Photoemission and Hartree-Fock study of some layered t_{2g}-electron systems

<u>T. Mizokawa</u>,¹ L.H. Tjeng,² T.T. Tran,¹ K. Takubo,¹ S. Hirata,¹ H.-J. Lin,³ C.T. Chen,³ K.M. Shen,⁴ A. Damascelli,^{4,5} Z.-X. Shen,⁴ G. A. Sawatzky,⁵ S. Nakatsuji,⁶ H. Fukazawa,⁶ Y. Maeno⁶, Y. Miyazaki,⁷ T. Kajimoto,⁷ R. Kitawaki,⁸ I. Terasaki,⁸ S. Lambert,⁹ C. Michel⁹, N.B. Brookes,¹⁰ S. Schuppler,¹¹ T. Yamamoto,¹² and K. Uchinokura¹²

¹Department of Complexity Science and Engineering, University of Tokyo, Japan

² II. Physikalisches Institut, Universität zu Köln, Germany

³ SRRC, Taiwan

⁴ Department of Physics & Applied Physics, Stanford University, USA

⁵ University of British Colombia, Canada

⁶ Department of Physics, Kyoto University, Japan

⁷ Department of Applied Physics, Tohoku University, Japan

⁸ Department of Applied Physics, Waseda University, Japan

⁹ ISMRA, France

¹⁰ESRF, France

¹¹ Karlsruhe, Germany

¹² Department of Applied Physics, University of Tokyo, Japan

<u>Outline</u>

Ca_{2-x}Sr_xRuO₄ XAS orbital symmetry XPS spectral line shape and correlation effect Hartree-Fock analysis ARPES Fermi surface and the MI transition

CoO₂ triangular lattice in $Bi_2Sr_2Co_2O_9$, Na_xCoO_2 , $Ca_3Co_4O_9$ XPS spectral line shape and correlation effect XAS orbital symmetry Hartree-Fock analysis

Phase diagram of Ca_{2-x}Sr_xRuO₄ (Nakatsuji and Maeno, 2000)

O 1s x-ray absorption spectroscopy of Ca_{2-x}Sr_xRuO₄

Dragon beamline at SRRC Ca_2RuO_4 and $Ca_{1.91}Sr_{0.09}RuO_4$ Single crystals were cleaved *in situ* Total electron yield mode

t_{2g} orbital symmetry

O 1s XAS of Ca_{2-x}Sr_xRuO₄

O 1s XAS across the MI transition

A: apical oxygen B: in-plane oxygen

Orbital change across the MI transition

In the AFI phase, the amount of yz/zx holes decreases with temperature. At the MI transition, the orbital occupation changes discontinuously.

T. Mizokawa, L. H. Tjeng et al., PRB 69, 132410 (2004)

Angle dependence of the O 1s XAS spectra

Model Hartree-Fock calculation

$$H = H_p + H_d + H_{pd},$$

$$H_p = \sum_{\mathbf{k},l,\sigma} \epsilon_k^p p_{\mathbf{k},l\sigma}^{\dagger} p_{\mathbf{k},l\sigma} + \sum_{\mathbf{k},l>l',\sigma} V_{\mathbf{k},ll'}^{pp} p_{\mathbf{k},l\sigma}^{\dagger} p_{\mathbf{k},l'\sigma} + \text{H.c.},$$

$$H_d = \epsilon_d^0 \sum_{i,m,\sigma} d_{i,m\sigma}^{\dagger} d_{i,m\sigma} + \sum_{m,m',\sigma,\sigma'} h_{m,\sigma,m',\sigma'} d_{i,m\sigma}^{\dagger} d_{i,m'\sigma'}$$

+
$$u \sum_{i,m} d^{\dagger}_{i,m\uparrow} d_{i,m\uparrow} d^{\dagger}_{i,m\downarrow} d_{i,m\downarrow}$$

$$+ u' \sum_{i,m \neq m'} d_{i,m\uparrow}^{\dagger} d_{i,m\uparrow} d_{i,m'\downarrow} d_{i,m'\downarrow}$$

