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Motivation
Advertisement: The study of disorder effects in superconductors

will give information on the pairing state
and the pairing interaction

Unfortunately, in the case of unconventional superconductors, theoretical
predictions are VERY sensitive to details of disorder, e.g. strength and shape
of scattering potentials.
Such studies might teach us more about the nature of the defects, as well as
the correct way to describe the effects of disorder, than the superconducting
state! Using approximations popular in the theory of superconductivity and
taking the normal state limit can lead to unacceptable results.
Defects affect many properties, notably low temperature, low frequency
transport properties.

T -Matrix (single impurity / alloy model)

T̂ (k,k′;ω) = V (k−k′)σ̂3+

∫

d2p

(2π)2
V (k−p) σ̂3 Ĝ

0(p, ω) T̂ (p,k′;ω) exact !

Ĝ(r, r′, ω) = Ĝ0(r − r′, ω)+

∫

d2k

(2π)2

∫

d2k′

(2π)2
eikr Ĝ0(k, ω)T̂ (k,k′;ω)Ĝ0(k′, ω) e−ik′r′

V (r) =
N
∑

i=1

v(r −Ri) N � 1 alloy model Average with respect to ~Ri

Non-crossing approximation

t̂(k,k′;ω) = v(k−k′)σ̂3+

∫

d2p

(2π)2
v(k−p) σ̂3 Ĝ(p, ω) t̂(p,k′;ω)

t̂ is the T -Matrix for a single defect.

Ĝ(k, ω) =
[

ωσ̂0 − ε(k)σ̂3 − ∆(k)σ̂1 − Σ̂(k, ω)
]

−1

= G0 σ̂0 +G3 σ̂3 +G1 σ̂1

with Σ̂(k, ω) = nimp t̂(k,k;ω)

In this case, the DOS N(r, ω) = − 1

π
Im
[

Ĝ(r, r;ω)
]

11
is spatially constant.

T -Matrix (weak / strong scatterers)

weak scatterers, Born approximation

T̂ (k,k;ω) =

∫

d2p

(2π)2
V (k − p) σ̂3 Ĝ

0(p, ω)V (p− k)

In many cases V (k−p) does not need to be specified. A few integrals involving
V are parametrized. If necessary, assumptions with respect to |V (k − p)|2 are
made.
Re T is irrelevant, can be absorbed in the chemical potential.
Im T involves only Im G.

strong scatterers
A detailed model for V (k − p) is required to define the kernel of the integral
equation. Since T is complex, both Im Ĝ0 and Re Ĝ0 are required.

T -Matrix (point-like scatterers)

V (k−p) = V ⇒ T̂ (ω) =

[(

1

V
−

∫

d2p

(2π)2
G3(p, ω)

)

σ̂3 −

∫

d2p

(2π)2
G0(p, ω) σ̂0

]−1

Unconventional superconductors : Pole close to the real axis for small ω when
the coefficient of σ̂3 vanishes. ⇒ ”resonant scattering”, ”midgap states”

Re
∫

d2p

(2π)2
G3(p, ω) = Re Ĝ3(r = 0, ω) does not exist !

Possible ways out:

• neglect the divergent contribution G3(r = 0, ω) (invoke particle-hole
symmetry). Then consider the unitary limit V → ∞.

• consider only a single band of finite width

• Consider finite range scatterers, including the dependence of V on |k|.
This way the physical origin of resonant scattering - matching of wave-
length to size of scattering center - would be recovered.

Model
Defects are described by a concentration nimp and some momentum depen-
dent model scattering potential v(k, k′). In order to generalize and compare
with our previous work on the conductivity we assume a circular Fermi surface
and an infinitely wide band. Then the potential v is an even function of the
angle ϕ between kF and k′F , which can be expanded as

v(ϕ) = v0

+∞
∑

k=−∞

uk e
ikϕ with u0 = 1

For a Gaussian v(ϕ) = v0
1

I0(γ)
eγ cosϕ one has uk(γ) = Ik(γ)/I0(γ)

k 1 (p) 2 (d) 3 (f) 4 5 6
uk(5) 0.8934 0.6427 0.3793 0.1875 0.0792 0.0291
uk(1) 0.4463 0.1074 0.0174 0.0024 0.0002 < 10−4

We can also study the effect
of scattering in individual `–
channels, by keeping only some
of the coefficients uk. These
could be varied at will and,in par-
ticular, could be taken to be neg-
ative.

