Effects of disorder with finite range on the properties of d - wave superconductors

Simon Scheffler, Carsten T. Rieck, Kurt Scharnberg

I. Institute of Theoretical Physics, University of Hamburg, Jungiusstr. 9, 20355 Hamburg, Germany

Motivation

Advertisement:
The study of disorder effects in superconductors will give information on the pairing state and the pairing interaction
Unfortunately, in the case of unconventional superconductors, theoretical predictions are VERY sensitive to details of disorder, e.g. strength and shape predictions are VERY s
of scattering potentials.
Such studies might teach us more about the nature of the defects, as well as Such correct way to describe the effects of disorder, than the superconducting the corret ways approximations popular in the theory of superconductivity and taking the normal state limit can lead to unacceptable results. Defects affect many properties, notably low temperature, low frequency transport properties.

T-Matrix (single impurity / alloy model)

$\hat{T}\left(\boldsymbol{k}, \boldsymbol{k}^{\prime} ; \omega\right)=V\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \hat{\sigma}_{3}+\int \frac{d^{2} p}{(2 \pi)^{2}} V(\boldsymbol{k}-\boldsymbol{p}) \hat{\sigma}_{3} \hat{G}^{0}(\boldsymbol{p}, \omega) \hat{T}\left(\boldsymbol{p}, \boldsymbol{k}^{\prime} ; \omega\right) \quad$ exact
$\hat{G}\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}, \omega\right)=\hat{G}^{0}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}, \omega\right)+\int \frac{d^{2} k}{(2 \pi)^{2}} \int \frac{d^{2} k^{\prime}}{(2 \pi)^{2}} e^{i \boldsymbol{k} \boldsymbol{r}} \hat{G}^{0}(\boldsymbol{k}, \omega) \hat{T}\left(\boldsymbol{k}, \boldsymbol{k}^{\prime} ; \omega\right) \hat{G}^{0}\left(\boldsymbol{k}^{\prime}, \omega\right) e^{-i \boldsymbol{k}^{\prime} \boldsymbol{r}}$
$V(\boldsymbol{r})=\sum_{i=1}^{N} v\left(\boldsymbol{r}-\boldsymbol{R}_{i}\right) \quad N \gg 1$ alloy model \quad Average with respect to \vec{R}_{i}
$\left(\boldsymbol{k}, \boldsymbol{k}^{\prime} ; \omega\right)=v\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \hat{\sigma}_{3}+\int \frac{d^{2} p}{(2 \pi)^{2}} v(\boldsymbol{k}-\boldsymbol{p}) \hat{\sigma}_{3} \hat{G}(\boldsymbol{p}, \omega) \hat{t}\left(\boldsymbol{p}, \boldsymbol{k}^{\prime} ; \omega\right)$
\hat{t} is the T-Matrix for a single defect.
$\hat{G}(\boldsymbol{k}, \omega)=\left[\omega \hat{\sigma}_{0}-\varepsilon(\boldsymbol{k}) \hat{\sigma}_{3}-\Delta(\boldsymbol{k}) \hat{\sigma}_{1}-\hat{\Sigma}(\boldsymbol{k}, \omega)\right]^{-1}=G_{0} \hat{\sigma}_{0}+G_{3} \hat{\sigma}_{3}+G_{1} \hat{\sigma}_{1}$

In this case, the $\operatorname{DOS} N(\boldsymbol{r}, \omega)=-\frac{1}{\pi} \operatorname{Im}[\hat{G}(\boldsymbol{r}, \boldsymbol{r} ; \omega)]_{11}$ is spatially constant.

T-Matrix (weak / strong scatterers)

weak scatterers, Born approximation

$\hat{T}(\boldsymbol{k}, \boldsymbol{k} ; \omega)=\int \frac{d^{2} p}{(2 \pi)^{2}} V(\boldsymbol{k}-\boldsymbol{p}) \hat{\sigma}_{3} \hat{G}^{0}(\boldsymbol{p}, \omega) V(\boldsymbol{p}-\boldsymbol{k})$

In many cases $V(\boldsymbol{k}-\boldsymbol{p})$ does not need to be specified. A few integrals involving V are parametrized. If necessary, assumptions with respect to $|V(\boldsymbol{k}-\boldsymbol{p})|^{2}$ are
made.
$\operatorname{Re} T$ is irrelevant, can be absorbed in the chemical potential
Im T involves only Im G
strong scatterers
A detailed model for $V(\boldsymbol{k}-\boldsymbol{p})$ is required to define the kernel of the integral equation. Since T is complex, both $\operatorname{Im} \hat{G}^{0}$ and $\operatorname{Re} \hat{G}^{0}$ are required.