+
$$j' \sum_{i,m \neq m'} d^{\dagger}_{i,m\uparrow} d_{i,m'\uparrow} d^{\dagger}_{i,m\downarrow} d_{i,m'\downarrow}$$

+
$$(u'-j)\sum_{i,m>m',\sigma}d^{\dagger}_{i,m\sigma}d_{i,m\sigma}d^{\dagger}_{i,m'\sigma}d_{i,m'\sigma}$$

$$+ \quad j \sum_{i,m \neq m'} d^{\dagger}_{i,m\uparrow} d_{i,m'\uparrow} d^{\dagger}_{i,m'\downarrow} d_{i,m\downarrow},$$

$$H_{pd} = \sum_{\mathbf{k},l,m,\sigma} V_{\mathbf{k},lm}^{pd} d_{\mathbf{k},m\sigma}^{\dagger} p_{k,l\sigma} + \mathrm{H.c}$$

	(pd\sigma)	rotation	tilting	δ_{JT}	
Ca ₂ RuO ₄	-2.8 eV	12.5°	10°	0.975	compressed
Sr ₂ RuO ₄	-3.4 eV	00	0°	1.025	elongated

$$\Delta = \varepsilon_{d} - \varepsilon_{p} + 4U = -0.4 \text{ eV}$$

u = 1.9 eV, u' = 0.9 eV, j = j' = 0.5 eV
(pp\sigma) = 0.6 eV, (pp\pi) = -0.15 eV
(pd\pi)/(pd\sigma) = -0.45

Orbital population of the <u>unoccupied</u> t_{2g} orbitals obtained from the Hartree-Fock analysis of O 1s XAS

	ху	yz/zx	O 2p
Ca ₂ RuO ₄ 370 K (PM)	0.7	0.35/0.35	0.6
Ca ₂ RuO ₄ 300 K (PI)	0.5	0.5/0.5	0.5
Ca ₂ RuO ₄ 77 K (AFI)	0.1	0.7/0.7	0.5
Ca _{1.91} Sr _{0.09} RuO ₄ 300 K (PM)	0.7	0.35/0.35	0.6
Ca _{1.91} Sr _{0.09} RuO ₄ 77 K (AFI)	0.5	0.5/0.5	0.5

T. Mizokawa, L. H. Tjeng et al., PRB 69, 132410 (2004)

Orbital disorder and the MI transition

<u>Outline</u>

Ca_{2-x}Sr_xRuO₄ XAS orbital symmetry XPS spectral line shape and correlation effect Hartree-Fock analysis ARPES Fermi surface and the MI transition

CoO₂ triangular lattice in $Bi_2Sr_2Co_2O_9$, Na_xCoO_2 , $Ca_3Co_4O_9$ XPS spectral line shape and correlation effect XAS orbital symmetry Hartree-Fock analysis

Model Hartree-Fock calculation for Sr₂RuO₄

Calculated Fermi surface of Sr₂RuO₄

Calculated Fermi surface in the extended Brillouin zone scheme. (LDA) T. Oguchi, PR B **51**, 1385 (1995)

Ž

E_F intensity map from ARPES spectra A. Damascelli *et al.*, PR L **85**, 5194 (2000)

XPS and Hartree-Fock result for Sr₂RuO₄

The Ru t_{2g} band near the Fermi level is too broad. The relative intensity of the two peaks near the Fermi level does not match the experimental result.

Second-order self-energy correction for Sr₂RuO₄

reduction of the band width

The overall spectral shape calculated with self-energy correction (second order in u, u',j) shows a better agreement with the XPS spectrum.

T.T Tran, T. Mizokawa *et al.*, PRB **70**, 153106 (2004).

Model Hartree-Fock calculation for Ca₂RuO₄

Energy band structure of Ca₂RuO₄ along high-symmetry lines.

Energy band structure of Ca_2RuO_4 in the region near the Fermi level.

