Luttinger liquid behavior
In the spectral and transport properties

Feng Wang S.-K. Mo' J.W. Allen University of Michigan
'Stanford

G.-H. Gweon UCSC

H. Hochst Synchrotron Radiation Center

University of Wisconsin

J. He, R. Jin, D. Mandrus? Oak Ridge National Laboratory
2also: University of Tennessee

Jose V. Alvarez.
Universidad Autonoma de Madrid

Supported at UAM by MEC



Outline

Review of the TLM and extensions.

Lithium Purple Bronze as quasi-1D material.

Temperature dependence of the DOS exponent.

Upturn in the resistivity at 24K.

Conclusions.

0.9

® at k path Fig. 1(a)
A at k path Fig. 1(b)

— theory %

100 150 200 250 300

I ' I B Choietall
— AT




The Basic Luttinger Assumptions = TLM Model

Kinetic Energy Interaction Energy
e Strictly 1D (flat FS) e Only small momentum-transfer

e Perfectly Linear \ in-chain interactions.
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Physical Properties of the TLM

Excitations:
e No poles in GF : no quasi-particles
e Excitations are density fluctuations
of charge & spin
with different velocities v, and v,

- Static and dynamic correlation BB [EEl

functions display power-law behavior 1 ﬁ:g
- Exact form factors are known X |
0 , slope
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Example:
Anomalous exponent

o for DOS at E.
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Bosonic Representation
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Relaxing the TLM assumptions:
The Luttinger Liquid

« Consider curvature on the bands:
but negligible within a cut-off energy: T*.

* Include backward scattering repulsive interaction g,.

* g, is irrelevant and TLM is the fixed point in the RG sense.
* Physical properties remain asymptotically valid below the cut-
off energy T*.



Single particle Orbitals “enough”
hopping (L) overlap and/or FL spectral weight
7~ A bridges at the Fermi
Level
tL
Pair hopping P\ 2nd order Attractive
1 SC interacions in
(L) B the chains
J1
Particle-hole 2nd order Strong
hopping (L) -~ A CDW repulsion in the
V1 R chains
Disorder Random Critical value of
(Collective) Potential. Localization | the repulsion in
D Impurities the chains
Defect
Attractive Spin Gap Attractive spin
Backward Momentum (Luther- backscattering
scattering transfer in Emery
y chain Liquid)
interactions Charge

stavs




Coupling LL’s: the Sliding LL

Emery,Kivelson,Fradkin and Lubensky (00)
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*Couple the LL with interchain interactions that keep TLM structure.
*Such set of couplings include the density-density interactions.
-System decouples in as many independent modes as chains are
coupled “TLM modes”.

» Electronic motion is still 1D.

coupled chains —> superconductor /_ SHE
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Band structure calculations.

1D Fermi surface due to bands C and D
ke Incommensurate and linear dispersion

Whangbo & Canadell 88’
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ARPES band structure and Fermi surface map.

Quasi-1D nature, incommensurability and linearity
actually observed in ARPES
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In which T range can we observe LL physics.

T5p T*
1K 10K 100K 1000K
LiPB
SC T

1K 10K 100K 1000K
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Temperature dependence of the DOS exponent

 LiPB QCS, LL lineshapes .
« o(T) = scale dependence.
« Marginality. Common in 1D.
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Experimentally: lack of scaling
relation between exponents.
Are there neutral modes? 0




Two-=band Model

2 chains P*= pec + Pp
2 bands P"= Pc — Pp
o"= oc + Op } Neutral Modes
o = Oc - OD
Up,t | 2 1 2
Hp+ = dz Ky +1I L + ———(0:0p,+)
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back-scattering terms
+ Pair tunneling J’s
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RG equations.

1
o = g(Kp+ + K, + K,

(Kp—), —
RG equations to treat couplings: ,
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Understanding the RG flow

J,=0, g, =0:

p— decouples from spin sector
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Chain physics: a (1)

1
(Kp-) = 1 {3(J2)* + J7}
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Parallel Transport :Power laws & resistivity rise

4
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“High-T” power law? _ 3

Low T crossover T,,;,? =
p(T) 2
N

* Not a transition to a CDW. No q
* No optical gap.

* Lineshapes very similar

above and below the transition. 0 50 100 150 200 250 300

Giamarchi & Schulz 88’:
Include disorder as a small pert.

in the LL and treat it with RG. ' /
Result: The scattering increases at low-T .S k

i Disorder
BUT the system characterized by eff. LL.

It undergoes Anderson Localization decreasing
below T, .,
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Parallel Transport :Power laws & resistivity rise
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Experiment & Theory

0(T)/p(T=300K)
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Line: LL+disorder

I:)1[():>:::()"()-1 :;,‘NV(E!'?!{ low — si
y(0)=0.15 b
Vp =2*Vo (ARPES)

No spin gap.
Do not localize above T
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Parallel Transport :
pressure dependence

-

Tm KD
10 20 30 40

Theoretical Relation:
asipmtotic 8 and Tmin
Pressure changes both. - 20
Same D(0) and y
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Parallel resistivity analysis.

Upturn does not fit
to an exponential
gapped behavior at low T

*K(T): Substract the
power-law part.

Low-T:

Different measurements:

Schlenker (89) & Choi (04)
very similar
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sumumary

Li, sM0;0O,- linear dispersion at E., large T*, small T;,
ke Incommensurate.

Charge neutral critical modes contribute to the spectral
density but not to transport; Interaction between these
modes renormalize o (decreases with decreasing T).

LL+Disorder can account for the upturn in the resistivity.
Power laws shows up in the intermediate temperature
regime.

Sliding LL model and T=0 phase diagram
position from resistivity exponents.