T -matrix (Fermi surface restricted approximation)
There are important consequences of the dependence of V on k, even if we put |k| = kF .
Then the equation for T̂ =

∑n

i=1 t
lσ̂l reduces to

t0(ϕ, φ) = πNF

∫ 2π

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t3(ψ, φ) − g1(ψ) t2(ψ, φ)
]

t1(ϕ, φ) = πNF

∫ 2π

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t2(ψ, φ) − g1(ψ) t3(ψ, φ)
]

t2(ϕ, φ) = πNF

∫ 2π

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t1(ψ, φ) + g1(ψ) t0(ψ, φ)
]

t3(ϕ, φ) = v(ϕ− φ) + πNF

∫ 2π

0

dψ

2π
v(ϕ−ψ)

[

g0 t0(ψ, φ) + g1 t1(ψ, φ)
]

g0(ψ;ω) and g1(ψ;ω) are the energy integrated normal and anomalous
retarded Green functions

g0(ψ, ω+) = −
ω − Σ0(ψ, ω+)

√

[∆(ψ) + Σ1(ψ, ω+)]2 − [ω − Σ0(ψ, ω+)]2

g1(ψ, ω+) = −
∆(ψ) + Σ1(ψ, ω+)

√

[∆(ψ) + Σ1(ψ, ω+)]2 − [ω − Σ0(ψ, ω+)]2

Since particle-hole symmetry is assumed, g0 and g1 are independent of t3(ψ,ψ) and g3 van-

ishes. All four components t`(ϕ,φ) are required for the calculation of Σ0,1.

Selfenergy Σ
0

The parameters introduced so far are combined in the following way:

πNF v0 = tan δ0 , c = cot δ0 , Γel
N =

nimp

πNF

sin2 δ0

For point-like scatterers Σ1 = 0 and Σ0 is independent of angle (momentum).

U: near unitary limit δ0 = 0.49π, c = 0.03,

B: near Born limit δ0 = 0.10π, c = 3.1

As is well-known: Σ
′′

B
� Σ

′′

U
for ω → 0.

For elevated frequencies one finds Σ
′′

U ≤ Σ
′′

B

For this reason, weak scatterers remove the

peak in the microwave surface resistance at in-

termediate temperatures, without affecting the

low temperature behavior.

(C.T. Rieck and K. Scharnberg: in New Trends in
Superconductivity, NATO Science Series II, Vol.

67, J.F. Annett and S. Kruchinin (eds.), p.39)
For ω → ∞, Σ

′′

B and Σ
′′

U tend to Γel
N, chosen to be 0.2 meV in these calculations.

Selfenergies Σ
0 and Σ

1 for Gaussian potential, γ = 5

Σ0(ω,ϕ) =

∞
∑

`=−∞

Σ0`(ω) cos[4`ϕ] ; ∆(ϕ) = ∆0 cos[2ϕ]

Σ1(ω,ϕ) =

∞
∑

`=−∞

Σ1`(ω) cos[(4`− 2)ϕ] =
∆(ϕ)

ω

∞
∑

`=−∞

S1`(ω) cos[4`ϕ]

Comparison of Σ0` and S1` for ` = 0, 1

solid : δ0 = 0.49π, c = 0.03, near unitary limit dashed : δ0 = 0.10π, c = 3.1, near Born limit

The fact that Im Σ00(ω � ∆max) near the Born limit is much larger than the corresponding value

for point-like scatterers is due to the ambiguity in comparing v = const and v(ϕ):

〈v2(ϕ)〉 = 〈v(ϕ)〉2 I0(2γ)/I2
0 (γ) = 3.8 〈v(ϕ)〉2 for γ = 5.

Note the large contribution to quasiparticle scattering at frequencies near the OP maximum!

Selfenergy Σ
0 for Gaussian potential, limiting behavior

For ω � ∆max, (OP-Amplitude), Σ0` reduces to the normal state result:

Σ00 = −iΓel
N

M
∑

m=−M

u2
m

cos2 δ0 + sin2 δ0 u2
m

Unitary limit: Σ00(δ0 = 0.5π) = −iΓel
N (1 + 2M)

The limiting value in the Figure is 4.2 meV
since we have chosen M = 10.
There is a problem here with the Fermi sur-
face restricted approach!.
For δ0 = 0.49π, the contribution from terms
m > 7 is negligible. The limiting value is much
larger, though, than for point-like scatterers.

limω→∞ Σ0` with ` 6= 0 vanishes, because the normal state has been assumed to be
isotropic.

