Why we need to model APRES & Why we need a modular approach

P. Aebi, Institut de Physique, Université de Neuchâtel, Switzerland

Need: only modeling will bring us further

- ARPES is result of many coupled aspects

Modular approach: separately understand

- physics of initial state
- physics of final state
- physics of coupling (matrix elements)

C. Monney, H. Cercellier, C. Battaglia, L. Despont, M.G. Garnier

What is the quasi particle dispersion? (todays analysis!) What are the Fermi vectors?

What is the truth? ... k_F?

Interpret line shape as

arXiv:cond-mat/0611215 v2 10 Nov 2006

AND: k_{perp} integration needs to be considered including Matrix elements for the residual 3D character of quasi-2D materials

Influence of the Third Dimension of Quasi-Two-Dimensional Cuprate Superconductors on Angle-Resolved Photoemission Spectra

A. Bansil¹, M. Lindroos^{1,2}, S. Sahrakorpi¹, and R.S. Markiewicz¹ ¹Physics Department, Northeastern University, Boston, Massachusetts 02115, USA .. only modeling will bring us further ²Institute of Physics, Tampere University of Technology, P.O. Box 692, 33101 Tampere, Finland $\Sigma_{i} = 10 \text{ meV}$ $\Sigma_{t}^{"} = 100 \text{ meV}$ $\Sigma_{i}^{"} = 1 \text{ eV}$ 21 Jul 2004 ē Ш hv =0.2 a) 25.7 Binding energy [eV] k_{||} [2π/a]⁰. eV arXiv:cond-mat/0407555 v1 b) k_{II} <u>S</u> 0.5 25.0 0.3 ᇤ eV 0.2 40 -400.1 40 0 –40 Binding Energy [meV] 0 40 -400 0 0 k₂ [2π/c] FIG. 2: Simulated ARPES lineshapes (EDCs) in Bi2212 for 0.2 0.3 0.4 0 0.1 0.5 a series of photon energies ($h\nu = 25 - 25.7 \text{ eV}$) at a fixed k_{...} [2π/a] $k_{\parallel} = (0.34, 0.09) 2\pi/a$ -point using three different values of the final state broadening given by the indicated imaginary parts of the self-energy, Σ''_{*} . In order to highlight the influence of k_z -dispersion, the initial state broadening is chosen to be very Line shape? small, $\Sigma''_{i} = 0.2 \text{ meV.}^{17}$

How to know what is $A(k,\omega)$ & what is from different k_{perp}

Modulation of the crystal potential

Even for an infinitesimal lattice modulation Band structure is immediately reconstructed

Modulation of the crystal potential

...negligible spectral weight on Umklapp bands

... unless there is strong electronic coupling with the new wave vector (see H. Cercellier)

Bi2212: The joys of Fermi surface mapping ...

... may turn into pitfalls

.. only modeling will bring us further..

... complicated situation due to FS contour manifolds

Bi2212: the situation is complicated despite its 2D character

?How to know?
-what is due to large unit cell (CDW) in initial state
-what is due to large unit cell (CDW) in final state
-whether low intensity is due to absence of QP or ME
-what is due to A(k,ω) / quasi particles

We need to consider -final state scattering ('5x1')-reconstruction -matrix elements (hv - dependence) Matrix elements depend on k, ω , hv, polarization It will be possible to explore influence of parameters:

Choose parameters:

to have maximal sensitivity for: -certain Atomic elements, -orbital symmetries, -special effects of the μ-model

Intensities in Valence Photoemission - Symmetry Effects

The modeling has to be modular between initial and final state physics

Open for the most different models for initial state physics

Separate

matrix elements & final state scattering

Have to define the interfaces: Hedin Lundquist formula?!

It has to be used by the experimentalists, each time giving credit to the persons working on the project

As an experimentalist, come with

... but also for a theoretician:

what experiment will be best for verifying my μ -model?