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ABSTRACT
The dynamics of the interacting electronic pair is examined in this work by the single band t-U-
V-J model, which is hoped to provide an insight into the interaction mechanisms of 
ferromagnetism and triplet superconductivity. The mathematical method used is a highly 
simplified correlated variational approach (HSCVA) recently developed by us. The results 
obtained provide an insight into the behaviour of electronic correlations in the t-U-V-J potential. 
In particular, the parameter space for a transition from antiferromagnetism to ferromagnetism and 
from singlet superconductivity to triplet superconductivity are clearly delineated
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MOTIVATION FOR THE WORK

• Electronic correlations in matter are largely responsible for the various 
interesting properties of solid materials in nature such as the chemical 
bonding, magnetic, electrical and optical properties.1,2 Electronic 
correlations could also lead to phase transition of the parent material 
such as in the Mott-Hubbard (metal-insulator) transition3, high 
temperature superconductivity4 and ferromagnetism.5,6 It is widely 
believed that these phenomena which involve strongly correlated 
electrons cannot be investigated with any standard perturbation 
theory.7-9 Also there is currently no proven exact and satisfactory 
theory to investigate the strong correlations of electrons. This is why 
there is still no consensus on the origin of the aforementioned 
phenomena. This is very challenging especially in the case of 
ferromagnetism in metals which is one of the oldest strong coupling 
phenomena observed in nature.

• In this presentation, the strong correlation of electrons and its 
implications will be investigated using the General lattice model. 
Specifically, a physically motivated truncated form of the General 
lattice Hamiltonian will be used for the investigation, by employing a 
non-perturbative approach.



METHODOLOGY
• THE GENERAL LATTICE MODEL FOR STRONGLY CORRELATED ELECTRONS

• The general lattice Hamiltonian model within the occupation number formalism for electrons with 

spin σ interacting via a spin-dependent interaction Vee(r-r1) in the presence of an ionic lattice potential 

Vion(r) has the form6

• H = H0 + Hint (1.1)

• where

(1.2)

• (1.3)

• In the above equation, the  are the usual field operators and 

is the local density.
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• After some initial assumptions (see Ref. 6) , the Hamiltonian may be written in the 
lattice representation as 

•

• (1.4) 

• where α, β, γ and δ represent  the bands while i, j, m and n represents the sites
• The Hamiltonian given by Eq.(1.4) is too general to be tractable in dimensions  d > 

1. Therefore, it has to be simplified using physically motivated truncations such as:
• i. That the Fermi surface (FS) lies within a single conduction band that is well 

separated from other bands so that the inter band interaction is weak hence we will 
restrict our study to  a single band (α = β = γ = δ = 1) which is also called tight 
binding (TB) band. Thus Eq. (1.4) reduces to

(1.5)
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• ii. The above single band Hamiltonian is still too complicated for most purposes, 
as such it needs to be simplified further. Taking into account the weak overlap 
between neighbouring  orbitals in a TB description, one expects that the overlap 
between  nearest neighbours(NN)  is important hence only NN hopping and 
interactions are allowed. So the site indices are restricted to only NN positions 
leaving us with a purely local contribution, 

• νiiii = U (1.6)
• which is the on-site Coulombic interaction term; 

• and  four NN contributions:
• νijij = V (1.7)
• which is the NN Coulombic interaction term,

• νiiij = ∆t (1.8)
• which gives rise to an occupation dependent hopping rate,

• νijji = J (1.9)
• which is the NN Heisenberg exchange term and 

• νiijj = J1 (1.10) 
• which describes the exchange hopping processes.



• Thus it is by adding the appropriate contribution from Eqs. (1.6 – 1.10), to the 
kinetic part in Eq.(1.5) that we will obtain the so called t-U model(commonly known 
as Hubbard model),   t-U-V model, t-U-J model, t-U-V-J model, etc.

• It is necessary to point out that an explicit evaluation of the relative size of all these 
contributions was given in the original paper by Hubbard (1963) but the four NN 
contributions were shown to be negligibly small in the special cases of interest to 
Hubbard. 

