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Structure of Hg-1201 
compound ( HgBa2CuO4+δ ) Tc as a function of doping 

(oxygen or fluorine) 
Abakumov et al. Phys.Rev.Lett. (1998)
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WHY  ARE   COPPER–OXIDES  THE   ONLY
HIGH–Tc SUPERCONDUCTORS  with  Tc > 100 K?

Cu 2+ in 3d9 state has the lowest 3d level in transition metals

with strong  Coulomb correlations   Ud >∆pd = εp – εd.

They are   CHARGE-TRANSFER INSULATORS

with HUGE super-exchange   interaction  J ~ 1500 K  —>

AFM  long–range order with high TN = 300 – 500 K

Strong coupling of doped holes (electrons) with spins

Pseudogap due to AFM  short – range order

High-Tc superconductivity ?



EFFECTIVE  HUBBARD  p-d   MODEL

Model  for  CuO2 layer:
Cu-3d  ( εd ) and 
O-2p  (εp )  states
∆ =  εp − εd  ≈ 2 tpd ~ 3 eV
In terms of O-2p Wannier states

εd

εd+ εp

2εd+Ud

ε1

ε2
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Cell-cluster perturbation theory and Hubbard operators
Exact  diagonalization of  the  unit cell   Hamiltonian Hi

(0)

gives  new eigenstates:
E1 = εd - µ → one   hole   d - like  state:   l σ >
E2 = 2 E1 + ∆ → two hole (p - d)  singlet state:  l ↑↓ >

Xiαβ = l iα > < iβ l with  l α > = l 0 >,  l σ >,  l ↑↓ >
Hubbard operators rigorously obey  the constraint:

Xi
00 +  Xi

↑↑ +  Xi
↓↓ +  Xi 

22 = 1
― only one quantum state can be occupied at any site  i.
In terms of the projected Fermi operators:
Xi

0σ → ci σ (1 – n i – σ) ,   Xi
σ2→ ci – σ n i σ

Commutation relations:  [Xi
αβ , Xi

γδ ] ± = δ βγ Xi
αδ ± δ δα Xi

γβ

We introduce the Hubbard operators for these states:



The two-subband effective Hubbard model reads:

Kinematic interaction for the  Hubbard  operators:



Dyson equation for GF in the Hubbard model
We introduce the  (4x4)  matrix  Green Functions:



Equations of motion for the matrix GF are  solved  
within  the  Mori-type projection    technique:

The   Dyson    equation    reads:

with   the self-energy  as  the  multi-particle   GF:



Mean-Field approximation:   zero order GF

– frequency matrix of the normal  state 

where  frequency  matrix:

with

QP spectrum:  Ω2(q) for  UHD and  Ω1(q) ─ LHB

– matrix of anomalous correlation functions: e.g.,

– SC gap for singlets (UHB)



Normal state  MFA GF:  one-hole  ΩD(q) and  two-hole  Ωψ(q) spectra

Spectral weights:

Hybridization:

Dispersion in  n.n.                   and   n.n.n.                 approximation:

Spin-correlation 

functions:
< 0, > 0,

where 1/ = 4 / n2



Spin-correlation functions gives a strong renormalization for spectra

Normalization condition defines =      at q =

─ the fitting parameterfor a given AF correlation length 

n = 1          » a:

n = 1.2        = a:

= - 0.336,

= - 0.10,

=  0.202,

=  0.03,

= =n = 1.4  0,   ─ no  AF corelations



2-pole approximation for the effective Hubbard model: spectra and  DOS

n=1, ξ » a n=1.2, ξ = a n=1.4,  χ s = 0



Self-energy corrections to the 2-pole approximation 

in the SCBA for  the Hubbard model

Spectral density A(k,ω)

U = 8 t,  n = 0.75,  T = 0.5 t

EF

EF

UHBLHB

Density of states A(ω)

QMC

Krivenko et al. Physica B (2005)



Mean-Field approximation for the gap function

Frequency 
matrix:

where – matrix of anomalous correlation functions

– anomalous correlation function 
– SC gap for singlets in UHB

→ PAIRING at ONE lattice site but in TWO subbands



Equation   for   the pair   correlation  Green  function 
gives:

For the singlet  subband (UHB) :  µ ≈ ∆ and  E2  ≈ E1 ≈ – ∆ :

Gap function for the singlet subband in MFA :

is  equvalent to  the  MFA  in   the t-J  model



AFM exchange pairing
W

t12

ε2

ε1

µ
0

ji

All electrons (holes) are paired in the conduction band. 
Estimate  in  WCA  gives  for   Tcex :



Self-energy in the Hubbard model

,      where

Xj Xm
tij tlm

Bi Bj

tij tlmGjm

χil

≈SCBA:

Self-energy matrix:



Gap    equation   for the   singlet  (p-d)  subband:

where the kernel of the integral equation in SCBA

defines pairing mediated by  spin  and  charge fluctuations.