T-Matrix (point-like scatterers)

$V(\boldsymbol{k}-\boldsymbol{p})=V \Rightarrow \hat{T}(\omega)=\left[\left(\frac{1}{V}-\int \frac{d^{2} p}{(2 \pi)^{2}} G_{3}(\boldsymbol{p}, \omega)\right) \hat{\sigma}_{3}-\int \frac{d^{2} p}{(2 \pi)^{2}} G_{0}(\boldsymbol{p}, \omega) \hat{\sigma}_{0}\right]$
Unconventional superconductors: Pole close to the real axis for small ω when the coefficient of $\hat{\sigma}_{3}$ vanishes. \Rightarrow "resonant scattering", "midgap states"

$$
\operatorname{Re} \int \frac{d^{2} p}{(2 \pi)^{2}} G_{3}(\boldsymbol{p}, \omega)=\operatorname{Re} \hat{G}_{3}(r=0, \omega) \text { does not exist! }
$$

Possible ways out:

- neglect the divergent contribution $G_{3}(r=0, \omega)$ (invoke particle-hole symmetry). Then consider the unitary limit V
- consider only a single band of finite width
- Consider finite range scatterers, including the dependence of V on $|k|$. This way the physical origin of resonant scattering - matching of wavelength to size of scattering center - would be recovered.

Model

Defects are described by a concentration $n_{\text {imp }}$ and some momentum dependent model scattering potential $\boldsymbol{v}\left(\mathbf{k}, \mathrm{k}^{\prime}\right)$. In order to generalize and compare with our previous work on the conductivity we assume a circular Fermi surface and an infinitely wide band. Then the potential \boldsymbol{v} is an even function of the angle φ between k_{F} and k_{F}^{\prime}, which can be expanded as

$$
v(\varphi)=v_{0} \sum_{k=-\infty}^{+\infty}
$$

For a Gaussian $v(\varphi)=v_{0} \frac{1}{I_{0}(\gamma)} e^{\gamma \cos \varphi}$ one has $u_{k}(\gamma)=I_{k}(\gamma) / I_{0}(\gamma)$ \begin{tabular}{c|cccccc}
k \& $1(\mathrm{p})$ \& $2(\mathrm{~d})$ \& $3(\mathrm{f})$ \& 4 \& 5 \& 6

\hline $\boldsymbol{u}_{\boldsymbol{k}}(5)$ \& 0.8934 \& 0.6427 \& 0.3793 \& 0.1875 \& 0.0792 \& 0.0291

$u_{k}(5)$ \& 0.89 \& 0.6427 \& 0.3793 \& 0.18024 \& 0.0002 \& $<\mathbf{1 0}^{-4}$

$\boldsymbol{u}_{k}(\mathbf{1})$ \& 0.4463 \& 0.1074 \& 0.0174 \& 0.0024 \& 0.000 \&
\end{tabular}

We can also study the effect of scattering in individual ℓ channels, by keeping only some of the coefficients u_{k}. These could be varied at will and, in parative.
T-matrix (Fermi surface restricted approximation) There are important consequences of the dependence of V on k, even if we put $|k|$ Then the equation for $\hat{T}=\sum_{i=1}^{n} t^{l} \hat{\sigma}_{l}$ reduces to
There
$t^{0}(\varphi, \phi)=\pi N_{F} \int_{0}^{2 \pi} \frac{d \psi}{2 \pi} v(\varphi-\psi)\left[g^{0}(\psi) t^{3}(\psi, \phi)-g^{1}(\psi) t^{2}(\psi, \phi)\right]$
$t^{2}(\varphi, \phi)=\pi N_{F} \int_{0}^{2 \pi} \frac{d \psi}{2 \pi} v(\varphi-\psi)\left[g^{0}(\psi) t^{1}(\psi, \phi)+g^{1}(\psi) t^{0}(\psi, \phi)\right]$
$g^{0}(\psi ; \omega)$ and $g^{1}(\psi ; \omega)$ are the energy integrated normal and anomalous retarded Green functions
$g^{0}\left(\psi, \omega_{+}\right)=-\frac{\omega-\Sigma_{0}\left(\psi, \omega_{+}\right)}{\sqrt{\left[\Delta(\psi)+\Sigma_{1}\left(\psi, \omega_{+}\right)\right]^{2}-\left[\omega-\Sigma_{0}\left(\psi, \omega_{+}\right)\right]^{2}}}$

$g^{1}\left(\psi, \omega_{+}\right)=-\frac{\Delta(\psi)+\Sigma_{1}\left(\psi, \omega_{+}\right)}{\sqrt{\left[\Delta(\psi)+\Sigma_{1}\left(\psi, \omega_{+}\right)\right]^{2}-\left[\omega-\Sigma_{0}\left(\psi, \omega_{+}\right)\right]^{2}}}$

Since particle-hole symmetry is assumed, g^{0} and g^{1} are independent of $t^{3}(\psi, \psi)$ and g^{3} vanishes. All four components $t^{\ell}(\varphi, \phi)$ are required for the calculation of $\Sigma_{\mathbf{0}, \mathbf{1}}$.