• Thus the choice of the NN contributions to be included to the original Hubbard 
model in this current  work will depend on the physical situation.

• Basically, the problem of developing a theory for ferromagnetism in metals 
emanates from the apparent dual character, itinerancy and localization properties of 
the electrons in these materials.8,10,11 The Hubbard model12 was developed with the 
hope that the kinetic part will represent the itinerancy while the Coulombic
interaction will be for the localization for ferromagnetism. After more than four 
decades of intense study of the model, there is general consensus that it usually 
favours antiferromagnetism.13,14 It has been suggested that three natural ways to go 
beyond the original Hubbard model are to enhance the kinetic part in order to 
increase the itinerancy of the electrons, include other interaction matrix elements5,6,8

within the single band model or include band degeneracy15 that allows intra-atomic 
exchange. We take the second path here:  adding other interaction terms.



The t-U-V-J Model
• It is Amadon and Hirsch5 who suggested that to achieve a realistic model of 

electrons in metals, the NN Coulombic interaction V should also be included to the 
t-U-J model to achieve the t-U-V-J model given by

(1.11)

The need to include the V term is based on the fact that its absence will make the 
General lattice model to be unstable towards triplet SC, as electrons of parallel 
spins attract each other. The attraction between the parallel spins is V - J, as such 
the instability will disappear for V ≥ J which is expected to be the situation for 
electrons in metals.
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• In their study of one dimensional (1D) lattices using both the numerical exact 
diagonalization and mean field theory (MFT), Amadon and Hirsch5 showed 
that in the exact case, the V term suppresses the tendency to ferromagnetism 
particularly for small U for all band fillings while MFT predicts no effect of V. 
Consequently, that study suffers two setbacks: it is limited to 1D lattices and 
the observation made for the role of V from the exact calculation is different 
from that of the MFT as one moves away from half filling.

• Thus as hinted earlier, the goal of this work is to investigate the dynamic of the 
two-electrons interacting under the   t-U-V-J model on finite-sized lattices in 
one dimension (1D), 2D and 3D using a highly simplified correlated variational
approach (HSCVA).



THE CHOICE OF CALCULATION

• As stated earlier, the general belief in the literature is that electronic correlations is a 
quantum-mechanical strong coupling phenomenon which cannot be investigated by 
any standard perturbation theory.6 Since the General lattice model is time 
independent, the variational approach which provides an approximate calculation of 
the ground state energy spectrum and wave function of a time independent 
Hamiltonian. is a feasible candidate. 



• In 1989, Chen and Mei developed a variational method for quantum systems 
consisting of two electrons interacting under the Hubbard Hamiltonian in 1D and 
2D lattices. The method which is also known as the correlated variatiional
approach (CVA) has been extended to three dimensional (3D) lattices.

• The Chen and Mei formulation has three shortcomings today:
• It was developed only for singlet states as such it can not be applied to both 

magnetism and triplet superconductivity16 which require the inclusion of triplet 
states. 

• It is complex, tedious and time consuming and Chen and Mei have two separate 
expressions for the 1D and 2D ground state variational energies.

• The resulting variational energy equations have to be minimized with respect to 
each of the variational parameters to obtain several equations, which can then be 
expressed as the matrix form of the Hamiltonian. This could be tedious especially 
for large lattice sizes.



• Thus there is need to develop a simpler formulation of the CVA. This is another 
goal of this present work and there will be two steps to achieve it

• First, a very simple and general expression for the ground state variational
energy applicable to all three dimensions and with triplet states included will be 
obtained. The inclusion of the triplet states is important as ferromagnetism is 
caused by parallel spins. Interestingly, the triplet superconductors are believed to 
have the same band mechanism as the ferromagnetic metals.16-18

• This expression, like that of Chen and Mei, has to be minimized with respect to 
the variational parameters, to obtain the matrix form of the system.

• Therefore, as a further step to simplify the formulation, the process of 
minimization will be avoided. This is the second step wherein a general 
expression will be developed to obtain directly the matrix form of the two 
interacting electrons on any lattice size in all three dimensions, without going 
through the minimization process.



