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Outline

1. Disordered state in frustrated magnets

2. Lanczos methods & ARPES

3. Spin-charge separation in single hole
dynamics ?

4. New results for the J1-J2-J3 model

(Exotic superconductivity in VBS host)
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Collaborations and
references

Single hole dynamics
A. Läuchli & DP, PRL 92, 236404 (2004)

On the J1-J2-J3 model: ongoing work with
A. Läuchli, M. Mambrini & F. Mila

Other work: doped Shastry-Sutherland lattice
P W. Leung, PRB 69, 180403 (2004)

Pairing in VBS host
DP, PRL 93, 197204 (2004)
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2D Frustrated
magnets

Lattices with AF frustrating interactions

Melzi et al., PRB 85,
1318 (2000)

J

J1

2

frustrated square
lattice (S=1/2):

Li2VOSiO4

Kagome lattice like
SrCr9−xGa3+xO19

(S=3/2)
Ramirez et al., PRL 64 (’90)
Broholm et al., PRL 65 (’90)
Uemura et al., PRL 73 (’94)Spin-charge separation in doped 2D frustrated quantum magnets – p. 4



3D Frustrated
magnets

pyrochlores and spinels

Transition metal oxides
- ZnCr2O4 spinel

- A2Ti2O7 titanates
Ramirez et al., PRL 89,

067202 (2002)

-no ordering at low temperatures
-spin gap formation
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Exotic disordered
groundstates

Low-spin (S=1/2) ⇒ strong quantum fluctuations

Schulz, Ziman & DP,
"Magnetic systems with

competing interactions", p120,
Ed. H.T. Diep, W.-S.(1994)

nature of disordered
phases ?

→ many studies (and
controversies !)

Misguich & Lhuillier,
"Frustrated spin systems", Ed.
H.T. Diep, World-Scientific

(2003)
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Confinement vs
deconfinement

Idea: use doping (or ARPES) to probe nature of
the ground state

(a) (b)

”string potential” ”deconfined” spinon
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Checkerboard lattice:
a Valence Bond Solid

2D array of
corner-sharing

tetrahedra:
”2D pyrochlore”

VBS phase
(plaquette)

Fouet et al., PRB
(2003)

Finite spin gap ∼ 0.6J

Translation symmetry breaking

1. Esinglet(Q = (π, π)) − E0 → 0 when N → ∞
2.

〈

PlaqlPlaql′

〉

→ finite when |l′ − l| → ∞
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Kagome: paradigm
of a “spin liquid” (?)

Magnetically disordered
Leung & Elser PRB 47, 5459 (1993)

Small spin gap ∼ 0.05J
Lecheminant et al., PRB 56, 2521 (1997)

No symmetry breaking (neither SU(2) nor
lattice symmetries)

Large number of low energy singlets
Waldtmann et al., EPJB 2, 501 (1998)
Mila et al., PRL 81, 2356 (1998)
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framework

(c)

(a) (b)

(d)

Γ

M

Γ

M
Σ

H = −t
∑

〈i,j〉,σ

P
(

c
†
i,σcj,σ + h.c.

)

P + J
∑

〈i,j〉

Si · Sj −
1

4
ninj

Spin-charge separation in doped 2D frustrated quantum magnets – p. 10



Frustrated hole
motion

J → 0 limit
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singlet triplet

t < 0 E = −|t| E = −2|t|

t > 0 E = −2t E = −t
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Single particle
Green-function

"time-ordered" Green’s function → "electron"
(ω < 0) and "hole" (ω > 0) parts

G(q, ω) = 〈Ne|c†−q,σ

1

ω − iε + H − ENe−1

cq,σ|Ne〉

+ 〈Ne|cq,σ
1

ω + iε − H + ENe+1

c
†
−q,σ|Ne〉

half-filling: Ne = N , system size

"hole" and "electron" parts related: t ⇔ −t

Spectral fct Im G(q, ω) → IPES & ARPES
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Dynamics within
Lanczos ED

- Continued-fraction: z = ω + iε, A = cq,σ or A = c
†
−q,σ

G(z) =
〈Ψ0|AA†|Ψ0〉

z + E0 − ẽ1 −
b̃2
2

z + E0 − ẽ2 −
b̃2
3

z + E0 − ẽ3 − . . .