Selfenergy Σ^{0}

The parameters introduced so far are combined in the following way: $\pi N_{F} v_{0}=\tan \delta_{0}, \quad c=\cot \delta_{0}, \quad \Gamma_{\mathrm{N}}^{\mathrm{el}}=\frac{n_{\text {imp }}}{\pi N_{F}} \sin ^{2} \delta_{0}$
For point-like scatterers $\Sigma^{1}=0$ and Σ^{0} is independent of angle (momentum).

U : near unitary limit $\delta_{0}=0.49 \pi, c=0.03$, B: near Born limit $\delta_{0}=0.10 \pi, c=3.1$ As is well-known: $\Sigma_{B}<\Sigma_{U}$ for $\omega \rightarrow 0$
For elevated frequencies one fi inds $\Sigma_{U}^{\prime \prime}$ For elevated frequencies one finds $\Sigma_{U} \leq \Sigma_{B}$
For this reason, weak scatterers remove the peak in the microwave surface resistance at intermediate temperatures, without affecting the low temperature behavior. (C.T. Rieck and K. Scharnberg: in New Trends in Superconductivity, NATO Science Series II, Vol. 67, J.F. Annett and S. Kruchinin (eds.), p.39)
For $\omega \rightarrow \infty, \Sigma_{B}^{\prime \prime}$ and $\Sigma_{U}^{\prime \prime}$ tend to $\Gamma_{N}^{e l}$, chosen to be 0.2 meV in these calculations.

Selfenergies Σ^{0} and Σ^{1} for Gaussian potential, $\underline{\gamma=5}$ $\Sigma^{0}(\omega, \varphi)=\sum_{\ell=-\infty}^{\infty} \Sigma^{0 \ell}(\omega) \cos [4 \varphi \varphi] \quad ; \quad \Delta(\varphi)=\Delta_{0} \cos [2 \varphi]$ $\Sigma^{1}(\omega, \varphi)=\sum_{\ell=-\infty}^{\infty} \Sigma^{1 \ell}(\omega) \cos [(4 \ell-2) \varphi]=\frac{\Delta(\varphi)}{\omega} \sum_{\ell=-\infty}^{\infty} S^{1 \ell}(\omega) \cos [4 \ell \varphi]$

Comparison of $\Sigma^{0 \ell}$ and $S^{1 \ell}$ for $\ell=0,1$

solid : $\delta_{0}=0.49 \pi, c=0.03$, near unitary limit dashed: $\delta_{0}=0.10 \pi, c=3.1$, near Born limit The fact that $\operatorname{Im} \Sigma^{00}\left(\omega \gg \Delta_{\text {max }}\right)$ near the Born limit is much larger than the corresponding value for point-like scatterers is due to the ambiguity in comparing $v=$ const and $v(\varphi)$: $\left\langle v^{2}(\varphi)\right\rangle=\langle v(\varphi)\rangle^{2} I_{0}(2 \gamma) / I_{0}^{2}(\gamma)=3.8\langle v(\varphi)\rangle^{2}$ for $\gamma=5$.
Note the large contribution to quasiparticle scattering at frequencies near the OP maximum!

Selfenergy Σ^{0} for Gaussian potential, limiting behavior For $\omega \gg \Delta_{\text {max }}$, (OP-Amplitude), $\Sigma^{0 \ell}$ reduces to the normal state result:
$\Sigma^{00}=-i \Gamma_{\mathrm{N}}^{\mathrm{el}} \sum_{m=-M}^{M} \frac{u_{m}^{2}}{\cos ^{2} \delta_{0}+\sin ^{2} \delta_{0} u_{m}^{2}}$

T_{c}-reduction (one component OP)
$\Delta(\varphi) \propto \cos (4 \ell-2) \varphi \quad \Longrightarrow \quad \ln \frac{T_{c}}{T_{c 0}}=\psi\left(\frac{1}{2}\right)-\psi\left(\frac{1}{2}+\frac{\lambda_{4 \ell-2}}{2}\right)$
with pair breaking parameters $\lambda_{4 \ell-2}=\frac{\Gamma_{N}^{01}}{\pi T_{c}} \frac{1}{2} \sum_{m=-\infty}^{\infty} \frac{\left(u_{m}-u_{m+4 \ell-2}\right)^{2}}{\left(\cos ^{2} \delta_{0}+u_{m}^{2} \sin ^{2} \delta_{0}\right)\left(1+u_{m+4 \ell-2}^{2} \tan ^{2} \delta_{0}\right)}$ Pair breaking parameters λ_{2} and λ_{6} for Gaussian potentials with widths $\gamma=1$
(solid lines) and $\gamma=5$ (dashed lines) as (solid lines) and $\gamma=5$ (dashed lines) as function of the $s-$ wave scattering phase
shift $\delta_{0}=\tan ^{-1}\left(\pi N_{F} v_{0}\right)$. The dot-dashed shift $\delta_{0}=\tan ^{-1}\left(\pi N_{F} v_{0}\right)$. The dot-dashed
line is obtained for $\gamma=5$ when only $s-, p-$ and d-wave scattering are taken into ac count. When $\gamma=1$, the difference between this approximation and the full expansion is hardly visible.