EXACT CALCULATION FOR N = 2 SITES

• We began our calculation by obtaining expressions for the exact ground state 
energy and exact wave function for a quantum system of two interacting 
electrons on N sites (N = 2). The expression for the ground state energy will be 
obtained from the energy spectrum which is the eigenvalues of the matrix 
representation of the t-U-V-J Hamiltonian for N = 2. The eigenvector 
associated with this ground state energy is, of course, the exact wave function.



• The matrix form of a given Hamiltonian H, with respect to a set of basis wave 
functions ,          is given by 

(1.12)
• where the i and j are elements taking values of i = 1,2,3,…N and j = 1,2,3,…,N 

while the ket  /ψ> and its  bra < ψ\ , are the wave functions. Suppressing for now the 
subscripts on the wavefunctions, they are defined respectively as 

• (1.13)

• (1.14)

• where the electronic state means that one electron is on lattice site i with 
spin      and the other electron is on lattice site j with spin, while the Rij (= Xij, Yij, 
Zij )  are the expansion coefficients.
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• By putting in the appropriate values, Eq. (1.13) can be expressed in full 
as

•

(1.15)     

• For the two electrons on two sites problem, we have a total of six states:
• /1>=/1↑,1↓>,   /2>=/2↑,2↓>,  /3>=/1↑,2↓>,   /4>=/1↓,2↑>,   /5>=/1↑,2↑>, 

/6>=/1↓,2↓>.                                             (1.16)

∑∑

∑∑

≠==≠==

≠===

↓>↓+↑>↑+

↑>↓−↓>↑+↓>↑>=

N

jiji
ij

N

jiji
ij

N

jiji
ij

N

i
ii

jiZjiY

jijiXiiX

;1,1;1,1

;1,11

,[/,[/

],/,[/,//ψ



• It can easily been shown that the Hamiltonian matrix size for the two-electron 
interaction on K sites will be

• (2K2 - K)  x  (2K2 - K). (1.17)

• where K = N for 1D lattices with N sites,
• K = N2 for 2D lattices of size N x N (1.18)
• and K = N3 for 3D lattices of size N x N x N.

• Eq. (1.17) implies that we have a matrix size of 6 x 6 to handle for a 1D lattice 
of N = 2 sites, while for 5 x 5 x 5 3D lattice, one has the outlandish matrix size 
of 31125 x 31125 to deal with! It is this astronomical growth of the matrix size 
with the lattice size that restricts the application of the exact method to small 
lattice sizes.



• To obtain these 6 x 6 matrix, we have to use the the t-U-V-J Hamiltonian given Eq
(1.11) which can be expanded for N = 2 as

•

• (1.19)  
•
• to operate on each of the six states in Eq. (1.16) to obtain the following new states, 

taking into account the anticommutation rule of fermions,
:

• H/1> = -t/3> + t/4> + U/1>
• H/2> = -t/3> + t/4> + U/2>
• H/3> = -t/1> + - t/2> + V/3> - J/4>
• H/4> = t/1> + t/2> - J/3> + V/4>
• H/5> = V/5> - J/5> 
• H/6> = V/6> - J/6>                                                           

(1.20)
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• By using the condition that the eigen states  {/m>: m = 1, 2, …, 6}
constitute an orthonomal set, i. e.

(1.21)

the real matrix form  of Eq. (1.12) can now be written out as

(1.22)
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• The 6 x 6 matrix is clearly block-diagonalized into a 4 x 4 matrix and a 2 x 2 
matrix. 

• The 2 x 2 matrix which emerges from the triplet states, is already in diagonal 
form. Hence its eigenvalues are precisely the diagonal elements V-J. Thus the 
energy for the triplet states, which is doubly degenerate, is 

• Et = Eg / t = V/t-J/t. (1.23)

• The first triplet energy emerges from the states with +1 unit of spin and the 
second is from the states with –1 unit of spin. Since both types of triplet states 
produce the same energy, then using any of them will be enough to represent 
the effect or interaction of triplet states. 