- Physical meaning:
I(ω) =

∑

m |〈Ψm|A†|Ψ0〉|2δ(ω − Em + E0)

1. poles and weights → dynamics of A†

2. symmetry of A† → well defined quantum numbers & selection rules

3. ! calculation of eigen-states/vectors not required !
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Static hole
(checkerboard)

- Switch off t first ⇒ already some insight !
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Similarity with 1D spin-Peierls g.s.
⇒ confining potential between "holon" and
"spinon"
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Static hole (Kagome)
- Static correlations: Dommange et al., PRB 68,
224416 (2003)
- Dynamic correlations: Z = |

〈

Φ1h|ci,↑|Φ0h

〉

|2 ' 0
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Weights distributed
on many poles even

at low energies
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Hole dynamics
in the VB Solid
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Single hole doped
in a spin liquid
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spin & charge repel !
(a)

(c) (d)

(b)

t>0 t<0

⇐ Hole-spin
correlations

Dimer correlations
in

"Holon" wavefct

Spin & charge separation: holon benefits from large dimer
correlations in neighboring triangle (like static case: see
e.g. Dommange et al, PRB)
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Hole localisation in
the VBS host
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Electron-hole asymmetry

For t > 0: destructive interference effects
→ single hole almost localized
→ singlet corr. robust & no Nagaoka FSpin-charge separation in doped 2D frustrated quantum magnets – p. 19



J1-J2-J3 square lattice
Heisenberg

J  /J2 1

J  /J13

0.5

0.5

(0,π)

q(  ,π)

(q,q)

impZ      <0.84

B

A

(π,π)

Classical phase
diagram (Moreo et
al., PRB 90)
→ collinear vs spiral

Quantum case
→ VBS vs spin liquid

columnar dimer: Leung & Lam, PPB 96

spin liquid: Capriotti, Scalapino & White, PRL 2004
=⇒ Zimp = |

〈

Φ1h|Φbare
1h

〉

|2 with |Φbare
1h

〉

= ci,↑|Φ0h

〉

(t = 0)
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Spin distribution
〈

Sz
i

〉

at distance r = ri − rO from defect
on a

√
32 ×

√
32 = 32-site square cluster
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A B
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bare
→ spin-spin

correlation in host
〈

Sz
i

〉

gs
→ location of

“spinon”

Typically, ξconf > ξAF

ξconf finite when N → ∞ ?
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Discussion &
Conclusions

Spin-charge separation in a spin-liquid
→ Generic ? Finite density of holes ?

Spinon-holon bound-state in translational
symmetry breaking VBS

Frustration of hopping → electron-hole
asymmetry

Progress on frustrated square lattice AF
→ help from dimer basis (Mambrini et al.)

Pairing mechanism based on kinetic energy
(another time!)
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Metallic frustrated
systems ?

spinel oxide LiTi2O4

Sun et al., PRB 70, 054519 (2004)

5d transition-metal pyrochlores as Cd2Re207

or KOs2O6

Hanawa et al., PRL 87, 187001 (2001)
Hiroi et al., JPSJ 73, 1651 (2004)

CoO triangular layer based compound
Takada et al., Nature 422, 53 (2003)

All superconducting with Tc up to 13.7 K !
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Dynamics within
Lanczos ED

- A† is applied to GS:

|Φ̃1〉 =
1

(〈Ψ0|AA†|Ψ0〉)1/2
A†|Ψ0〉

⇒ C̃(z) = 〈Ψ0|AA†|Ψ0〉〈Φ̃1|(z′ − H)−1|Φ̃1〉

- Lanczos procedure:

z′ − H =

z′ − ẽ1 −b̃2 . . . 0

−b̃2
. . . . . . ...

... . . . . . . −b̃M

0 . . . −b̃M z′ − ẽM

(1)
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Non-magnetic dopant
in spin-Peierls chain

Experiment
Doping in CuGeO3: Cu2+ → Zn2+ or Mg2+

Hase et al., PRL 71, 4059 (1993)

Theory (numerics)
Augier et al., PRB 60, 1075 (1999)
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Pairing energy

Binding on 4×4 &
√

32×
√

32-site clusters
∆binding = E2holes + EHeis − 2E1hole

0 0,1 0,2 0,3 0,4 0,5 0,6
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0

 square lattice
 d-wave  t<0
 d-wave  t>0
 s-wave  t>0
 s-wave  t<0
    dxy      t>0

 g-wave  t>0

J

E
ne

rg
y h-h continuum

4x4
4x4

EB
kin<0

EB
mag>0

Feynman-Hellmann:
magnetic energy:

E
mag
B = J dEB

dJ

kinetic energy:
Ekin

B = EB − E
mag
B < 0

⇒ gain !!

s-wave and d-wave symmetries favored
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Hole-hole
correlations
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- No hole-hole repulsion for t > 0
- Pair size ∼ 3 lattice spacings
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Correlated pair
hopping

- Analogy with fully frustrated TB model:
interaction-induced delocalized 2-particle BS

Vidal & Douçot, PRB 65, 045102 (2002)
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