Model Hartree-Fock calculation for Ca₂RuO₄

The HF result reproduces the spectrum of Ca_2RuO_4 .

T. T Tran, T. Mizokawa *et al.*, PRB **70**, 153106 (2004).

Outline

Ca_{2-x}Sr_xRuO₄ XAS orbital symmetry XPS spectral line shape and correlation effect Hartree-Fock analysis ARPES Fermi surface and the MI transition

CoO₂ triangular lattice in $Bi_2Sr_2Co_2O_9$, Na_xCoO_2 , $Ca_3Co_4O_9$ XPS spectral line shape and correlation effect XAS orbital symmetry Hartree-Fock analysis

rotation angle = 10°

Energy band dispersion

Orbital	ху	yz	ZX
Occupation	0.75	0.86	0.86

Fermi surface and occupation number

rotation angle = 0°

Orbital	ху	yz	ZX
Occupation	0.78	0.87	0.87

Fermi surface and occupation number

Fermi surface change as a function of rotation angle

γ band at M point : above $E_{\rm F}$

ARPES: insulating phase vs metallic phase

beamline 5-4 at SSRL photon energy: 28eV Energy resolution: 20 meV

Γ

 $Ca_{1.5}Sr_{0.5}RuO_4$ 10K

 Γ M direction of x = 0.5

similar to x = 0.9

cf. Ding *et al.*, hole-like FS for γ

Γ M direction of x = 0.5 and 0.15

spectral weight at E_F in the insulating(non-metallic) phase

ΓM direction of x = 0.5 and 0.15

The spectral weight at E_F has some momentum dependence.

spectral weight at E_F in the insulating(non-metallic) phase

VRH transport is observed for x=0.15 S. Nakatsuji et al., PRL 93, 146401 (2004).

The spectral weight at E_F can be attributed to the disorder-induced in-gap state that is responsible for the VRH transport.

Why does it show the nice momentum dependence?

The system is spatially (nano-scale?) separated into AFI region (compressed RuO_6 octahedron) and disorder-induced region (elongated RuO_6 octahedron).

Summary

In the AFI phase of x=0, 0.09 and 0.15:

- The amount of yz/zx holes decreases with temperature.
- Disorder (Sr doping) reduces the amount of yz/zx holes.
- Small spectral weight survives at E_F for Sr doped case (inhomogeneous state in the light of lattice distortion).
 At the MI transition:
- Orbital occupation changes discontinuously.
- Disorder (Sr doping) does not affect the orbital change. In the metallic phase of x = 0.3, 0.4, and 0.9:
- Orbital occupation is very similar to that of Sr_2RuO_4 .
- γ FS becomes hampered in going from x=0.9 to 0.4.
- α, β, γ FS are observed even in x = 0.4, but spectral weight at E_F is considerably reduced for all α, β, γ FS. (inconsistent with the orbital-dependent Mott transition).

<u>Outline</u>

Ca_{2-x}Sr_xRuO₄ XAS orbital symmetry XPS spectral line shape and correlation effect Hartree-Fock analysis ARPES Fermi surface and the MI transition

 CoO_2 triangular lattice in $Bi_2Sr_2Co_2O_9$, Na_xCoO_2 , $Ca_3Co_4O_9$ XPSspectral line shape and correlation effectXASorbital symmetryHartree-Fock analysis

layered Co oxides with Co-O triangular lattice

 $Na_{x}CoO_{2}$

Ca₃Co₄O₉

Bi₂Sr₂Co₂O₉

Good metal I. Terasaki *et al.*, 1997. Insulating at low temperature Y. Miyazaki *et al.*, 2002

re Bad metal T. Yamamoto *et al.*, 2000

Valence-band XPS of (Bi,Pb)-Sr-Co-O

Intensity

Valence-band XPS of Ca₃Co₄O₉

Valence-band photoemission spectra (hv = 21.2 eV)

Intensity

Intensity

Phys. Rev. B 64, 115104 (2001)