• The remaining  4 x 4 matrix can be diagonalized by expressing it in form of an 
eigenvalue problem and solving  it, will result to four eigen values of which the 
lowest of them is the ground state energy for the singlet states:

(1.24)

• The eigen vectors of this lowest energy can now be used to express the  the 
ground state wavefunction as

•
(1.25)

• where <i, j> stands for only nearest neighbour interactions.
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CHEN AND MEI VARIATIONAL FORMULATION FOR N = 2 SITES

• The variational ground state energy is given by Chen and Mei14

(1.26)
• where H is the Hamiltonian of the t-U-V-J model and  is the trial wave function.
• Now the Chen and Mei variational parameters are function of the lattice site 

separations (i.e /i – j /) only, hence the wavefunction is

•
• (1.27)         
• which for N = 2 becomes
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• Consequently, it can be shown that the denominator of Eq.(1.26) is 
• (1.27)

• Similarly, by using the Hamiltonian to operate on the wavefunction, we  obtain a 
new one, that is, 

•
• hence the numerator in Eq. (1.26) becomes

•

• (1.28)
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• Thus, Eq.(1.26) can  now be expressed using Eqs (1.27) and (1.28) as

•
• (1.29)
• This is minimized wrt the variational parameters to obtain several equations which 

can be expressed in the matrix form as

• (1.30)     

• Which is a 3 x 3 blocked matrix of 2 x 2 for the singlet part and 1 x 1 for the 
triplet part.
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• Thus it is easy to see that the eigenvalues Et and Es, that will yield nontrivial 
eigenvectors, subject to the normalization condition

• ;                              (1.31)

• are
• (1.32)

• and 
•
• (1.33)

• which agrees with the energy of the triplet states and singlet states obtained from 
the exact calculation.
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THE HIGHLY SIMPLIFIED FORMULATION OF THE CVA

• The reduction of the matrix size in the variational calculation from 6 x 6 to 3 x 3 is 
because the variational wave function is expressed in terms of the various site 
separations of the electronic states unlike the exact formulation in which the wave 
function is expressed in terms of the different electronic states.

• In other words, to write the variational wave function, one has to group all the 
electronic states into their various site separations (Chen and Mei referred to them 
as classes) and then express the wavefunction in terms of these separations. This is 
why the variational matrix size depends on the possible separations and not on the 
individual states. Our highly simplified formulation is developed by taking 
advantage of this dependence on the separations.



• Thus we defined our trial wavefunction in terms of the separations as

• (1.34)

• where the  and             are the variational parameters, while the LCX and LCY
are the lattice site separations between the two electrons in an electronic state and 
the S denotes the total number of such separations that are possible in a given lattice 

• S = ½(N + 2) for even N sites, (1.35)
• S = ½(N + 1) for odd N sites, (1.36)
• S = 1/8(N + 4)(N + 2) for even N x N sites, (1.37)
• S = 1/8 (N + 3)(N + 1) for odd N x N sites, (1.38)
• S = 1/48 (N + 6)(N + 4)(N + 2) for even N x N x N sites, (1.39)
• S = 1/48 (N + 5)(N + 3)(N + 1) for odd N x N x N sites,              (1.39)
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• It can easily be shown by mere expansion as done in the case of Chen and Mei that 
the inner product in the denominator of the variational ground state energy is

• (1.40)

• where                     and                     are the total number of states with separation LC
for singlet and triplet states respectively.

• Similarly, it can be shown that the numerator of the variational ground state energy 
is

•

• (1.40)*
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• Combining the two equations, the ground state becomes

(1.41)
• which is the general expression for the variational  ground state energy applicable 

to all the three dimensions. This is the simplified correlated variational approach 
(SCVA).

• It is easily observed that by making V = J = 0, Eq. (1.41) reduces to an expression 
for the t-U Hamiltonian. Thus when V = J = Y = 0, Eq. (1.41) will provide the 
same variational ground state energy equation as the more complex and separate 
expressions for 1D and 2D lattice obtained in Ref. (14).
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• The rules to obtain S, LC and            have been formulated by Akpojotor et al., To 
obtain LX, Ly,              and          , one has to operate on a selected two-electron 
state with separation LC with only the particle creation and annihilation operators  
of the kinetic part of the t-U-V-J Hamiltonian, given by

• (1.42)

• For 1D in which a typical state is denoted by /i↑, j↓ > say,
• (1.43)

• 2D in which a typical state is denoted by /ii↑, jk↓ > say,

• 1.44) 

• and for 3D in which a typical state is denoted by /iii↑, jkl↓ > say, 

•

(1.45)
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• So once the aforementioned parameters have been determined for any lattice, we 
can write the variational  ground state energy for it. However, it has to be 
minimized like that of Chan and Mei to obtain the matrix representation of that 
lattice.