\boldsymbol{T}_{c}-reduction (pair breaking- Born limit)

Pair breaking parameter, Born limit $\delta_{0} \rightarrow 0$

="
$\frac{\Gamma_{N}^{e}}{\pi T_{c}} \frac{1}{I_{0}^{2}(\gamma)}\left[I_{0}(2 \gamma)-I_{4 \ell-2}(2 \gamma)\right] \quad$ for Gaussian potential
If only the first three terms are taken into account one finds for $\ell=1$
$\lambda_{2}^{\text {Born }}=\frac{\Gamma_{N}^{\mathrm{el}}}{\pi T_{c}}\left[\left(1-u_{2}\right)^{2}+u_{2}^{2}+u_{1}^{2}\right]=\frac{\Gamma_{N}^{\mathrm{el}}}{\pi T_{c}} \frac{1}{I_{0}^{2}(\gamma)}\left[\left(I_{0}(\gamma)-I_{2}(\gamma)\right)^{2}+\right.$
which could be very different for large γ. For extended defects, the Born approximation does not result from the T-Matrix by simply omitting the denominators.

\boldsymbol{T}_{c}-reduction (two component OP)

$\Delta(\varphi) \propto c_{2} \cos 2 \varphi+c_{6} \cos 6 \varphi \quad$ (popular ansatz to explain U-shape in ARPES) $\ln \frac{\omega_{D}}{2 \pi T_{C}}=\frac{1}{2}\left[\frac{1}{\lambda_{+}}+\frac{1}{\lambda_{-}}+\psi\left(\frac{1}{2}+\frac{\lambda_{2}}{2}\right)+\psi\left(\frac{1}{2}+\frac{\lambda_{6}}{2}\right)\right] \pm \frac{1}{2}\left[\left(\frac{1}{\lambda_{+}}-\frac{1}{\lambda_{-}}\right)^{2}+\left(\psi\left(\frac{1}{2}+\frac{\lambda_{2}}{2}\right)-\psi\left(\frac{1}{2}+\frac{\lambda_{6}}{2}\right)\right)^{2}\right.$

$\left.\left.\left(\frac{1}{2}+\frac{\lambda_{2}}{2}\right)-\psi\left(\frac{1}{2}+\frac{\lambda_{6}}{2}\right)\right)\left(\frac{1}{\lambda_{+}}+\frac{1}{\lambda_{-}}\right) \frac{\Lambda_{22}-\Lambda_{66}}{\Lambda_{22}+\Lambda_{66}}\right)^{\frac{1}{2}}$

Critical temperature T_{c} for Gaussian potential with width $\gamma=5$ for three different phase shift $\delta_{0}=0.05 \pi, 0.3 \pi, 0.5 \pi$ full line : Abrikosov-Gorkov dashed lines : single component OP dot-(dash) lines : two component OP Inset depends on details of the pairing in teraction; It can happen that $\Delta_{6} / \Delta 2$ remains constant.

Angle Dependent DOS - Spectralfunction

These curves reflect the frequency dependence of $\Sigma_{U}^{\prime \prime}$ and $\Sigma_{B}^{\prime \prime}$

$N(\omega, \varphi)$ at $\omega \approx 0$ and $\omega \approx \Delta_{\max }=16.6 \mathrm{meV}$ depends
sensitively on strength and shape of the scattering potential!

Summary

- T-Matrix
almost identical calculations $\begin{array}{ll}\text { single impurity / alloy model } & \begin{array}{l}\text { almost identical calculations } \\ \text { The assumption of point like scatterers }\end{array} \\ \text { weak / strong scatterers } & \begin{array}{l}\text { causes no problems, when the scattering } \\ \text { is weak. For resonant scattering, Re } \hat{G} \text { and }\end{array}\end{array}$ point like / extended scatterers is weak. For resonant scattering, Re G and taken into account
- Results for a Fermi surface restricted approximation
is mitigated by d-wave scattering only in the Born limit. $T_{c}\left(\Gamma_{N}^{e l}\right)$ qualitativ similar to $A G$
unless the OP has several components uns. The appearance of resonances depends
sensitively on the shape of the scattering sensitively on the shape of the scattering
potential. Most likely, the fi inite range of the potential. Most ikely, the finite range of scattering potential will reduce $N(\omega=0)$.