Tc-reduction (one component OP)

∆(ϕ) ∝ cos(4`− 2)ϕ =⇒ ln
Tc

Tc0
= ψ

(

1

2

)

− ψ

(

1

2
+
λ4`−2

2

)

with pair breaking parameters λ4`−2 =
Γel
N

πTc

1
2

∑

∞

m=−∞

(um−um+4`−2)2

(cos2 δ0+u2
m sin2 δ0)(1+u2

m+4`−2
tan2 δ0)

Pair breaking parameters λ2 and λ6 for
Gaussian potentials with widths γ = 1
(solid lines) and γ = 5 (dashed lines) as
function of the s−wave scattering phase
shift δ0 = tan−1(πNF v0). The dot-dashed
line is obtained for γ = 5 when only s−, p−,
and d−wave scattering are taken into ac-
count. When γ = 1, the difference between
this approximation and the full expansion is
hardly visible.

Tc-reduction (pair breaking - Born limit)

Pair breaking parameter, Born limit δ0 → 0

λBorn
4`−2 =

Γel
N

πTc

1

2

∞
∑

m=−∞

(um − um+4`−2)
2

=
nimp

πTc

πNF

∫ 2π

0

dϕ

2π
v2(ϕ)

{

1 − cos ([4`− 2]ϕ)
}

=
Γel

N

πTc

1

I2
0 (γ)

[

I0(2γ) − I4`−2(2γ)
]

for Gaussian potential

If only the first three terms are taken into account one finds for ` = 1

λBorn
2 =

Γel
N

πTc

[

(1 − u2)
2 + u2

2 + u2
1

]

=
Γel

N

πTc

1

I2
0 (γ)

[

(I0(γ) − I2(γ))
2 + I2

2 (γ) + I2
1 (γ)

]

which could be very different for large γ. For extended defects, the Born approximation
does not result from the T -Matrix by simply omitting the denominators.

Tc-reduction (two component OP)

∆(ϕ) ∝ c2 cos 2ϕ+c6 cos 6ϕ (popular ansatz to explain U-shape in ARPES)

ln
ωD

2πTc

=
1

2





1

λ+

+
1

λ−

+ ψ

(

1

2
+
λ2

2

)

+ ψ

(

1

2
+
λ6

2

)



±
1

2









1

λ+

−
1

λ−





2

+

(

ψ

(

1

2
+
λ2

2

)

− ψ

(

1

2
+
λ6

2

))2

−2

(

ψ

(

1

2
+
λ2

2

)

− ψ

(

1

2
+
λ6

2

))





1

λ+

+
1

λ−





Λ22 − Λ66

Λ22 + Λ66





1
2

Critical temperature Tc for Gaussian po-
tential with width γ = 5 for three different
phase shift δ0 = 0.05π, 0.3π, 0.5π .
full line : Abrikosov-Gorkov
dashed lines : single component OP
dot-(dash) lines : two component OP
Inset depends on details of the pairing in-
teraction; It can happen that ∆6/∆2 re-
mains constant.

Angle Dependent DOS – Spectralfunction

These curves reflect the frequency dependence of Σ
′′

U and Σ
′′

B

N(ω, ϕ) at ω ≈ 0 and ω ≈ ∆max = 16.6 meV depends
sensitively on strength and shape of the scattering potential!

Summary
• T-Matrix

– single impurity / alloy model almost identical calculations

– weak / strong scatterers

– point like / extended scatterers

The assumption of point like scatterers
causes no problems, when the scattering
is weak. For resonant scattering, Re Ĝ and
the dependence of V on |k| needs to be
taken into account

• Results for a Fermi surface restricted approximation

– Tc-reduction

is mitigated by d-wave scattering only in the
Born limit. Tc(Γ

el
N ) qualitativ similar to AG ,

unless the OP has several components.

– Density of States

The appearance of resonances depends
sensitively on the shape of the scattering
potential. Most likely, the finite range of the
scattering potential will reduce N(ω = 0).