• Since this process of minimization is often laborious especially as   the lattice size 
increases, we decided to sought for a means to avoid this process of minimization 
as a further simplification of the CVA.

• (1.46)

• which is the highly simplified formulation (HSCVA).
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Application to the two-electron interaction on n = 2 sites
• For the case of two electrons on two sites, S = 2 from Eq. 

(2.47). Therefore, LCX = 0,1 and    LCY = 1. The selected 
state is /1↑, 1↓>. So using Eq.(2.65), one gets

•
(1.47)

• Hence the table of LCX, LX ,             , LCY , LY and 

•

↓>↑↓>=↑>= 1,2/21,1// 0 PP HH ψ
↓>↑↓>=↑>= 2,2/22,1// 1 PP HH ψ

↑>↑↑>=↑>= 2,2/22,1// 2 PP HH ψ

LCX LX LCY LY

0 1 1 0 - -

1 0 1 1 0 0

XCX LLT
YCY LLT

XCX LLT YCY LLT



• Taking into account the HSCVA, the matrix rep. for N = 2 is

•
(1.48)

• Which is the same as the one obtained from the Chen and Mei CVA.
• This method was applied to
• N = 3, 4, 5, 6, 7, 8,9, 10 and 11 for ID,
• N x N = 3 x 3, 5 x 5 and 7 x 7 for 2D and 
• N x N x N = 3 x 3 x 3, 5 x 5 x 5 and 7 x 7 x 7 for 3D.
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Presentation and Discussion of Results

• The condition to produce a ferromagnetic phase is that the lowest state energy of 
the triplet states Et, must be smaller than that of the singlet states, Es, i.e    Et <  Es

• The last values of J/4t at the various values of U/4t and V/4t at which there is 
transition from the antiferromagnetic phase to the ferromagnetic phase will be 
called the transition point TP.



• RESULTS FOR THE EVEN 1D LATTICE (N = 2 SITES)
• The ground state energy for the singlet states of the two electrons on two sites 

problem, from the exact calculation, Chen and Mei and from the HSCVA is

• (1.49)

• while that for the triplet states
• (1.50)
• Taking them into account, then at the condition to produce ferromagnetism (i.e Et

< ES), the value of the NN exchange interaction strength at the TP will be5

• (1.51)

• Thus these three eqs can be used to obtain the analytical values of the Es, Et and 
J/4t respectively at the TP when U/4t and V/4t are given arbitrary values

• This is done and the result is present in Table 1
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Table 1 The lowest energies at the TP of both the singlet and triplet states 
calculated analytically for the ID lattice with N = 2 sites as the on-site interaction 
strength U/4t and the NN interaction strength V/4t are varied.

On-site  interaction 

strength

U/4t

NN 

interaction strength 

V/4t

NN exchange

interaction strength

J/4t

Lowest

energy for singlet 

states  Es at TP

Lowest energy for 

triplet states Et at 

TP

3 0.3535 10.5857 10.5860

0 0.0411 -0.1644 -0.16443

-3 0.0207 -12.0833 -12.0828

3 3.0411 -0.1644 -0.1644

0 0.3535 -1.4143 -1.41400

-3 0.0411 -12.1644 -12.1644

3 6.0207 -12.0833 -12.0828

0 3.0411 -12.1644 -12.1644-3

-3 0.3535 -13.4143 -13.4140

0 0 0 -2.0000 0



• This matrix is also solve numerical and the results are the same as that of the 
analytical. 