Orbial symmetry of the a_{1g} **state**

$$\phi_{a1g} = \frac{1}{\sqrt{3}} (\phi_{yz} + \phi_{zx} + \phi_{xy})$$

$$\begin{split} \phi_{yz} &= \frac{i}{\sqrt{2}} \left(\phi_{321} + \phi_{32-1} \right) = \frac{\sqrt{15}}{\sqrt{4\pi}} yz/r^2 R_{32}(r) \\ \phi_{zx} &= -\frac{1}{\sqrt{2}} \left(\phi_{321} - \phi_{32-1} \right) = \frac{\sqrt{15}}{\sqrt{4\pi}} zx/r^2 R_{32}(r) \\ \phi_{xy} &= -\frac{i}{\sqrt{2}} \left(\phi_{322} - \phi_{32-2} \right) = \frac{\sqrt{15}}{\sqrt{4\pi}} xy/r^2 R_{32}(r) \\ \phi_{3z2-r2} &= \phi_{320} = \frac{\sqrt{15}}{\sqrt{16\pi}} (3z^{2-} r^2)/r^2 R_{32}(r) \\ \phi_{x2-y2} &= \frac{1}{\sqrt{2}} \left(\phi_{322} + \phi_{32-2} \right) = \frac{\sqrt{15}}{\sqrt{16\pi}} (x^{2-} y^2)/r^2 R_{32}(r) \end{split}$$

Co 2p and O1s XAS of Ca₃Co₄O₉

 CoO_2 layer low-spin Co^{3+} low-spin Co^{4+} a_{1g} hole

CoO layer low-spin Co³⁺

O 1s and Co 2p XPS of Na_xCoO₂

Hole concentration in the Co-O triangular lattice

Hole concentration x: $Ca_3Co_4O_9 > Na_xCoO_2 > Bi_2Sr_2Co_2O_9$ x = 0.6 0.4 0.3

T. Mizokawa, L. H. Tjeng *et al.*Phys. Rev. B in press.

Charge ordering in the triangular lattice

 $Co^{3+}: Co^{4+} = 2: 1$ Ferromagnetism due to frustration in the ring

 Co^{3+} : $Co^{4+} = 1 : 2$ Anti-ferromagnetic due to the superexchange

 $T_{C} \sim 4 \text{ K for } Bi_{2}Sr_{2}Co_{2}O_{9}$ $T_{N} \sim 20 \text{ K for } Ca_{3}Co_{4}O_{9}$

T. Mizokawa, New Journal of Physics 6, 169 (2004)

Summary

low-spin Co⁴⁺ embedded in nonmagnetic Co³⁺ background small polaron picture is OK

 $S = -k_B/e \ln[x/6(1-x)]$ x: Co⁴⁺ concentration

W. Koshibae, K. Tsutsui, S. Maekawa, PRB 62, 6869 (2000)

Ca₃Co₄O₉: charge ordering at x = 2/3 Antiferromagnetic Bi₂Sr₂Co₂O₉: charge ordering at x = 1/3 Ferromagnetic

$$Ca_{3}Co_{4}O_{9} > Na_{x}CoO_{2} > Bi_{2}Sr_{2}Co_{2}O_{9}$$

x 0.6 0.4 0.3

orbital a_{1g} $a_{1g} + e_{g}$, a_{1g}

Photoemission and x-ray absorption spectroscopy

- can probe interesting strongly-correlated electron states
- in the 2D t_{2g} electron systems:

Ca_{2-x}Sr_xRuO₄

relatively itinerant 4d t_{2g} electrons atomic effect (spin-orbit interaction) is still important orbital jump at the metal-insulator transition metallic state at E_F in the insulating(non-metallic) phase

 $Bi_2Sr_2Co_2O_9$, Na_xCoO_2 , $Ca_3Co_4O_9$

almost localized 3d t_{2g} electrons

low-spin Co⁴⁺ polaron in nonmagnetic Co³⁺ background close to the charge ordered states at x = 1/3 and 2/3