ε2

i j
0
−ωs

ωs

W

µ

Spin-fluctuation pairing

ε1

Estimate  in  WCA  gives  for   Tcsf :



Equation for the gap and Tc in WCA

The AFM static spin susceptibility

where ξ ― short-range  AFM  correlation length, 
ωs ≈ J ― cut-off  spin-fluctuation  energy.

Normalization condition:



Estimate   for Tc in   the  weak coupling  approximation

Effective 
spin-fluctuation    
pairing constant
Vs enhanced by 

exchange



Tc (a) and  pressure dependence
For mercury compounds, Hg-12(n-1)n, experiments  show 
dTc / da ≈ – 1.35·10 3 (K /Å),   or   d ln Tc / d ln a ≈ – 50
[ Lokshin et al. PRB  63 (2000) 64511 ]

For exchange pairing
Tc ≈ EF exp (– 1/ Vex ),
Vex = J N(0) ,   we get: 
d ln Tc / d ln a 

= (d ln Tc / d ln J) 
× (d ln J / d ln a)  

≈ – 14 (1/ Vex ) ≈ – 50 ,
where  Vex ≈ 0.3   and

J ≈   tpd4 ~ 1/a14

Hg-1201F

↓



For conventional,  electron-phonon superconductors,
d Tc / d P <  0 , e.g., for MgB2,  d Tc / d P ≈ – 1.1  K/GPa,
while for cuprates superconductors, d Tc / d P > 0 

Isotope   shift:  16 O → 18 O

Isotope  shift of TN = 310K for  La2CuO4 , ∆ TN ≈ −1.8 K 
[ G.Zhao et al., PRB 50 (1994) 4112 ]

and  αN = – d lnTN /d lnM ≈ – (d lnJ / d lnM) ≈ 0.05
Isotope  shift of  Tc : αc = – d lnTc / d lnM =
= – (d lnTc / dln J) (d lnJ/d lnM ) ≈ (1/ Vex) αN ≈ 0.16



Equation for the gap and Tc in WCA

The AFM static spin susceptibility

where ξ ― short-range  AFM  correlation length, 
ωs ≈ J ― cut-off  spin-fluctuation  energy.

Normalization condition:



Fig.1. Tc ( in  teff units):
(i)~spin-fluctuation pairing,
(ii)~AFM exchange pairing ,
(iii)~both contributions

NUMERICAL RESULTS

Parameters: 
∆pd / tpd = 2,  ωs / tpd = 0.1, 
ξ =  3,   J = 0.4 teff,  
teff ≈ 0.14 tpd ≈ 0.2 eV, 
tpd = 1.5 eV

0.13

sf

exch

sf + exch



Unconventional  d-wave  pairing:

∆(kx, ky) ~∆ (coskx - cosky)

Fig.  2.      ∆(kx, ky)
( 0 < kx,   ky < π) 
at optimal doping δ ≈ 0.13FS

Large Fermi surface (FS)



Comparison with the t-J model

The  Hamiltonian  of  the t-J model in X- operators reads:
Interband hopping    

determines the 
exchange interaction:

Jij = 4 (tij)2 / ∆

Matrix Green function for the X-operators:

where



Self-consistent system of equation in SCBA

where the interaction

is determined by spin- charge- fluctuations  

Spectral functions  for the normal and anomalous GF:



Numerical solution of the linearized gap equation 

Interaction:

Model spin 
susceptibility with 
parameters:

AF cor.length ξ
and   ωs ~ J



Numerical  results
1. Spectral functions  A(k, ω)

Fig.1. Spectral function for the t-J model in the symmemtry direction 
Γ(0,0) → Μ(π,π) at doping:  (a) δ = 0.1  (ξ=3) ,   (b) δ = 0.4 (ξ=1).



2.  Self-energy, Im Σ(k, ω)

Fig.2. Self-energy for the t-J model in the symemtry direction

Γ(0,0) → Μ(π,π) at doping  δ = 0.1 (a) and δ = 0.4 (b) .



3. Electron occupation numbers N(k) = n(k)/2

Fig.3.  Electron occupation numbers for the t-J model in the quarter 
of   BZ, (0 < kx, ky < π)   at doping  δ = 0.1 (a) and δ = 0.4 (b) .



4. Fermi surface and the gap function Φ(kx, ky) 

Fig.4. Fermi surface (a) and the gap Φ(kx, ky) (b)  for the t-J model 
in the quarter  of   BZ (0 <  kx, ky < π)   at doping  δ = 0.1.



CONCLUSIONS

Superconducting d-wave pairing with high-Tc
mediated by the AFM superexchange and spin-
fluctuations is proved for the p-d Hubbard model.
Retardation effects for  AFM exchange are suppressed:
∆pd >> W ,  that results in pairing of all electrons (holes)  
with  high    Tc ~ EF ≈ W/2 .
Tc(a) and oxygen isotope shift  are explained.
The results corresponds to numerical solution to the 
t-J model in  (q, ω) space in strong coupling limit.
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