Variational parameters On-site 

interaction strength 

U/4t

NN 

interaction strength 

V/4t

NN exchange

interaction strength 

J/4t

Ground state energy 

X0 X1

3 0.3535 10.5857 0.8165 0.5773

0 0.0411 -0.1644 0.1622 0.98683

-3 0.0207 -12.0833 0.0828 0.9966

3 3.0410 -0.1644 0.9966 0.0819

0 0.3535 -1.4143 0.8164 0.57740

-3 0.0411 -12.1644 0.0833 0.9966

3 6.0207 -12.0830 0.9991 0.0415

0 3.0411 -12.1644 0.9966 0.0819-3

-3 0.3535 -13.4143 0.8165 0.5774

0 0 0 -2.0000 0.7071 0.7071



• This successful check gave us confidence to apply the numerical approach to solve 
the other matrices of the lattice systems considered in this work

• The following observations are made from their results
• It is observed in that if the starting value of J/4t of a given value of U/4t and V/4t is 

greater than its value at the transition point so that the system is antiferromagnetic
(i.e Et > Es), then as the value of J/4t is increased from the starting value, the 
lowest energy of the singlet states will be increasing while that of the triplet states 
will be decreasing. 

• This will go on till after the TP at which Et < Es. Thereafter, as J/4t is increased 
further, the Et will continue to decrease while the Es will also continue to increase. 

• The physical implication is that at the constant values of the on-site and NN 
interaction strengths, the electronic correlations favouring antiferromagnetism gets 
weaker while that of ferromagnetism gets stronger as the NN exchange interaction 
strength is increased until there is a transition from antiferromagnetism to 
ferromagnetism.

• This trend is observed from computation to be consistent in all the lattices in 1D 
as well as in the higher dimensions. The trend agrees with the condition to produce 
ferromagnetism, which is Et < Es.



• Another trend common to all the lattices in the various dimensions is that in the 
antiferromagnetic phase, all the variational parameters for the singlet states have non-zero 
values while those for the triplet states have zero values. This trend is reversed in the 
ferromagnetic phase. Here lies the beauty and power of the CVA: the relative magnitude of 
the variational parameters reveal clearly the relative importance of the various parts of the 
wave function just as the ground state energy determines the favourable state of the system.

• The observations above are clearly shown graphically. 



Fig. 1 below shows the ground state energy as function of the NN exchange interaction strength J/4t for the 1D lattice N = 2 
as U/4t, V/4t and J/4t are varied for  (a) positive U and V, (b) positive U and negative V, (c) negative U and positive V 
and  (d) negative U and V. Observe that at the constant values of the U and V, the electronic correlations favouring
antiferromagnetism gets weaker while that of ferromagnetism gets stronger as the NN exchange interaction strength is 
increased until there is a transition from antiferromagnetism to ferromagnetism. This trend is consistent in all the lattices
in 1D as well as in the higher dimensions. The trend agrees with the condition to produce ferromagnetism, which is Et < 
Es. Observe further that that V suppresses the tendency to ferromagnetism while the U enhances it. This accounts for the 
very small values of J/4t at increasing positive values of U/4t and very large values of J/4t at increasing positive values 
of U/4t . For example, when U/4t = -3, the values of J/4t required to induce the transition to the ferromagnetic phase are 
about twice that of the values of V/4t i.e 2V < J. These are very interesting and consistent results with the literature. For 
it has been argued earlier5 that whenever V < J, the system will be unstable towards triplet superconductivity..
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Fig. 2 below shows graphs of the of the lowest energies for both the singlet and triplet states  (Es 
and Et ) plotted against positive and negative J/4t as both U/4t and V/4t are varied from –3 to 
3 for N x N X N = 3 x 3 X 3. It is observed that for all values of J, the transition from AF to
ferro is only when J is positive which is in agreement with the rule that J must be positive. 
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Fig. 3 below are graphs of J/4t plotted against U/4t at half filling (a) this work (b) Ref (5) and quarter filling (c) this work and  
(d ) Ref(5). Observe that they compare favourably. In their ID study of the t-U-V-J model, Ref (5) observed that the 
exact calculation shows that V affects the parameter space for the transition away from half-filling while mean field 
theory shows no effect. It is obvious from Fig. 3 that the former is correct.
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THE PARAMETER SPACE (U/4t, V/4t AND J/4t) AT THE 
TRANSITION POINT TO FERROMAGNETISM

• It has been observed in the results that  at constant values of U/4t, the J/4t 
increases as V/4t is increased while at constant values of V/4t, the J/4t decreases 
as U/4t is increased. 

