Why we need to model APRES

\&

Why we need a modular approach

P. Aebi, Institut de Physique, Université de Neuchâtel, Switzerland

Need: only modeling will bring us further

- ARPES is result of many coupled aspects

Modular approach: separately understand

- physics of initial state
- physics of final state
- physics of coupling (matrix elements)
C. Monney, H. Cercellier, C. Battaglia, L. Despont, M.G. Garnier

What is the quasi particle dispersion? (todays analysis!) What are the Fermi vectors?
... only modeling will bring us further...

What is the truth? ... \mathbf{k}_{F} ?

$\mathrm{A}(\mathrm{k}, \omega)$ may be sufficient for local (in ω and $\mathrm{k}_{/ /}$) analysis
$\mathrm{A}(\mathrm{k}, \omega)$ may be sufficient for
local (in ω and $\mathrm{k}_{/ /}$) analysis

Intensity distribution over large areas Needs inclusion of matrix elements

AND: $\mathrm{k}_{\text {perp }}$ integration needs to be considered including Matrix elements
for the residual 3D character of quasi-2D materials

Influence of the Third Dimension of Quasi-Two-Dimensional Cuprate Superconductors on Angle-Resolved Photoemission Spectra

A. Bansil ${ }^{1}$, M. Lindroos ${ }^{1,2}$, S. Sahrakorpi ${ }^{1}$, and R.S. Markiewicz ${ }^{1}$
T 1 Physics Department, Northeastern University, Boston, Massachusetts 02115, USA
© 2 Institute of Physics, Tampere University of Technology, P.O. Box 692, 33101 Tampere, Finland

Line shape?

FIG. 2: Simulated ARPES lineshapes (EDCs) in Bi2212 for a series of photon energies ($h \nu=25-25.7 \mathrm{eV}$) at a fixed $k_{\|}=(0.34,0.09) 2 \pi / a$-point using three different values of the final state broadening given by the indicated imaginary parts of the self-energy, $\Sigma^{\prime \prime} \%$. In order to highlight the influence of k_{z}-dispersion, the initial state broadening is chosen to be very small, $\Sigma_{i}^{\prime \prime}=0.2 \mathrm{meV} .{ }^{17}$
How to know what is $A(k, \omega)$ \& what is from different $k_{\text {perp }}$

Modulation of the crystal potential
... only modeling will bring us further...

Reciprocal space

Reciprocal space

Even for an infinitesimal lattice modulation
Band structure is immediately reconstructed

Modulation of the crystal potential
Reciprocal space

In practice... the experiment may show ... Reciprocal space

...negligible spectral weight on Umklapp bands
\ldots unless there is strong electronic coupling with the new wave vector (see H. Cercellier)

Quasi 2D system, a well-known example ...

Bi2212: The joys of Fermi surface mapping ...

only modeling will bring us further...

... may turn into pitfalls
... complicated situation due to FS contour manifolds

Bansil, Lindroos, PRL 83 (1999) 5154

Matrix elements play a crucial role

Bi 2212 : the situation is complicated despite its 2D character

?How to know?

-what is due to large unit cell (CDW) in initial state -what is due to large unit cell (CDW) in final state -whether low intensity is due to absence of QP or ME -what is due to $A(k, \omega)$ / quasi particles

We need to consider

-final state scattering ('5x1')-reconstruction -matrix elements ($\mathrm{h} \nu$ - dependence)

Matrix elements depend on $\mathbf{k}, \omega, \mathrm{h} v$, polarization
It will be possible to explore influence of parameters:

Choose parameters:

to have maximal sensitivity for:
-certain Atomic elements, -orbital symmetries, -special effects of the μ-model

Intensities in Valence Photoemission - Symmetry Effects

$\vec{\varepsilon}_{\mathrm{p}}$ photon polarization in...
$\vec{\varepsilon}_{\text {s }}$...perpendicular ("senkrecht") to...scattering plane

Overlap integral depends on
final state $E_{\text {kin }}(h v)$ polarization, experimental geometry $\rightarrow>$ selective mapping of specific orbitals, states.

The modeling has to be modular between initial and final state physics

Open for
the most different models for initial state physics

Separate
matrix elements \& final state scattering

Have to define the nherfaces:
Hedin Lundquist formula?
It has to be used by the experimentalists, each time giving credit
to the persons working on the project

As an experimentalist, come with

my experimental geometry, polarization, $\mathrm{h} v$

Crystal structure

Computer program
... but also for a theoretician:
what experiment will be best for verifying my μ-model?

