weight



Optics: A Probe of Bulk Electronic Structure
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There are three basic peaks: a, f3, y.

Peak shifts with changing Na content are reproduced.

Peak heights and energy positions are exaggerated.



Optics: Effect of LDA+U

How does electronic correlation manifest itself?

= Application of LDA+U
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Dynamical Correlation: DMFT

Dynamical Mean Field Theory gives a very different picture of correlation effects:
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A.Liebsch, 05 Some spectral weight shifts downward



Matrix elements and surface effects

ARPES measurements have either s or p polarized light
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0.08 [ ”“x,\ | For p-polarized light, the dipole matrix
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(A. Liebsch)

Bulk calculations suggest that surface relaxation
of O ions could diminish or eliminate small FS pockets



Summary of Part |

* Na,Co00O, has an unusual magnetic phase diagram

* The system does not behave as a Mott-Hubbard insulator,
despite a rather narrow t,, bandwidth

 The LDA+U method worsens agreement with optical
measurements

* Dynamical correlations show weight transfer from a,, — e’
i.e. holes grow!

e Calculations, in conjunction with experiment, suggest
the presence of spin fluctuations



Part ll: Superconductivity

What kind of superconductor is Na, ;:C00,syH,O ?

Pairing state: Singlet? Triplet?

Order parameter: s,p,d,f ...?



Experimental evidence for pairing state

...singlet order parameter with s-wave symmetry is realized in
NaxCoO? IO IPST 72 2452 /2003)

...an unconventional superconducting symmetry with line nodes -
cond-mat/0410517 (2004)
Unconventional superconductivity in NaxCoO2 yH2O - cond-

mat/0408426 (2004)

Possible unconventional super-
Possible singlet to triplet conductivity in NaxCoO2.yH(2)O
pairing transition in NaxCoO2 | | probed by muon spin rotation and
H20 - PR B70. 144516 (2005) | | relaxation - PR B70, 13458 (2005)
Evidence of nodal superconductivity in Na0.35Co0O2 . 1.3
H20 - PR B71, 20504 (2005)

...magnetic fluctuations play an important role in the occurrence of

SUPS . superconducting electron 05)
pairs are in the singlet state Jucting NaxCoO?2 a clear candidate

- JPSJ 74 (2005) pairing - cond-mat/0503010 (2005)




What pairing states can we exclude?
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f&k“ o Y7 | « No coherence peak in 1/T,
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How can pairing state be further resolved?

All remaining states [ states
are triplet f /z\kx(k)?___3kyz)
Zk,(k}—3k})

Both f'states are axial

Knight Shift can distinguish:

 Spin direction 1s L to vector order parameter
* KS constant across T for planar spins (axial order parameter)
* KS decreases across T for axial spins (planar order parameter)

Presently, results are contradictory



Evidence of Spin Fluctuations in Na; ;;C00,¢1.4H,0

There is growing evidence that SF have a role in the superconductivity:

*Curie-Weiss like behavior of 1/T, (above T.), with negative 0
Correlation of T with magnetic fluctuations as measured by NQR

*Direct neutron observation of spin fluctuations in related compounds

*LDA calculations indicate proximity to quantum critical point

Details of pairing/pair-breaking in a particular system depend on:

1) Fermiology
11) spin fluctuation spectrum - Imy(q,®)