• The physical implication of this trend is that the NN repulsion suppresses the 
tendency to ferromagnetism while the on-site repulsion enhances it. 

• This accounts for the very small values of J/4t at increasing positive values of 
U/4t. For example, a closer study of the aforementioned tables, reveals that when 
U/4t = -3, the values of J/4t required to induce the transition to the ferromagnetic 
phase are about twice that of the values of V/4t i.e 2V < J. 



• These are very interesting and consistent results with the literature. For it has been 
argued in section 1.4.4 (see also Amadon and Hirsch5) that whenever V < J, the 
system will be unstable towards triplet superconductivity. 

• Interestingly, this occurs for the negative values of U as such they confirm earlier 
suggestions in the literature that the negative-U Hubbard model would be useful for 
studying superconductivity. 

• Thus the extension here is that the t-U-V-J model with negative-U would be useful 
for studying triplet SC.



• It was observed that for positive values of U/4t, J is very small. For example, 
when U/4t = V/4t = 3, J/4t is always very small so that V > J.

• It has been stated earlier that the expected situation of the electrons in metals is 
that V ≥ J.

• These results also confirm earlier suggestions in the literature that the positive-U 
Hubbard model would be useful for studying magnetism. Thus the extension here 
also, is that the t-U-V-J model with a positive-U would be useful for studying 
magnetism.



CONCLUSION

• The dynamics of the two interacting electrons described by the t-U-V-J 
model has been investigated to delineate the parameter space for the 
different physics accessible to the model.  In particular, the parameter space 
for the occurrence of a transition from an anti ferromagnetic phase to a 
ferromagnetic phase has been obtained.  Further, possible effects such as 
band filling, dimensionality and even-odd number of sites on the parameter 
space at the transition point were also investigated.  

• The research findings obtained in this work which showed that the t-U-V-J 
model is a useful paradigm to describe the physics of ferromagnetism in 
materials, can be classified as follows. 



• 1. The system is antiferromagmetic when J = 0 for any finite values of U and V 
and this emphasizes the domineering role of J in the crossover to ferromagnetism.

• 2. As the value of V is increased at constant value of the U, the value of J at the 
transition point from antiferromagnetism to ferromagnetism increases and this 
implies that V suppresses the tendency to ferromagnetism. This, however, does not 
mean negative-V can induce ferromagnetism.

• 3. As the value of U is increased at constant value of V, the value of J at the 
transition point from antiferromagnetism to ferromagnetism decreases and this 
implies that U enhances the tendency to ferromagnetism.

• 4. When U is positive and V is chosen so that V ≥ J, the system will be stable 
towards ferromagnetism and when U is negative and V is chosen so that V < J, the 
system is likely to be unstable towards triplet superconductivity.

• The roles of U, V and J can be enhanced or suppressed by the number of sites and 
this determines effects such as band filling, dimensionality and even – odd number 
of sites .

• Though we have investigated these effects, we are leaving out their discussion 
today, because the focus today is to show that the t-U-V-J model can possibly be 
used to account for  the physics of ferromagnetism and triplet superconductivity as 
well as to explain our HSCVA as a possible good mathematical tool to study the 
electronic correlations.



• Finally, it is pertinent to point out here that we 
are not naïve of the fact that in practice, we 
need a considerable density of state to study 
the strong electronic correlation systems. 
Further, each material have peculiar properties; 
for example, band degeneracy and Hund’s rule 
exchange coupling can play a significant role15

or an insignificant role in the stability of 
ferromagnetism in metals.5,19 However, our 
goal here is to have an insight into the
behaviour of the t-U-V-J model and this has 
been achieved. Thus we are now more 
confident to increase the density of state as well 
as apply the model to real materials.



THANK YOU
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